

High RR Lecture Heidelberg

How Neutron EDM-Experiments Really Work III

philipp.schmidt-wellenburg@psi.ch

Outline of the nEDM lecture

PAUL SCHERRER INSTITUT

Systematic effects

$v \times E$ the dominant systematic

- Motional magnetic field from $B_{\rm m} = -\frac{v \times E}{c^2}$
- Naively no contribution as $\bar{v} = 0$ for UCN?
- In non-uniform B-field and E-field:

Rabi: Spin rotation due to oscillating horizontal field. This leads to a shift (Ramsey, Bloch, Siegert) of the resonance frequency by

$$\Delta \omega = \frac{(\gamma_n B_\perp)^2}{2(\gamma_n B_0 - \omega_r)}$$

with

and the oscillation ω_r is a result of rapidly changing trajectories, e.g. $\omega_r = v_r/2R$

$v \times E$ the dominant systematic

Ε

- Motional magnetic field from $B_{\rm m} = -\frac{v \times E}{c^2}$
- In non-uniform B-field and E-field:

$$B_{\perp}(r)^{2} = \left(\frac{\partial B_{z}}{\partial z}\frac{r}{2}\right)^{2} + r\frac{\partial B_{z}}{\partial z}\frac{v_{\perp}E}{c^{2}} + \left(\frac{v_{\perp}E}{c^{2}}\right)^{2}$$

• The term linear in E will lead to a electric field induced shift of precession frequency, **an EDM like signal.**

$$\Delta \omega_{\rm f} = \gamma^2 r \frac{\partial B_z}{\partial z} \frac{v_\perp E}{2c^2(\gamma_{\rm n} B_0 - \omega_r)}$$

Different for neutrons (adiabatic), and mercury (ballistic/non-adiabatic) х

Dominant systematic

- Typical B-field gradients: \sim 10 pT/cm
- Dominant effect from mercury transferred to neutron by correction

$$\Delta \omega_{\rm f}^{\rm adiabtic} \approx \frac{\pi v_{\perp}^2}{48c^2B^2} \frac{\partial B_{\rm z}}{\partial z} E \qquad \qquad d_{\rm n}^{\rm false} / \frac{p_{\rm T}}{c_{\rm m}} = 1.5 \times 10^{-28} e_{\rm C} m$$

$$d_{\rm n}^{\rm false} / \frac{p_{\rm T}}{c_{\rm m}} = 1.15 \times 10^{-27} e_{\rm C} m$$

$$\Delta \omega_{\rm f}^{\rm n-adiabtic} \approx \frac{\gamma^2 R^2}{8\pi c^2} \frac{\partial B_{\rm z}}{\partial z} E \qquad \qquad d_{\rm Hg \rightarrow n}^{\rm false} / \frac{p_{\rm T}}{c_{\rm m}} = -4.4 \times 10^{-27} e_{\rm C} m$$

Measure nEDM as function of B-Field gradient

-- **T**

2012) 042105 G. Pignol and S. Roccia, **PRA** 85 (2012 Guillaume Pignol, **PLB** 793 (2019) 440

Monitoring of vertical magnetic gradients $\pm 132kV$

- 7 HV CsM
- 9 ground CsM
- Stabilized laser
- PID phase locked DAQ

Accuracy:

 $\sigma(g_z) \approx 10 \mathrm{pT/cm}$

Cesium magnetometers installed in two planes on ground electrode

Cesium magnetometers

on HV electrode

16

15

Measure EDM vs G_{1,0}

Use polynomial decomposition to calculate non-uniform field

 $\sigma(G_{1,0}) \approx 8 \,\mathrm{pT/cm}$

Not sufficient to correct for systematic

Use R-value as proxy for $G_{1,0}$

Center of mass offset
 Non-adiabaticity

$$R_{\pm} = \frac{f_{\rm n}}{f_{\rm Hg}} = \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| \left(1 \pm \delta_{\rm EDM} \pm \delta_{\rm EDM}^{\rm false} + \delta_{\rm Q} + \delta_{\rm G} + \delta_{\rm T} + \delta_{\rm E} + \delta_{\rm LS} + \delta_{\rm I} + \delta_{\rm P} + \delta_{AC} \right)$$

$$\overline{\nu_{\text{Hg}}} \approx 160$$
 m/s vs. $\overline{\nu_{\text{UCN}}} \approx 3$ m/s

$$R \cdot \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| - 1 = \delta_{\rm G} = \pm \frac{\langle z \rangle G_{1,0}}{B_0}$$

Effect of higher order gradients

$$R_{\pm} = \frac{f_{\rm n}}{f_{\rm Hg}} = \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| \left(1 \pm \delta_{\rm EDM} \pm \delta_{\rm EDM}^{\rm false} + \delta_{\rm Q} + \delta_{\rm G} + \delta_{\rm T} + \delta_{\rm E} + \delta_{\rm LS} + \delta_{\rm I} + \delta_{\rm P} + \delta_{AC} \right)$$

$$\delta_{\rm G} = \pm \frac{\langle z \rangle G_{1,0}}{|B_0|} \qquad \text{and} \qquad d_{\rm n\leftarrow Hg}^{\rm false} = \frac{\hbar \gamma_{\rm n} \gamma_{\rm Hg}}{32c^2} D^2 G_{1,0}$$

is not the full story, but... ... neither.

But instead:

Correcting systematic by $G_{\rm g}$ and \hat{G}

The crossing point analysis takes care of a large part of the motional false EDM:

$$d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar \gamma_n \gamma_{Hg}}{32c^2} D^2 \left[G_g + G_{30} \left(\frac{D^2}{16} + \frac{H^2}{10} \right) + G_{50} \left(\frac{H^4}{28} - \frac{D^2 H^2}{96} - \frac{5D^4}{256} \right) \right]$$

Corrected by
crossing point fit

Corrected set for set using map analysis

- -20<z<20,
- -10<r<30,
- $\Delta \phi = 5^{\circ}$

- Fit to order l = 7
- Extract $\langle B_T^2 \rangle$ for each base configuration
- Extract $\delta_{\rm G}(\hat{G})$ for each base configuration

Crossing point analysis

Use R-value as proxy for $G_{1,0}$

Center of mass offset
 Non-adiabaticity

$$R_{\pm} = \frac{f_{\rm n}}{f_{\rm Hg}} = \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| \left(1 \pm \delta_{\rm EDM} \pm \delta_{\rm EDM}^{\rm false} + \delta_{\rm Q} + \delta_{\rm G} + \delta_{\rm T} + \delta_{\rm E} + \delta_{\rm LS} + \delta_{\rm I} + \delta_{\rm P} + \delta_{AC} \right)$$

$$\overline{v_{\mathrm{Hg}}} pprox 160$$
 m/s vs. $\overline{v_{\mathrm{UCN}}} pprox 3$ m/s

$$R \cdot \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| - 1 - \delta_{\rm G} = +\delta_{\rm T} = \frac{\langle B_{\rm T}^2 \rangle}{2B_0^2}$$
 Needs to be known for each sequence

Crossing point analysis

PAUL SCHERRER INSTITUT

False Hg EDM

Other effects

Systematic effects

Table I: Summary of systematic effects in 10^{-28} ecm. The first three effects are treated within the crossing-point fit and are included in d_{\times} . The additional effects below the line are considered separately.

	Effect	shift	error
ſ	Error on $\langle z \rangle$	-	7
4	Higher order gradients \hat{G}	69	10
	Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5
r	Hg EDM[8]	-0.1	0.1
	Local dipole fields	-	4
	$v \times E$ UCN net motion	-	2
4	Quadratic $v \times E$	-	0.1
	Uncompensated G drift	-	7.5
	Mercury light shift	-	0.4
L	Inc. scattering ¹⁹⁹ Hg	-	7
	TOTAL		

Field mapping

Pseudo magnetic field from incoherent scattering length

- $b_i = \pm 15.5 \text{ fm}$
- $nP(^{199}\text{Hg} \times \text{polarization})$ extracted from data cycle by cycle

$$d_{n}^{\text{false}} = \hbar \frac{\gamma_{n}}{4E} B^{*} \cdot \delta \eta$$
$$< 7 \times 10^{-28} e \text{cm}$$

Outline of the nEDM lecture

What seems possible in a single shot?

Number of neutrons N:

Higher density and/or larger volume \rightarrow more neutrons

New UCN sources:

- superthermal sources based on D₂ or sfHe
- Transport losses/dilution
- Ramsey cell = source

Needs matching of source volume to experiment volume, other wise too strong dilution.

Neutron spin coherence function of cell radius \rightarrow good control of gradients:

 $\frac{1}{T_{2,\text{mag}}} = \frac{8R^3\gamma_n^2}{9\pi v} (G_{1,-1}^2 + G_{1,1}^2) + \frac{\mathcal{H}^3\gamma_n^2}{16v} G_{1,0}^2$

What seems possible in a single shot?

Number of neutrons Electric field Coherence time Storage times

After 4 years with 200 days each:

 $\sigma_{\rm RT} \approx 1 \times 10^{-28} e {\rm cm}$

 $\sigma_{\rm Cryo} \approx 0.2 \times 10^{-28} e {\rm cm}$

PAUL SCHERRER INSTITUT

Main features of the new instrument

Inspired by Gatchina double-chamber setup I.Altarev et al. JETP Lett.44(1986)460 and based on years of experience with our own operating experiment:

- 2 neutron precession chambers
- Hg co-magnetometer in both chambers with laser read out
- Baseline scenario: UCN chamber with materials and coatings as present chamber, but larger diameter of storage volume - upgrades in development

- Surrounded by calibrated Cs arrays on ground potential ($\sim 100~{\rm sensors})$

- large NiMo (⁵⁸NiMo) coated UCN guides

Analysis: Frequency ratio $R = f_n/f_{Hg}$

$$\begin{array}{c}
 199 \text{Hg} + \text{UCN} & \langle z \rangle_t \\
 \end{array}$$

$$\begin{array}{c}
 199 \text{Hg} + \text{UCN} & \langle z \rangle_b
\end{array}$$

¹⁹⁹Hg + UCN

¹⁹⁹Hg + UCN

double chamber - linear $\partial B/\partial z$ is almost perfectly compensated but due to different h_t and h_b gradient fluctuations still cause an error on a lower level though

$$R^{+T} - R^{+B} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(2\delta_{\rm EDM} + (\langle z \rangle_{\rm T} - \langle z \rangle_{\rm B}) \frac{g^+}{B_0} + \cdots \right)$$
$$R^{-T} - R^{-B} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(-2\delta_{\rm EDM} + (\langle z \rangle_{\rm T} - \langle z \rangle_{\rm B}) \frac{g^-}{B_0} + \cdots \right)$$

Analysis: based on $(R^{T} - R^{B})$ as function of dB/dz extrapolate to 0

PAUL SCHERRER INSTITUT

Magnetically Shielded Room

setup features:

- (2 + 4) layers mu-metal
- Al eddy current shield
- 78 openings for experiment use
 largest openings
 ID=220mm
- for 2 UCN guides
- for 2 main pumping ports

expected performance: - quasi-static shielding factor guaranteed >70'000 (expected > 100'000) - central B-field < 0.5nT - central gradient < 0.3 nT/m PAUL SCHERRER INSTITUT _

nEDM@SNS

But ... New Techniques = New Challenges

- Cryogenic system introduces challenges
 - Cold vacuum leaks & SFHe leaks are tough to find
 - AC spin dressing field virtually forbids metals/conductors in central volume due to eddy-current heating
 - Superconducting components distort B-fields
- Magnetic field gradients must be minimized
 - Components near central volume must use *really* non-magnetic material (316 SS, brass, ... don't count)
 - Measurement cells must be free of "magnetic" dust
- Because of above most components near central volume are made from G10, PMMA, PEEK, Torlon, ...
 - Challenging materials for machining, vacuum, thermal contraction, ...
- Little previous work on large scale HV in superfluid
 - Requires significant R&D (past, present & future)

New Technique for n-EDM

 $\omega_{\rm rel} = (\gamma_3 - \gamma_n)B_0 + 2d_n E/\hbar.$

³He functions as "co-magnetometer"

Since ³He EDM shielded by atomic electrons

PAUL SCHERRER INSTITUT

PHYSICAL REVIEW C 84, 022501(R) (2011)

Dressed spin of polarized ³He in a cell

P.-H. Chu,^{1,*} A. M. Esler,¹ J. C. Peng,¹ D. H. Beck,¹ D. E. Chandler,¹ S. Clayton,¹ B.-Z. Hu,³ S. Y. Ngan,² C. H. Sham,² L. H. So,^{1,2} S. Williamson,¹ and J. Yoder¹

¹Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ²Department of Physics, The Chinese University of Hong Kong, Hong Kong, China ³Department of Physics, Soochow University, Taipei, Taiwan (Received 25 April 2011; revised manuscript received 22 July 2011; published 19 August 2011)

With dressing

Without "dressing"

- Achieved required specs for uniformity, heat load and maximum temperature in 1/3 Scale prototype
 - Achieved full-scale spec for fractional B-field uniformity for B_0 : 3×10^{-6} /cm and spin dressing B_{SD} : 9×10^{-5} /cm
 - Achieved acceptable heat
 load while maintaining
 temperature of < 6.2K
- Full-scale Magnet Design

PAUL SCHERRER INSTITUT

EDM

SNS

Slide from B. Filippone,

Construction of fullscale Magnet System underway

Inner Magnet Volume ready to ship

Magnetic Fields System

Outer Vacuum Vessel Tested to 80K

G10 Magnet Components being Vacuum Laminated

Central Detector System (CDS)

- Small-scale HV system provides info on breakdown field geometric scaling
- Medium-scale HV (1/5 full-scale) system achieved 85 kV/cm
 - Goal is 75 kV/cm in full-scale
- Half-scale HV system under construction
 - Two acrylic measurement cells with central HV electrode to optimize electrode design and study candidate materials
- Many CDS subsystems have achieved near required performance
 - Low noise SQUID system developed
 - Acrylic measurement cell tested with 1800 s ultra-cold neutron wall-loss lifetime
 - Cryogenic Si photomultiplier system achieved > 20 photo-electrons equiv.
 - Superfluid tight non-conducting, non-magnetic valves tested
 - Cryogenic HV multiplier under construction

Central Detector System (CDS)

Half-Scale High Voltage System assemble & beginning testing

Polarized ³He System

- Produce highly polarized (>97%) 3 He and delivers it into purified L 4 He
 - Atomic Beam Source built; testing & optimization underway
 - Developed working Superfluid film burner
- Transport polarized ³He via phonon wind (aka heat flush) to measurement cells
 - Small scale heat flush system successfully tested
 - Large volume heat flush tests underdevelopment
- Empty measurement cells of reduced polarization ³He and re-purify to 10⁻¹² fractional ³He density
- Design, build & test non-magnetic high-cooling-power dilution refrigerator (DR)

PAUL SCHERRER INSTITUT

Dilution Refrigerators (DR)

- First DR (for 3He system) complete and being tested
 - Measured 75mW at .25K
- 2nd DR for (CDS) being constructed

Systematics & Operational Studies (SOS) Apparatus

- Located at PULSTAR → teaching reactor at NCSU
- Mini-nEDM@SNS
 - One full-size measurement cell
 - No electric field
 - Full magnetic field capability
 - Relaxed ³He polarization requirements
 - Relatively small size \rightarrow rapid thermal cycling
- Goals:
 - validate production measurement cells
 - Develop spin manipulation techniques
 - Characterize geometric phase effect

nEDM@SNS Sensitivity

• Free Precession Measurement (SQUIDs) -Sensitivity : 3.3 x 10⁻²⁸ e-cm -90% CL : 5.4 x 10⁻²⁸ e-cm

Dressed Spin Measurement (AC Field)
 -Sensitivity : 1.6 x 10⁻²⁸ e-cm
 -90% CL : 2.6 x 10⁻²⁸ e-cm
 ^{300 live-days ~ 3 yrs}
 Systematic Uncertainties < 1.5 x 10⁻²⁸ e-cm

Time to 90% CL Sensitivity

90% CL d_n sensitivity

Systematic Uncertainties

Uncertainty Source	Systematic uncertainty (e-cm)	Comments	Key Parameters	
Linear (E x y)	$< 1 \times 10^{-28}$	Uniformity of	B field gradient	
		B_0 field	Temperature	
$Oundratic (E \times y)$	$< 0.5 \times 10^{-28}$	E field reversal		
Quadratic (E x V)		accuracy $< 1\%$		
Deaudomagnatic		Modulation,	³ He density,	
field official	$< 1 \times 10^{-28}$	comparing two	$\pi/2$ pulse,	
neid effects		cells	modulation	
Gravitational	$< 0.2 \times 10^{-28}$	with 1 nA		
Offset		leakage current		
³ He inhomogeneity	$< 1.5 \times 10^{-28}$		Tomporatura	
due to leakage		leakage $< 1pA$	D field andiant	
current heating			B neid gradient	

PAUL SCH