LIQUID XENON DETECTORS

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

HighRR 2020, Heidelberg

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Lecture structure

- LECTURE 1:
 - General xenon characteristics
 - Scintillation & ionization processes
- LECTURE 2:
 - Xenon purity & radiopurity
 - Signal yields, resolution and calibration strategies
 - Photon detection

LECTURE 3:

- Low energy searches: dark matter & CEvNS
- Search for neutrinoless double-beta decay
- Xenon calorimeters and medical applications

XENON PURITY

Teresa Marrodán Undagoitia (MPIK)

Xenon purity

- Xenon is obtained from the distillation of air
- Trace impurities in the gas at ppm level
- Outgassing from detector materials
- Radioactive impurities

figure from www.linde-gas.com

Absorption of light by impurities

- Overlap with the xenon scintillation spectrum
- Water suppresses the overall detector light yield

Teresa Marrodán Undagoitia (MPIK)

Attachment of electrons to impurities

- Electron attachment to impurities (e.g. oxygen) while drifting
- $\kappa_s \rightarrow$ the rate constant for e^- attachment
- Attachment is impurity- and field-dependent

Teresa Marrodán Undagoitia (MPIK)

The 'electron lifetime'

Reduction in the number of electrons due to attachment:

$$\frac{dN_e}{dt} \propto -\kappa_s \cdot N_e \cdot N_S, \tag{1}$$

 N_e : concentration of electrons & N_S : concentration of impurities.

For an electron cloud drifting through liquid xenon:

$$N_e(z) = N_e(0) \cdot \exp(-\kappa_s \cdot N_S \cdot z), \qquad (2)$$

z is the spatial drift coordinate.

The electron lifetime τ_e represents the time that an electron can drift through the liquid before it is attached to an impurity:

$$\tau_e = (-\kappa_s \cdot N_S)^{-1}. \tag{3}$$

Purity and electron lifetime

S2 in the Xürich detector @ University of Zürich

- Improvement of purity through constant purification
- No visible loss of S2s after 6 days of purification

Detector purity

Picture of the XENON1T purification system

- Removal of electronegative impurities below 1 ppb (O₂ equiv.)
- Continuous recirculation of xenon gas through hot getters (SAES)

- Evolution of the 'electron lifetime'
- Determined using calibration & background data

XENON1T electron lifetime evolution during SR1

Our local purification system

HeXe purification system @ MPIK

Purification techniques

- Liquid purification \rightarrow faster circulation of the target possible
- Less power consumption, no need to recondense

XENONnT liquid purification system

- Other purification methods:
 - Adsorption by Oxysorb columns
 - Purification via spark discharge techniques

Radioactive impurities

Figure from DEVIANT ART

- ⁸⁵Kr from bomb tests and reactor fuel re-processing Q
- Xenon unstable isotopes: ¹²⁴Xe (double EC), ¹³⁶Xe ($\beta\beta$ decay)
- Radon emanation
 - \rightarrow also external radioactivity (from detector and cavity materials + cosmic rays)

Teresa Marrodán Undagoitia (MPIK)

External background suppression in XENONnT

Scheme of XENON1T muon veto

XENONnT neutron veto installed

Scheme GeMPI detecor

Giove @ MPIK

- Active water-Cherenkov muon shield, XENON1T, JINST 9 (2014) P11006
- Neutron veto will be added around the cryostat of XENONnT
- High sensitive HPGe spectrometers
- $ightarrow\,$ GeMPIs and Gator detectors at LGNS with \sim 10 μ Bq/kg sensitivity in U & Th
 - + detectors at MPIK shallow depth lab

While a banana contains 15 Bq ⁴⁰K, a XENON1T PMT contains 15 mBq

Teresa Marrodán Undagoitia (MPIK)

Backgrounds for electronic recoils

XENON1T, JCAP04 (2016) 027, arXiv:1512.07501

Krypton reduction in XENON1T

- Krypton background reduced by cryogenic distillation
 Q XENON1T, Eur. Phys. J. C 77 (2017) 275
- Krypton level measured independently by RGMS Eur. Phys. J. C 74 (2014) 2746
 - \rightarrow Sensitivity of the measurement: 6 ppq ^{nat}Kr in Xe Q

Radon budget and material selection

 Radon emanation measurements for material selection

miniaturized proportional counter

Radon budget in XENON1T (preliminary)

- $\sim 10 \,\mu \text{Bq/kg}$ achieved in XENON1T
- Lowered to 4 µBq/kg ²²²Rn with online cryogenic distillation + new full-metal pumps

SIGNALS AND RESOLUTIONS

Teresa Marrodán Undagoitia (MPIK)

Signal yields

Figures from the NEST noble element simulation technique

- Energy-dependent yield for β -, α -particles and nuclear recoils
- Electric field dependence of the yields

Energy resolution

Data from XENON10, Astropart. Phys. 34 (2011) 679 & arXiv:1001.2834.

 Combining light (S1) and charge (S2) signals results into an improved energy resolution

Teresa Marrodán Undagoitia (MPIK)

Energy resolution

- Improvements in resolution \rightarrow important for $0\nu\beta\beta$
- XENON1T reached recently $\sigma/\mu \sim$ 0.8% @ 2.45 MeV

Teresa Marrodán Undagoitia (MPIK)

Calibration strategies

- Determination of the NR and ER signal regions
 (important for dark matter and CEνNS searches)
- Energy calibration for NR and ER

Calibration of signal and background regions

- ER: calibrated using a ²²⁰Rn source (β-decays of ²¹²Pb)
- NR: calibrated using a neutron generator / AmBe-neutron source
 - ightarrow Lowest energies 3 PE (\sim 1 keV_{er} or \sim 5 keV_{nr})

Calibration of the nuclear recoil energy scale

MC/Data comparison

- Response of the LUX detector to nuclear recoils
- Energy range (0.7 74) keV
 - \rightarrow Experimental data
 - DD-fusion neutron generator producing mono-energetic 2.45 MeV neutrons
 - \rightarrow Monte Carlo
 - Detailed modelling of light and charge production
 - Including detector effects: corrections and resolutions

Teresa Marrodán Undagoitia (MPIK)

Energy calibration

- Internal sources necessary for large detectors:
 - ^{83m}Kr for detector characterization
 - ³⁷Ar at keV and sub-keV energies
 Q
 - ► Activated xenon isotopes: ¹²⁷Xe, ^{129m}Xe, ^{131m}Xe ...

- External γ-sources:
 - ▶ ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co, ²²⁸Th ...
 - Reach a few cm inside the target
 - Adequate for 'small' detectors

XENON1T, Nature 568 (2019) 7753, 532

PHOTOSENSORS

Teresa Marrodán Undagoitia (MPIK)

Photon detection

- Requirements for a dark matter experiment:
 - Low radioactivity & low dark-count rate
 - UV sensitivity & stable performance at cryogenic temperatures
 - High quantum and electron collection efficiency (QE/CE)
 - Time resolution in ns regime

Light sensors for nobel gas detectors

- State-of-the-art 3" photomultipliers from Hamamatsu:
 - R11410 (for LXe) for XENON1T/nT, PandaX and LZ
 - R11065 (for LAr) used by DarkSide (and Gerda)

Section of LZ array

Bottom array of XENON1T

Bottom array of the PandaX detector

3" R11410 photomultipliers

- High QE: \sim 35 % at 175 nm for a low energy threshold
- High gain: 5 × 10⁶ @1500 V
- Read-out with a 'simple' voltage divider

Low radioactivity PMT for XENON1T

- Main PMT parts screened separately
- PMT fulfils background requirements
- Major contributor to radioactivity identified: the ceramic stem

XENON collaboration, EPJC75 (2015) no.11, 546 & arxiv:1503.07698

Component	Radioactivity
²³⁸ U	< 10 mBq/PMT
²²⁸ Th	\sim 0.5 mBq/PMT
²²⁶ Ra	\sim 0.6 mBq/PMT
²³⁵ U	\sim 0.3 mBq/PMT
⁶⁰ Co	\sim 0.8 mBq/PMT
⁴⁰ K	\sim 12 mBq/PMT

Teresa Marrodán Undagoitia (MPIK)

Low dark count rate

Dark count rates of all XENON1T PMTs. Measurement in XENON1T with cold xenon gas. Figure adapted from L. Rauch PhD thesis

- Smallest signals considered in dark matter
 → Threshold of only 2-3 photoelectrons
- Accidental coincidences from dark pulses contribute to the detector background

Teresa Marrodán Undagoitia (MPIK)

Role of accidental coincidences

Data and background distributions from XENON1T

- Accidental coincidences dominate in the low energy region and below the nuclear recoil region
- Limiting the measurement of dark matter and the $\text{CE}\nu\text{NS}$

Sensitivity to UV light

- Bialkali photocathodes are used for liquid xenon applications
- Photocathode resistivity drops with decreasing temperature
- Strips or aluminum underlay in early PMTs
 - \rightarrow low temperature bialkali from Hamamatsu

High collection efficiency

PMTs arranged in a hexagonal pattern \rightarrow high filling factor

Stability in a cryogenic environment

- Stable gain for most well performing PMTs
- A fraction of the PMTs have tiny leaks which result into gain degradation & light emission

Teresa Marrodán Undagoitia (MPIK)

Alternative photosensors

Several SiPMs being considered:

- MPPCs from Hamamatsu
- SiPMs from FBK
- Digital SiPM
- ► .

LHM: Liquid Hole Multiplier

- Gas bubble is produced by heating wires hold underneath a 'GEM-like' perforated electrode
- Csl photocathode coated into the electrode

Hybrid tubes, Photocathode + APD/SiPM

- QUPID, ABALONE
- SiGHT, VSiPMT

Lots of references for these works - not included in the slide for clarity

Summary

- LECTURE 1:
 - General xenon characteristics
 - Scintillation & ionization processes
- LECTURE 2:
 - Xenon purity & radiopurity
 - Signal yields, resolution and calibration strategies
 - Photon detection

• LECTURE 3:

- Low energy searches: dark matter & CEvNS
- Search for neutrinoless double-beta decay
- Xenon calorimeters and medical applications