# LIQUID XENON DETECTORS

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

HighRR lecture week 2020, Heidelberg

MAX-PLANCK INSTITUT FÜR KERNPHYSIK HEIDELBERG

#### Physics questions

- Direct search for dark matter via elastic scattering
- Measurement of coherent neutrino-nucleus scattering
- Measurement of supernova and solar neutrinos
- Solar axion searches
- Search for neutrinoless double-beta decay
- Particle physics calorimeter
- Applications in medical physics













#### Lecture structure

- LECTURE 1:
  - General xenon characteristics
  - Scintillation & ionization processes
- LECTURE 2:
  - Xenon purity & radiopurity
  - Signal yields, resolution and calibration strategies
  - Photon detection

#### LECTURE 3:

- Low energy searches: dark matter & CEvNS
- Search for neutrinoless double-beta decay
- Xenon calorimeters and medical applications



Image from 'Xenon, xenon everywhere', Symmetry magazine

Teresa Marrodán Undagoitia (MPIK)

#### Main xenon isotopes

| Isotope           | Abundance | Decay mode and half-life                        |
|-------------------|-----------|-------------------------------------------------|
| <sup>124</sup> Xe | 0.09%     | double-electron capture, $1.8 \times 10^{22}$ y |
| <sup>125</sup> Xe | synthetic | electron capture, 16.9 h                        |
| <sup>126</sup> Xe | 0.09%     | stable *                                        |
| <sup>127</sup> Xe | synthetic | electron capture, 36.35 d                       |
| <sup>128</sup> Xe | 1.92%     | stable                                          |
| <sup>129</sup> Xe | 26.44 %   | stable                                          |
| <sup>130</sup> Xe | 4.08%     | stable                                          |
| <sup>131</sup> Xe | 21.18%    | stable                                          |
| <sup>132</sup> Xe | 26.89%    | stable                                          |
| <sup>133</sup> Xe | synthetic | beta decay $\beta^-$ , 5.25 h                   |
| <sup>134</sup> Xe | 10.44 %   | stable *                                        |
| <sup>135</sup> Xe | synthetic | beta decay $\beta^-$ , 9.14 h                   |
| <sup>136</sup> Xe | 8.86 %    | double-beta decay, $2.23 	imes 10^{21}$ y       |

\*Candidate for double-beta decay

#### Liquid xenon as detector



- Xenon is liquid above its triple point at 161.4 K and 0.817 bar
- Typically it is operated at  $\sim 2 \text{ bar}$  and  $-100^{\circ}\text{C}$
- High density in the liquid phase: 2.85 g/cm<sup>3</sup>

Teresa Marrodán Undagoitia (MPIK)

## Liquid xenon density



Data from various experiments & black curve from the online Air Liquide encyclopedia

• Typical operating temperature between 170 and 180 K • Corresponds to a density of  $\sim 2.85\,g/cm^3$ 

Teresa Marrodán Undagoitia (MPIK)

# Particle interactions



• Alpha decays from natural radioactivity with energies of (5-8) MeV  $\rightarrow O(\mu m)$  range

• MeV electrons reach  $\mathcal{O}(cm)$  ranges

# Noble gas scintillation process



# Noble gas scintillation process



Ionized electrons diffuse in the presence of the R<sup>+</sup><sub>2</sub> Coulomb attraction

- Some trapped in the spheres of Coulomb attraction of their parent ions
- Some trapped in the spheres of attraction of other ions
- Some escape from the Coulomb attraction

# Scintillation process



Internuclear distance

- Xenon is repulsive in the ground state
- Weak van der Waals force  $(-0.024\,\text{eV}$  at 4.4 Å)
- Dimers Xe<sup>\*</sup><sub>2</sub> are responsible for the scintillation light

Teresa Marrodán Undagoitia (MPIK)

# Scintillation spectrum



- Xenon scintillation at  $(174.8 \pm 0.1(stat.) \pm 0.1(syst.))$  (Fujii 2015)
- UV regime  $\rightarrow$  but possible to detected directly
- Lower wavelengths for argon (125 nm) or neon (78 nm) detectors

#### Decay time constants



 Amplitudes of singlet and triplet are dE/dx dependent and also electric field dependent

Teresa Marrodán Undagoitia (MPIK)

Liquid xenon detectors

(1)

# Role of recombination



- Longer  $\tau_t$  for increasing particle energy
- The higher the energy the higher dE/dx → recombination
- Recombination time is absorbed in the slow fluorescence constant

Teresa Marrodán Undagoitia (MPIK)

## Pulse shape discrimination for particle identification



- Separation of electronic recoils (from <sup>137</sup>Cs) from nuclear recoils (from <sup>252</sup>Cf)
- PSD not very powerful in LXe: similar decay constants of about 3 and 30 ns
- Note: very different singlet and triplet lifetimes in argon & neon
   → better PSD achieved

# Light propagation

Total attenuation length,  $\lambda_{att}$ :

$$\frac{1}{\lambda_{att}} = \frac{1}{\lambda_{abs}} + \frac{1}{\lambda_{scat}}$$
(2)

- λ<sub>abs</sub>: absorption length including both absorption by impurities and absorption at the detector surfaces
- $\lambda_{scat}$  is the scattering length

The light intensity after a distance *r*:

$$I(r) = I_0 \cdot \exp^{-(r/\lambda_{att})}$$
(3)

with  $I_0$  being the initial light intensity.

# Summary of optical properties

| Optical property   | Values [unit]            |
|--------------------|--------------------------|
| Absorption length  | > 100 [cm]               |
| Scattering length  | 30, 35 [cm] (calculated) |
| Attenuation length | 29, 36, 40, 50 [cm]      |
| Refractive index   | 1.69                     |

- The short attenuation length affects the light propagation for large detectors
  - $\rightarrow$  timing information is lost
- For double phase detectors, total reflection of photons at the liquid gas interphase occurs

# PTFE: reflectivity



View inside the LUX TPC

- Large amounts of PTFE (teflon) are used as reflectors for UV photons
- Reflectivity estimated to be at 99% – 100% (in LXe)

(Note that teflon reflectivity is significantly lower in vacuum or in argon gas)

- PTFE disadvantages:
  - Outgassing of impurities
  - Contribution to neutron background
  - ► Thin teflon required Q → UV teflon transmission relevant Cichon et al., JINST 15 (2020) 09, P09010

# Single phase (liquid) detectors



- High light yield using  $4\pi$  photosensor coverage
- Position resolution in the cm range
- Pulse shape discrimination (PSD) from scintillation

# Single phase: XMASS experiment



XMASS – LXe multipurpose detector at Kamioka (Japan)

- 1 ton total LXe mass & 800 kg FV
- High light yield measured: 14.7 PE/keVee, E<sub>th</sub> = 0.3 keV<sub>ee</sub>
- PMTs directly in contact with the LXe target

 $\rightarrow$  radioactive contamination on the PMT-window sealing reduced the physics potential of the experiment

# Two phase noble-gas TPC



Position resolution to define the innermost radiopure volume for analysis

Q

PMTs at top and bottom

Teresa Marrodán Undagoitia (MPIK)

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination



# Liquid xenon TPCs







EXO-200

 75 kg LXe fiducial mass (170 kg total)

• Search for  $0\nu\beta\beta$ 

#### LUX

- 100 kg LXe fiducial mass (370 kg total)
- Dark matter

#### PANDAX-II

- 580 kg LXe fiducial mass (1.2 t total)
- Dark matter

#### XENON1T

- 1.3t LXe fiducial mass (3.2t total)
- Dark matter

#### Ionization process

- Primary ionizations N<sub>i</sub> >> N<sub>ex</sub> number of excitations for electronic recoils and comparable N<sub>i</sub> ≈ N<sub>ex</sub> for nuclear recoils
  - $\rightarrow$  Charge/light production are dE/dx dependent

$$\boldsymbol{\Xi}_{t} = \boldsymbol{N}_{i} \cdot \overline{\boldsymbol{E}}_{i} + \boldsymbol{N}_{ex} \cdot \overline{\boldsymbol{E}}_{ex} + \boldsymbol{N}_{i} \cdot \overline{\boldsymbol{\epsilon}}$$
(4)

- E<sub>t</sub>: total energy deposited
- E<sub>i</sub> & E<sub>ex</sub>: average energy to ionize or excite an atom
- N<sub>i</sub> & N<sub>ex</sub>: average number of ionized or excited atoms
- ► ē: mean energy of sub-excitation electrons (only heating the medium)

# Electron transport: drift



- Important to reconstruct the z-spatial coordinate
- High E drift-field  $\rightarrow$  high drift velocity  $\rightarrow$  less  $e^-$  diffusion
- Drifting *e*<sup>-</sup> can be attached to electronegative impurities

Teresa Marrodán Undagoitia (MPIK)

#### Electron transport: diffusion

- Diffusion increases the relative distance between the electrons in the drifting cloud
- Some effect on position reconstruction
- Impact on the separation of charge pulses on the rejection of multiple scatters

Spread  $\sigma$  of the electron cloud can be expressed:

$$\sigma^2 = 2 \cdot D_T \cdot t_d \tag{5}$$

- ▶  $D_T = 55 \pm 4 \text{ cm}^2/\text{s}$  [EXO-200 measurement] transverse diffusion coefficient
- t<sub>d</sub> the electron drift time
- The diffusion coefficient in the field direction is  $D_L = D_T/10$

# Diffusion: S2 width



Figure from XENON100, Astropart. Phys. 54 (2014) 11

The width of the charge pulses (S2) increases due to diffusion
 XENON100: 180 μs drift time corresponding to 30 cm distance with a drift field of 530 V/cm

Teresa Marrodán Undagoitia (MPIK)

# Diffusion: S2 width



Figure from XENON100, Astropart. Phys. 54 (2014) 11

- The width of the charge pulses (S2) increases due to diffusion
- XENON100: 180 μs drift time corresponding to 30 cm distance with a drift field of 530 V/cm

Teresa Marrodán Undagoitia (MPIK)

# **Electron extraction**



- Potential barrier in xenon: (0.65 0.85) eV
- Electrons need to be heated up to overcome the barrier
- A strong 'extraction field' is applied  $E_\ell \gtrsim 7.5 \, \text{kV/cm}$

# Electron extraction efficiency



- Threshold effect at about 2 kV/cm
- Plateau observed above  $\sim 7.5 \, \text{kV/cm} \rightarrow \text{complete extraction}$

# Proportional scintillation



• Field in the gas phase  $E_g = \frac{\epsilon_\ell \cdot \Delta V}{h_g \cdot (\epsilon_\ell - 1) + H}$  with  $\epsilon_\ell = 1.95$ 

• Yield 
$$Y = \left(a \cdot rac{E_g}{P_g} + b\right) \cdot h_g \cdot P_g$$

- Important to keep the liquid level stable over the whole surface! Q
- Amplification: typically 20 30 PE per electron extracted

# Anti-correlation of light and charge signals



<sup>137</sup>Cs calibration in the XENON100 detector, Astropart. Phys. 35 (2012) 573 & arXiv:1107.2155.

#### Signal fluctuations at the interaction point

 $\rightarrow$  anti-correlation of light and charge

Teresa Marrodán Undagoitia (MPIK)

# Anti-correlation of signals: field dependence



- Light yield decreases with increasing electric field
- Charge can be extracted more effectively for higher fields
  - $\rightarrow$  variation energy dependent  $\rightarrow$  dE/dx dependent

# Field quenching for other particles



Very low field quenching for α-particles and nuclear recoils

#### Particle identification based on S1 & S2



Calibration data from the XENON1T detector

- ER: calibrated using a <sup>220</sup>Rn source (β-decays of <sup>212</sup>Pb)
- NR: calibrated using a neutron generator / AmBe-neutron source

# High voltage



- Large potentials have to be applied to the cathode
- Actually, only voltages up to 15 20 kV could be applied

Summary

