

High RR Lecture Heidelberg

How Neutron EDM-Experiments Really Work II

philipp.schmidt-wellenburg@psi.ch

Outline of the nEDM lecture

From cold to ultracold neutrons

Sensitivity of EDM experiments
$$
\propto \frac{1}{T\sqrt{N}}
$$

Systematic effect $\propto v \times E$

Store very slow neutrons for long times

- What neutrons can be stored? -How?
- How can I make them?
- What else changes?

Storable neutrons – $\underline{\cup}$ ltra $\underline{\cup}$ old $\underline{\sim}$ eutons (UCN)

The optical potential describing the strong interaction

• The Schrödinger equation of a neutron moving in the optical potential $U(r)$

$$
-\frac{\hbar^2}{2m}\Delta\psi(r)+\frac{2\pi\hbar^2}{m}nb(r)\psi(r)=E\psi(r)
$$

• The neutron optical potential

$$
U(r) = \frac{2\pi\hbar^2}{m}bN(r)
$$

• Neutron optical refractive index

$$
n_{\rm r} = \sqrt{1 - U/E} = \sqrt{1 - \frac{4\pi bN}{k^2}}
$$

Ultracold neutrons – storable neutrons

The defining property of UCN is that they can be confined in material (and magnetic) traps. Hence, the maximal velocity depends on the material of the trap for total reflection at all angles of incidence: $I = \frac{1}{\mu} \frac{1}{\sigma^2}$ h^2 7 m/s v $U_{F,c} > E_{kin} =$ 1 $\frac{1}{2}mv^2 =$ h^2 $2m\lambda^2$

Table 3.2: Number densities ρ , bound coherent scattering lengths b_c and Fermi potentials $V_{F,c}$ of some selected materials, taken from [Kle83]. Here, the refractive index *n* and the critical angle ϑ_c are tabulated for neutrons with a wavelength of 1 Å.

UCN loss mechanisms

- Losses due to non-ideal traps (gaps and slits).
- Inelastic scattering on walls to energies beyond trap potential 'UCN up-scattering'.
- Absorption on trap walls and/or rest gas $-$ e.g. (n, γ)-reaction.
- In magnetic traps due to spin-flip processes and depolarization.

Losses due to absorption on trap walls are described in the Schrödinger Equation by a complex wall potential U .

$$
i\hbar \partial_t \psi = \left(-\frac{\hbar^2 \Delta}{2m} + U\right) \psi
$$

\n
$$
U = V - iW
$$

\nLoss probability per wall collision
\n
$$
R|^2 = 1 - 2 \frac{w}{v} \left(\frac{E_\perp}{v - E_\perp}\right)^{\frac{1}{2}} \equiv 1 - \mu(E, \theta)
$$

Averaged loss probably per bounce

In a real trap many collisions under all possible incident angles will occur. So

must be average over all incident angles. Rewriting [1] in terms of total energy and incident angle:

$$
\mu(E,\theta) = 2\eta \left(\frac{E\cos^2\theta}{V - E\cos^2\theta}\right)
$$

averaging this over all incident angles:

$$
|R|^2 = 1 - 2\frac{W}{V} \left(\frac{E_{\perp}}{V - E_{\perp}}\right)^{\frac{1}{2}} \equiv 1 - \mu(E, \theta) \, [1]
$$

$$
\bar{\mu}(E) = 2\eta \left[\frac{V}{E} \arcsin\left(\frac{E}{V}\right)^{1/2} - \left(\frac{V}{E} - 1\right)^{1/2} \right]
$$

UCN properties of selected materials

^{*} 300 K.

 $^{\rm b}$ 100 K.

 $\rho_{g/cc}$ —material density; $N_{\text{form/}cc}$ —molecular density; $\Sigma_{\text{form}} a_{\text{coh}}^{\text{bound}}$ —bound coherent scattering length summed over molecular formula; V_{neV}-effective UCN potential, neV; σ_{tot} -total cross-section at neutron wavelength $\lambda = 18$ Å (1 barn $= 10^{-24}$ cm); f —UCN loss factor, eqn (2.66).

 \sim

UCN in the Maxwellian distribution

$$
N(\nu)d\nu = N_0 \left(\frac{m_\mathrm{n}}{2\pi k_\mathrm{B}T}\right)^{3/2} e^{-\frac{m_\mathrm{n}\nu^2}{2k_\mathrm{B}T}}d\nu
$$

 $2k_{\rm B}T$ $\widetilde{v} =$ $m_{\rm n}$

Mean velocity:

Peak velocity:

$$
\overline{v} = \frac{1}{\rho_{\rm n}} \int_0^\infty v F(v) \, \mathrm{d}v = \sqrt{\frac{8k_{\rm B}T}{\pi m_{\rm n}}}
$$

How many UCN are in a Maxwellian spectrum?

- UCN density in the Maxwellian spectrum:
	- V_F : Fermi potential of the storage material

$$
\rho_{UCN} \propto N_0 \left(\frac{V_{F,c}}{k_B T}\right)^{3/2}
$$

 $T:$ Temperature of the Maxwellian neutron spectrum (approx. moderator temperature) N_0 : total thermal neutron flux [n cm⁻² s⁻¹]

• For
$$
T = 300
$$
 K, $V = 250$ neV (typical Ni, Be): $\rho_{UCN} \approx 10^{-13} \phi_0$ cm⁻³

− ILL (Grenoble): *ϕ*₀ = 10¹⁵ n cm⁻² s⁻¹

 $\rho_{\text{UCN,ILL}} \approx 100 \text{ cm}^{-3}$

- − At the cold source one gains a factor of approx. 20 (temperature).
- − However, the extraction of UCN from reactors involves some considerable loss so that the available *densities will always be much less*.

Why not a moderator at 0.5 K?

- The lower the neutron energy the larger the wavelength
- At low temperatures wavelength too large for elastic scattering on one nucleus \rightarrow only coherent scattering of many nuclei
	- \rightarrow classical moderation stops once the wavelength of neutrons is too large

UCN production

Vertical VCN extraction from a reactor with a *UCN turbine*. FRM (Steyerl 1969) ILL – PF2 since the 1970's $(10-50 \text{ UCN cm}^{-3})$

New sources are employing inelastic ''down-scattering'' of cold neutrons to the UCN energy regime using superfluid helium or solid deuterium as converter media (superthermal UCN sources):

Hope for an increase of UCN density by a factor more than 100 !

PAUL SCHERRER INSTITUT

UCN densities of about 10-50 cm-3

690 concavely curved nickel blades on wheel with $\sigma = 1.8$ m 250 rpm -> v~30 m/s

5 m vertical guide dipping in cold source 13 m long bent guide *R* = 13m, separates VCN from faster neutrons and γ's

SOURCES FROIDES

VCN from 17 m long verticall neutron guide

cold source $LD₂$

UCN turbine – PF2 at ILL (Grenoble)

UCN

 \approx 5 m/s

blade velocity and *v_r* relative velocity.

UCN turbine – PF2 at ILL (Grenoble)

Superthermal UCN production

F. Atchison et al., PRL99(2007)262502

48

42

36

30

18

 12

6

0

 2.5

 (c)

UCN counts [a.u.]

PAUL SCHERRER INSTITUT

Superthermal UCN production

F. Atchison et al., PRL99(2007)262502

R. Golub & J.M. Pendlebury, PLA62(1977)338 C.A. Baker et al., PLA308(2003)67 PSW, J. Bossy *et al.,*PRC92(2015)024002

UCN source using Superfluid Helium

- Employs the excitation of phonons by neutrons with a wavelength of 0.89 nm in superfluid helium at temperatures below 1 Kelvin (converter medium).
- Phonon dispersion relation of superfluid helium (obtained from neutron scattering):

- Energy and momentum conservation during ''down-scattering''.
- In the cold converter the scarcity of low-energy excitations on speaking terms with the trapped UCN suppresses scattering back to higher energies (''up-scattering'') due to the Boltzmann factor.

PAUL SCHERRER INSTITU

Superfluid Helium UCN Source at ILL

-
- 7 litres of superfluid helium at about 0.7 K
- UCN density 55 cm⁻³ in source

Superfluid Helium UCN Source at ILL

F. Piegsa et al., PRC90 (2014) 01550

F. Piegsa et al., PRC90 (2014) 01550

Solid Deuterium UCN source at PSI

PAUL SCHERRER INSTITUT

Solid Deuterium UCN source at PSI

Analyzing UCN spins

Magnetized Fe foil:

Typically used in UCN experiments by magnetizing with permanent magnets, which produce a $H = 90$ mT magnetic field at the center. As a result, the iron layer is magnetized close to saturation, i.e. close to $B = \mu_r \mu_0 H = 2$ T.

How can we detect both spin states?

Foil only permits transmission of one spin state

Adiabatic fast passage flipper

Adiabatic-Spinflipper ('Adiabatic Fast Passage'):

A polarized neutron beam passes through a static magnetic field *B_G* along the *z*-axis, which has a certain gradient along the flight path. Additionally, a linearly polarized rf-field B_1 is irradiated with a frequency **ω** close to the Larmor frequency $ω_0 = -γ_0B_0$. The change of B_C is slow enough such that the spin can follow the effective magnetic field $B_{\rm e}$, during the passage of the flipper adiabatically.

Rf field constant in frequency and magnitude. B_G is swept from high to low fields, through resonance with $\omega_{\rm rf} = \gamma_{\rm n}B_{\rm G}(x)$.

Adiabatic fast passage flipper

Adiabatic fast passage flipper

An adiabatic fast passage spin flipper relies on the condition, that the effective field changes only adiabatically and hence the spin always follows the field.

$$
10 < \kappa = \frac{\omega_L(x)}{\omega_\theta(x)} = \frac{\gamma_n B_{\text{eff}}}{d\theta/dx \cdot v_x^{\text{max}}}
$$

The nEDM spectrometer

Ultracold neutrons (UCN)

For highest sensitivity: **Optimize**

$$
\sigma(t) = \frac{\hbar}{2\alpha TE\sqrt{\dot{N}t}}
$$

CN beamline (e.g. ILL - PFI b)
\n
$$
\dot{N} \approx 2 \times 10^9 \text{ s}^{-1} \text{ @ } 440 \text{ m/s}
$$

\n $\alpha \approx 0.99; \quad E \approx 100 \text{kV/cm}$
\n $T = l/v = \frac{2 \text{ m}}{440 \text{ m/s}} = 4.5 \text{ms}$
\n $\sigma(1\text{s}) = 2 \times 10^{-23} \text{ecm}$

UCN are neutrons which can be stored in material bottles

UCN (EDM at TRIUMF/PSI)

\n
$$
\dot{N} \approx 333 \text{ s}^{-1}
$$
\n
$$
\alpha \approx 0.9; \qquad E = 15 \text{kV/cm}
$$
\n
$$
T = 200 \text{s}
$$
\n
$$
\sigma(1 \text{s}) = 1 \times 10^{-23} \text{ ecm}
$$

One cycle 300s Many cycle 300s

$$
\sigma(d_{\rm n})=\frac{\hbar}{2\alpha TE\sqrt{N}}
$$

$$
\sigma(d_{\rm n}) = \frac{\hbar}{2\alpha TE\sqrt{NM}}
$$

$$
\sigma(d_n) = \frac{\hbar}{ET\alpha_0 e^{-T/T_2} \sqrt{2N_0 \left(e^{-T/\tau_s} + e^{-T/\tau_f}\right)}}
$$

- Highest initial UCN number N_0
- Best possible storage time $\tau_{s,f}$
- Maximum voltage E
- Highest initial polarization α_0 longest possible T_2

The nEDM spectrometer

Ultracold neutrons: good for $T\sqrt{N}$

PAUL SCHERRER INSTITUT

Filling UCN

\bullet Optimize product $\alpha\surd N$

Storage life

and DLC electrodes $\frac{1}{2}$ x 10⁴ SF2a off, SF2b on Fit $N(t) = N_t e^{-t/T}t + N_s e^{-t/T_s}$ • Two exp fit: N_f : 14515+ 481 2.5 T_f : 92s $+$ 5s *t*s ~90s N_s : 12785 $+$ 586 T_s : 340s $+$ 9s γ^2/v : 91/13 *t*^f ~340s Nup + Ndo • Max number of 1.5 UCN measured after 180s storage: 0.5 20 800 $0\frac{L}{0}$ 200 400 600 800 Storage time (s)

• Chamber made of **dPS** insulator ring

PAUL SCHERRER INSTITUT

Simultaneous spin detection

- o Spin dependent detection
	- Adiabatic spinflipper
	- **Iron coated foil**
- o 6Li-doped scintillator GS20

S. Afach *et al.,* EPJA (2015)51: 143

PAUL SCHERRER INSTITUT

Transverse polarization time

- Initial polarization α_0 measured with USSA 0.86
- Best polarization after 180s free precession 0.80, average 0.75

$$
T_2^* = t \cdot \ln\bigl(\alpha(t)/\alpha_0\bigr) = 2488s
$$

 σ_{d_n}

 \hbar

 $2E\alpha T\sqrt{N}$

Depolarization $_{\sigma_{d_n}}$ $2E\alpha T\sqrt{N}$

Afach

et al.,

[PRD92\(2015\)052008](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.052008)

Increasing sensitivity

Sensitivity versus field drifts

• Sensitivity for many cycles ideal case: σ ($d_{\rm n}$) = \hbar $2\alpha TE\sqrt{NM}$

• Only if magnetic field is stable enough. (Good fit with orange, bad fit with purple)

Sensitivity versus Stability

• Sensitivity for many cycles ideal case:

 $\overline{\Delta B} \leq \sigma_{\text{stat}}$

 $\frac{e^{z}}{\sqrt{4\pi^{2}}}$ $\frac{e^{z}}{\sqrt{4\pi^{2}}}$ $\frac{e^{z}}{\sqrt{4\pi^{2}}}$ $\frac{e^{z}}{\sqrt{4\pi^{2}}}$ $\frac{e^{z}}{\sqrt{4\pi^{2}}}$ $\frac{e^{z}}{\sqrt{4\pi}}$ $\frac{e^{z}}{\sqrt{4\pi}}$ $\frac{e^{z}}{\sqrt{4\pi}}$ $\frac{e^{z}}{\sqrt{4\pi}}$

$$
\sigma_{\text{stat}}(B) = \frac{1}{\gamma_{\text{n}} \alpha T \sqrt{NM}}
$$

• Requires:

Choose M such that:

Allan deviation:

$$
\sigma_{\text{stat}}(M) \ge \sigma_{AD}(M)
$$

- Many cycles sensitivity ideally: $\sigma_{\text{stat}}(B) =$ 1
- Require:

 $\sigma_{\text{stat}} \geq \overline{\Delta B}$

 $\gamma_{\rm n} \alpha T \sqrt{N} M$

Sensitivity versus Stability

Allan deviation:

$$
\sigma_{AD}(M) = \sqrt{\frac{\left(\left(f_i(M) - f_{i-1}(M)\right)^2\right)}{2}}
$$

PAILL SCHERRER INSTITUL

Stability and changing E-fields

Options with field changes:

- Change E-field with adequate period (e.g. 10 cycles) (loose time due to E ramps)
- Use a stack of two neutron precession chambers
- Use a comagnetometer

The measurement technique

Measure the difference of precession frequencies in parallel/antiparallel fields:

$$
\hbar \Delta \omega = 2d_{n}(E_{\uparrow \uparrow} + E_{\uparrow \downarrow}) + 2\mu_{n}(B_{\uparrow \uparrow} - B_{\uparrow \downarrow})
$$

Statistical accuracy of a magnetometer correcting for a change in B should be better than the neutron sensitivity per cycle:

$$
\delta f_{\rm n} = \frac{1}{2\pi\alpha T\sqrt{N}} \approx 11\mu\text{Hz} \quad \frac{B_0 = 1\mu\text{T}}{\sqrt{N}} \quad \delta B \le 100\text{f}
$$

PAUL SCHERRER INSTITUT

Magnetic fields 군리

B-Field stability

Afach et al., J. Appl. Phys. 116*, 084510 (2014)*

PAUL SCHERRER INSTITUT

Mercury comagnetometer

Real data example (stability)

Stability of the effective vertical gradient

• Shift the central value by adding an unknown offset EDM of -1.5 to 1.5E-25 *e*cm to the data

$$
\delta N_{\uparrow,\downarrow;i} = \mp \bar{N} \frac{\pi \alpha}{\Delta \nu} \frac{d \cdot E}{h} \sin \phi_i
$$

with
$$
\phi_i = \frac{(\nu_i - \nu_0)}{\Delta \nu} \pi
$$

- Keep un-blinded data in a safe place (encrypted)
- Two blinding levels o Primary blinding same for both analysis groups o Secondary blinding layer different for both groups

