
14.12.2020, string_data2020 CERN 
Sven Krippendorf (sven.krippendorf@physik.uni-muenchen.de, @krippendorfsven)

Metrics from Machine Learning

1

mailto:sven.krippendorf@physik.uni-muenchen.de
mailto:sven.krippendorf@physik.uni-muenchen.de


based on (2012.04656):

in collaboration with:

Moduli dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning 

Lara Anderson James GrayMathis Gerdes 
(applying for PhDs)

Nikhil Raghuram Fabian Ruehle

2



Metrics matter

• The metric is key in any extra-dimensional physics model 
 
 
 
            


• String compactifications are no exception to this. For instance: 
 

   1. Matter kinetic terms (soft-terms, cf. 0906.3297)  
   2. Moduli potential (D3-brane inflation [probing directly CY-moduli space]) 
   3. Massive string spectrum (distance conjecture)

S = ∫M4+D

d4+Dx − det g4+D R(g4+D)

 =  x M4+D A4 XD

A4

XD

combined metric
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Which Metrics?
6D metrics relevant for string theory
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Which Metrics?
6D metrics relevant for string theory

• String Theory EOM for 4D  Minkowski vacua require a 
Ricci-flat Kähler metric          (Candelas, Horowitz, Strominger, Witten 1985)

𝒩 = 1

• Which compact spaces do exist with a Ricci-flat Kähler metric? 
 

        Calabi-Yau manifolds 
        (Example today: Quintic hypersurface in ) ℙ4

Quintic hypersurface in :
ℙ4

pψ( ⃗z ) =
d+1

∑
i=0

zd+2
i + ψ

d+1

∏
i=0

zi = 0
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• Yau (1977) showed the existence of such a unique Ricci-flat 
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Which Metrics?
6D metrics relevant for string theory

• String Theory EOM for 4D  Minkowski vacua require a 
Ricci-flat Kähler metric          (Candelas, Horowitz, Strominger, Witten 1985)

𝒩 = 1

• Which compact spaces do exist with a Ricci-flat Kähler metric? 
 

        Calabi-Yau manifolds 
        (Example today: Quintic hypersurface in ) ℙ4

• Yau (1977) showed the existence of such a unique Ricci-flat 
Kähler metric, but without explicit constructions.

• This talk is about how to get such metrics with ML.
• One ansatz is by using algebraic metrics. 

Quintic hypersurface in :
ℙ4

pψ( ⃗z ) =
d+1

∑
i=0

zd+2
i + ψ

d+1

∏
i=0

zi = 0

Algebraic metrics: 




 

K = 1/2π ln(k)

k =
Nk

∑
α,β̄=0

sα( ⃗z ) Hαβ̄ s̄β̄( ⃗z̄)

gab̄ = ∂a∂b̄K =
1

2π
kkab̄ − kakb̄

k2
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Metrics are hard without ML
6D metrics relevant for string theory

• Finite distance methods “fail” (Headrick, Wiseman 2009)


• Spectral methods simplify, but they are currently 
inefficient: 
        1. Single point in moduli space 
        2. High accuracies become expensive 
 
(Donaldson, Braun, Belidze, Douglas, Ovrut, Karp, Cui, Gray, Lukic, Ashmore, He; 
Kachru, Tripathy, Zimet; Headrick and Nasar)


• How about non-Kähler solutions?


• Target on a practical level: metric with reasonable 
accuracy for one string compactification ~ O(1 day) 
[impossible with non ML algorithms]

k ~ accuracy of spectral resolution

Time to check accuracy of solution σ
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Which metric?
What is the optimisation problem
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Which metric?
What is the optimisation problem

1. Ricci-flatness: (Induced FS is not Ricci-flat): 
               Ricci tensor:  
               Cheaper alternative (less derivatives) via Monge-Ampere equation: 

                                                                   

Ri𝚥 = − ∂i∂𝚥 log det g

J ∧ J ∧ J = κ Ω ∧ Ω̄ → ℒMA =
1

∫
X

Ω ∧ Ω̄ ∫X
1 −

1
κ

J3

Ω ∧ Ω̄

 J ∧ J ∧ J ∼ det g

Ω =
1

∂pψ( ⃗z )/∂zb ⋀
c = 1,…, d

c ≠ a, b

dzc
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J ∧ J ∧ J = κ Ω ∧ Ω̄ → ℒMA =
1

∫
X

Ω ∧ Ω̄ ∫X
1 −

1
κ
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2. Kählerity: 
                                  
 
                                 ,                                

dJ = 0 ↔ gi𝚥,k dzi ∧ dz̄𝚥 ∧ dzk = 0 = gi𝚥,k̄ dzi ∧ dz̄𝚥 ∧ dz̄k̄

cijk = gi𝚥,k − gk𝚥,i = 0 → ℒdJ = ∑
i,j,k

| |Re(cijk) | |n + | | Im(cijk) | |n

 J ∧ J ∧ J ∼ det g

Ω =
1

∂pψ( ⃗z )/∂zb ⋀
c = 1,…, d

c ≠ a, b

dzc
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cijk = gi𝚥,k − gk𝚥,i = 0 → ℒdJ = ∑
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| |Re(cijk) | |n + | | Im(cijk) | |n

3. Well defined across different coordinate patches: 
 

                                 ,           g( j) = Tij ⋅ g(i) ⋅ T†
ij Tij = ∂ ⃗z(i)/∂ ⃗z( j) → ℒTransition =

1
d ∑

k,j

g(k)
NN( ⃗z) − Tjk( ⃗z) ⋅ g( j)

NN( ⃗z) ⋅ T†
jk( ⃗z̄)

n

 J ∧ J ∧ J ∼ det g

Ω =
1

∂pψ( ⃗z )/∂zb ⋀
c = 1,…, d

c ≠ a, b

dzc
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How to measure accuracy?

• Monte-Carlo sampling:  
                    

 

 

 ,       ,   


• Use this to evaluate -accuracy: 
 

                                    

∫Xψ

f dVolCY = ∫Xψ

f
dVolCY

dA
dA ≈

1
N

N

∑
i=1

f( ⃗zi)w( ⃗zi)

w( ⃗zi) =
dVolCY

dA
| ⃗zi

dVolCY ∝ Ω ∧ Ω̄ dA ∝ i*p ωFS
ℙ4

σ

σ =
1

∫
X

Ω ∧ Ω̄ ∫X
1 −

1
κ

J3

Ω ∧ Ω̄

ψ = 0
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Neural networks to the rescue?

• Can NN give good approximations?


• Motivation beyond universal approximation scheme (NN can be shown to give 
good and accurate predictions to PDEs):


• Solutions to high-dimensional Schrödinger equations (Rupp, Tkatchenko, 
Müller, von Lilienfeld 2012, …)


• Black-Scholes PDE (Grohs, Hornung, Jentzen, von Wurstemberger 2018, …)


• Approximation rates of NNs to solutions of PDEs (Kutyniok, Petersen, 
Raslan, Schneider 2019, …)
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Why can Neural Networks be useful?

• Searching for a function with particular properties, such as: 
 
              1. ,      2. ,     3.   


• If  is the output of a NN, we need to be able to calculate derivatives of this 
network to evaluate (not just to optimise) loss functions.


• Auto-differentiation readily allows to do this and implementations in standard 
packages can do this (here: Pytorch, TensorFlow/Keras, JAX).

ℒMA(gab̄) = 0 ℒdJ(gab̄) = 0 ℒoverlap(gab̄) = 0

gab̄
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Our approach

• Reporting here on learning H and the metric directly 
 
 
 
 
 
 

• Results for quintic. Generalization to other examples straight-forward.
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Learning H

• Overlap and Kähler conditions automatically satisfied


• 2 Strategies:


1. Use Donaldson data to formulate regression problem


2. Use -measure to train H directly


• Standard few layer feedforward (dense) neural networks, ADAM optimiser.

σ
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Learning H
Optimising with Donaldson
• Network learns interpolation and shows good performance even outside of trained area

• Experiment k=3 (dims of H: 35x35) 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2. Learn K directly
CY: Quintic in        : 

<latexit sha1_base64="GAjR+EEolYb9p+vcxKPWwGL4q7U=">AAAB+HicbVDLSgMxFL3js9ZX1aWbYBFcSJmRii6LblxWsA9ox5JJM21okhmTjFCHfofbuhK3fozg35hpZ6GtBwKHc+7lnpwg5kwb1/12VlbX1jc2C1vF7Z3dvf3SwWFTR4kitEEiHql2gDXlTNKGYYbTdqwoFgGnrWB0m/mtZ6o0i+SDGcfUF3ggWcgINlbyuwKbYRCItD55rPZKZbfizoCWiZeTMuSo90pf3X5EEkGlIRxr3fHc2PgpVoYRTifFbqJpjMkID2jHUokF1X46Cz1Bp1bpozBS9kmDZurvjRQLrccisJNZSL3oZeK5jf6f30lMeO2nTMaJoZLMj4UJRyZCWQuozxQlho8twUQxmxeRIVaYGNtV0RbhLX57mTQvKt5lxb2vlms3eSUFOIYTOAMPrqAGd1CHBhB4gleYwpvz4kydd+djPrri5DtH8AfO5w9ny5OG</latexit>

4 <latexit sha1_base64="6OtTQC4dQjbk14+yuUTFkmAKuzY=">AAACI3icbVDLSgMxFM34rPU16tJNsAiCUjK1VTdC0Y3LCvYB7Thk0kwbmnmQZIR26J+49Ufc1pWI4MJ/MZ3OQlsv5HA4515u7nEjzqRC6MtYWl5ZXVvPbeQ3t7Z3ds29/YYMY0FonYQ8FC0XS8pZQOuKKU5bkaDYdzltuoPbqd98okKyMHhQw4jaPu4FzGMEKy055sXIQY+V05FjpVhK8TzFssZOJBnULdrXpna0DK8hcswCKqK04CKxMlIAWdUc87PTDUns00ARjqVsWyhSdoKFYoTTcb4TSxphMsA92tY0wD6VdpLeN4bHWulCLxT6BQqm6u+JBPtSDn1Xd/pY9eW8NxXPXNf/z2/HyruyExZEsaIBmS3zYg5VCKeBwS4TlCg+1AQTwfR/IeljgYnSseZ1ENb82YukUSpalSK6LxeqN1kkOXAIjsAJsMAlqII7UAN1QMAzeAUT8Ga8GBPj3fiYtS4Z2cwB+FPG9w8gEKDZ</latexit>

z50 + z51 + z52 + z53 + z54 +  z0z1z2z3z4 = 0

Figure 4: � accuracies at k = 6 achieved by the dense network with one and two hidden
layers. The shaded area indicates the range of | | that was not used during training,
and thus shows the extrapolation behavior of the networks. For reference, the � accuracy
achieved by Donaldson’s algorithm for the same range of | | is shown. The dashed line
corresponds to the extrapolation of using Donaldson’s balanced metric at  = 100 over
real values of  . The error band in each case cooresponds to the maximal and minimal
value obtained respectively when evaluating the � accuracy at different angles.

of the metric will depend on the position in the CY manifold as well as on the complex
structure. In contrast to the methods presented to learn the Kähler potential, we now aim
to learn the components of the metric g directly. This has several potential advantages:

• Instead of the need of predicting N2
k values for learning the Kähler potential, the NN

always only needs to predict the independent components of the metric, i.e. d2 real
parameters for a complex CY d-fold (respectively d+1 when working in the ambient
space) [FR: why is this relevant? do we learn in the ambient space?].

• In comparison to approaches which use a general ansatz for the Kähler potential,
learning the metric directly saves two derivatives when evaluating the Monge-Ampère
loss.

To the best of our knowledge, our experiments are the first to test whether these heuristic
differences can be numerically advantageous.

However, there is also a disadvantage as compared to the method discussed in Section 2.6.
The metric g is not automatically Kähler, nor does it automatically glue nicely across
patches of d+1. So, in addition to finding a Ricci-flat metric that solves the Monge-
Ampère equation (2.3), we will need to impose that the Kähler and gluing conditions are
satisfied. As mentioned previously, the fact that the Kähler property is not ensured by
construction also allows us to apply this approach to more general (non-Kähler) SU(3)-
structure metrics. The overlap condition is important, since if we worked just on a single
patch, a trivial solution would be the flat (and hence trivially Ricci flat) metric on that
patch. [FR: Not sure to which extent this is correct in our setup (I can’t remember
whether I wrote this, but I think it’s wrong). It is correct theoretically, but a flat metric

15

Learning H
Optimising with  (no Donaldson)σ

• k=6 (42025 components in H), sampling fast and always using new points 
 
 
 
 
 
 
 
 
 
 
 
 
 

GeneralisationTrained

σ =
1

∫
X

Ω ∧ Ω̄ ∫X
1 −

1
κ

J3

Ω ∧ Ω̄
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Learning H

• Instead of  we can also use R 
directly (2 additional 
derivatives, more expensive).


• Accuracy sensitive to 
architecture and range we train 
for.


• Metric eigenvalues close to 
metric eigenvalues obtained 
from Donaldson at higher k!


• Interesting structures in H 
obtained from Donaldson.

σ
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derivatives, more expensive).
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architecture and range we train 
for.


• Metric eigenvalues close to 
metric eigenvalues obtained 
from Donaldson at higher k!


• Interesting structures in H 
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σ


ℤ(1)
d+2 : [z0 : z1 : … : zd+1] ↦ [α0z0 : α1z1 : … : αd+1zd+1] , α = e2πi/(d+2)

ℤ(2)
d+2 : [z0 : z1 : … : zd+1] ↦ [z1 : z2 : … : zd+1 : z0]
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Learning g

• Now:  and overlap need to be 
checked.  part of input. 
 




• Neural networks as perturbation to induced 
Fubini-Study metric (satisfying overlap and 
Kählerity condition) 
 

       

• Standard feed-forward neural network with 

relatively small initialisations.


• Metric networks converge, -accuracy 
improves, deviating from Fubini-Study

dJ = 0
⃗z

ℒ = λ1ℒMA + λ2ℒdJ + λ3ℒoverlap

gCY = gFS(1 + gNN)

σ

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
|√|

10°1

6 £ 10°2

2 £ 10°1

3 £ 10°1

4 £ 10°1

æ

Sigma-Accuracy

Metric Network

Induced FS
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checked.  part of input. 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|

Mean Deviation from induced FS-Metric
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Metric loss components
Influence of different components

0 2 4 6 8 10 12 14 16 18 20
epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total
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0 2 4 6 8 10 12 14 16 18 20
epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

             all losses                        no Kähler loss             no overlap loss  
 
 
 
 
 
 
 
 
 
 
 
 
 

(λ2 = 0) (λ3 = 0)

ψ = 10
ℒ = λ1ℒMA + λ2ℒdJ + λ3ℒoverlap
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g-Networks for New Classes of Solutions

• Approach of learning g allows to ask for metrics with different properties 
(not covered with previous numerical approaches).


• Philosophy: modified loss functions, additionally learned outputs.

• Can we augment the landscape of metrics to G2 and SU(3) structure manifolds? 

Phenomenologically necessary, otherwise missing large parts of string theory constructions; 
unexplored mathematical structures.


• Here: example SU(3) structure manifolds 
 

        ,   , 
                  

        ,   
 

J ∧ J ∧ J =
3
4

iΩ ∧ Ω , J ∧ Ω = 0 dJ = −
3
2

Im(W1Ω) + W4 ∧ J + W3

dΩ = W1J ∧ J + W2 ∧ J + W5 ∧ Ω W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0

19



Our SU(3) structure metrics

• Example of subset of torsion classes (Strominger-Hull system): 

                   


• Simple ansatz for metric and 3-form: 

                      

                    ,   


• Special ansatz for : 

                   

W1 = W2 = 0, W4 =
1
2

W5 = dϕ, W3 arbitrary

J =
m

∑
i

aiJi , Ω = A1Ω0 + A2Ω0

|A1 |2 + |A2 |2 =
m

∑
i,j,k=1

Λijkaiajak Ji ∧ Jj ∧ Jk =
3
4

iΛijkΩ0 ∧ Ω0

Wi

W1 = W2 = W3 = 0 , W5 = 2W4 = 2d(ln a1) , a1 =
1
π3

|∇pψ |2

(∑ |Xa |2 )4

20



SU(3) structure experiment

• Ansatz with known solution: 
   


• Adapted Kähler loss: 
 




• Does the network converge to 
known solution? Yes.

W4 = d log a1

ℒ′ W4
= | |dJ − d ln a1 ∧ J | |n

SU(3) structure

0 2 4 6 8 101214161820222426283032343638404244464850
epoch

100

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Figure 7: Change in loss during training for the SU(3)-structure example.

Hence, we will use the loss

L
0
W4

= ||dJ � d ln a1 ^ J ||n , (3.19)

which closely resembles the Kähler loss (2.18).

We will use the same example as for the CY metrics in earlier sections, i.e. the quintic with
one parameter  = 10. We also leave all other hyperparameters unchanged; in particular,
we choose the weight factor �1 of the contribution to the SU(3) loss function to be 10, all
other �i to be one, and set n = 1 (so that we are using the L1 norm for the losses and not
weighting outliers disproportionately strongly). We use multiplicative boosting from the
Fubini-Study metric. Figure 7 shows how the losses change over the course of training. As
a measure for how much the metric improves during training as compared to the Fubini-
Study metric, we compute the equivalent of the ⌘ error measure, i.e. the departure from
the Monge-Ampere equation averaged over all points on the manifold in the test set:

h⌘SU(3)i =
1

Npts

NptsX

i=1

������
1 �

3i

4

⌦ ^ ⌦̄

J3

�����
pi

������
. (3.20)

We find that if we set the NN to zero, i.e. use the FS metric as the lowest order approxima-
tion to the SU(3)-structure metric, we get h⌘SU(3)(gFS)i ⇡ 400000. In contrast, the metric
after training gives h⌘SU(3)(gNN )i ⇡ 1.2, i.e. an improvement of 5 orders of magnitude.

The error measure (3.20) is closely related to the loss function (3.17). In addition, this
quantity is only a measure of how close we are to some SU(3) structure. It does not
demonstrate that we are correctly approximating the analytic example described in Sec-
tion 3.1.1. In order show that our numerics are approaching this known solution we wish
to consider an error measure of the following form.

Eknown = ||gnumeric � gknown||n (3.21)

In this expression gnumeric is the output of our trained NN and gknown is the known solution
computed from the quantities given in Section 3.1.1. In fact, some caution is required here
as even if the numerical results were approaching the analytic expression, the two could
be related by a non-trivial coordinate transformation. If such a coordinate transformation

25

The NN converges to the known, analytic solution.
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Status of Metrics

• Very little is known on interesting 
EFT questions due to the lack of 
results on the compactification 
metrics


• Generically: good accuracy requires 
computational effort, largely 
unfeasible with previous methods 
(e.g. single point in moduli space  
~ day on desktop computer [k=12])

Donaldson, 
Headrick & 

Nassar
Kähler 

potential Metric Directly

Fixed point in 
Moduli Space ✔ ✔ ✔

Moduli 
Dependence

✗

(interpolation) ✔ ✔

Non Kähler ✗ ✗ ✔

Analytic ✗ ✗ ✗
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Analytic formulae from NN?

• Can we find analytic expressions for these metrics?


• Hopeful, as other physics examples show that it is 
possible 
(Cranmer, Xu, Battaglia, Ho; Sahoo, Lampert, Martius; Wetzel, Melko, 
Scott, Panju, Ganesh)


• Example (work with Marc Syvaeri): Inferring 
Hamiltonian and Conserved Quantities from 
simulated data of physical systems 
 
 

23



Conclusions

• Learning CY metrics with NNs works and is more efficient.


• Moduli dependent metrics (here: complex structure)


• Auto-differentiation for loss functions depending on 
derivatives of metric


• New types of metrics are within reach (SU(3) structure, G2)


• Applications in physics and mathematics, e.g.: EFTs in 
string theory (non-holomorphic quantities), SYZ-conjecture 
(are CYs -fibrations at large CS)


• A lot of physics and mathematics ahead for future 
string_data meetings!

T3

2. Learn K directly
CY: Quintic in        : 
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4 <latexit sha1_base64="6OtTQC4dQjbk14+yuUTFkmAKuzY=">AAACI3icbVDLSgMxFM34rPU16tJNsAiCUjK1VTdC0Y3LCvYB7Thk0kwbmnmQZIR26J+49Ufc1pWI4MJ/MZ3OQlsv5HA4515u7nEjzqRC6MtYWl5ZXVvPbeQ3t7Z3ds29/YYMY0FonYQ8FC0XS8pZQOuKKU5bkaDYdzltuoPbqd98okKyMHhQw4jaPu4FzGMEKy055sXIQY+V05FjpVhK8TzFssZOJBnULdrXpna0DK8hcswCKqK04CKxMlIAWdUc87PTDUns00ARjqVsWyhSdoKFYoTTcb4TSxphMsA92tY0wD6VdpLeN4bHWulCLxT6BQqm6u+JBPtSDn1Xd/pY9eW8NxXPXNf/z2/HyruyExZEsaIBmS3zYg5VCKeBwS4TlCg+1AQTwfR/IeljgYnSseZ1ENb82YukUSpalSK6LxeqN1kkOXAIjsAJsMAlqII7UAN1QMAzeAUT8Ga8GBPj3fiYtS4Z2cwB+FPG9w8gEKDZ</latexit>

z50 + z51 + z52 + z53 + z54 +  z0z1z2z3z4 = 0

Figure 4: � accuracies at k = 6 achieved by the dense network with one and two hidden
layers. The shaded area indicates the range of | | that was not used during training,
and thus shows the extrapolation behavior of the networks. For reference, the � accuracy
achieved by Donaldson’s algorithm for the same range of | | is shown. The dashed line
corresponds to the extrapolation of using Donaldson’s balanced metric at  = 100 over
real values of  . The error band in each case cooresponds to the maximal and minimal
value obtained respectively when evaluating the � accuracy at different angles.

of the metric will depend on the position in the CY manifold as well as on the complex
structure. In contrast to the methods presented to learn the Kähler potential, we now aim
to learn the components of the metric g directly. This has several potential advantages:

• Instead of the need of predicting N2
k values for learning the Kähler potential, the NN

always only needs to predict the independent components of the metric, i.e. d2 real
parameters for a complex CY d-fold (respectively d+1 when working in the ambient
space) [FR: why is this relevant? do we learn in the ambient space?].

• In comparison to approaches which use a general ansatz for the Kähler potential,
learning the metric directly saves two derivatives when evaluating the Monge-Ampère
loss.

To the best of our knowledge, our experiments are the first to test whether these heuristic
differences can be numerically advantageous.

However, there is also a disadvantage as compared to the method discussed in Section 2.6.
The metric g is not automatically Kähler, nor does it automatically glue nicely across
patches of d+1. So, in addition to finding a Ricci-flat metric that solves the Monge-
Ampère equation (2.3), we will need to impose that the Kähler and gluing conditions are
satisfied. As mentioned previously, the fact that the Kähler property is not ensured by
construction also allows us to apply this approach to more general (non-Kähler) SU(3)-
structure metrics. The overlap condition is important, since if we worked just on a single
patch, a trivial solution would be the flat (and hence trivially Ricci flat) metric on that
patch. [FR: Not sure to which extent this is correct in our setup (I can’t remember
whether I wrote this, but I think it’s wrong). It is correct theoretically, but a flat metric
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Thank you!

25



Learning Hamiltonian and Conserved Quantities
Additional information
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Our SU(3) structure metrics

• General solutions: 
 

 

 

 

  

W1 = 0

W2 = − i∂A1⌟Ω0 + i∂A2⌟Ω0 + i
∂(A1 + A2)

A1 + A2
⌟A1Ω0 − i

∂(A1 + A2)
A1 + A2

⌟A2Ω0

W3 = ∑
i

(dai − W4) ∧ Ji

W4 =
1
2 ∑

i

Ji⌟(dai ∧ Ji)

W5 =
∂(A1 + A2)

A1 + A2
+

∂(A1 + A2)
A1 + A2

W1 = W2 = 0, W4 =
1
2

W5 = dϕ, W3 arbitrary
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Network Layouts
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