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Heterotic Line Bundle Models

Systematic semi-topological realisation of Standard like models (SLM)
Anderson et al (1106.4804,1202.1757,1307.4787), Lukas et al (1309.0223, 1706.07688),

ML–Passaro–Schneider (2010.09763).

Large configuration space
e.g. up to 10428 topological inequivalent CY 3-folds
Demirtas–McAllister–Rios-Tascon (2008.01730)

Topological computations resource-demanding (e.g. sequence-chasing)
systematic constructions limited to CY with h(1,1) < 7.

Well studied “lab” where we can (and should) try new search strategies
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Heterotic Line Bundle Models
Well studied “lab” where we can try new search strategies

Large configuration space

Topological computations resource-demanding

Reinforcement Learning

Solves large configuration spaces, e.g. AlphaZero win in Go
Silver et al (Science, 2018)

Learns with imperfect information, e.g. OpenAI win in DotA 2 (1912.06680)

Learns type IIA intersecting brane models
Halverson–Nelson–Ruehle (1903.11616)

Heterotic SLM via supervised and non-supervised machine learning:
Deen–He–Lee–Lukas (2003.13339), Mutter–Parr–Vaudrevange (1811.05993)
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This talk in summary:

build ML environments for heterotic line bundle models on CICY

train A3C agents to find SLM

Results:

consistently outperform random walkers

after initial design phase, experiments run fast

long-term strategy, seem to detect hidden structures, partly transferrable

Python packages:
github.com/robin-schneider/gymCICY; pypi.org/project/pyCICY/
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Reinforcement Learning
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Reinforcement Learning

Agent takes action according to policy π(a|s)

π : S → A

Goal: maximize return (accumulated future reward)

Gt = Rt+1 + γRt+2 + ... =
∑

k

γkRt+k+1, with discount factor γ ∈ [0, 1]

Vast state space  use Neural Networks (deep reinforcement learning).
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Agents

Asynchronous Advantage Actor Critic (A3C) Mnih et al (1602.01783)

use a NN as Actor to update policy π(at |st ; θπ),

use a NN as Critic to update state value function V (st ; θv ) = E[Rt |s = st ],

update parameters θπ, θv using gradient descent from Advantage function,

Asynchronous update of global parameters from local agents,

can be trained on a single CPU,

are stable and robust (on considered benchmarks).

Design and hyperparamters cf. Halverson–Nelson–Ruehle (1903.11616).

Softmax π(at |st ; θπ), scalar V (st ; θv ) (see fig 4)
Hyperparameters tuned during design phase (see table 1)
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Environments

Heterotic string compactification with three ingredients

1 Calabi Yau manifold M.

2 Line bundle sum V = ⊕5
a=1La.

3 Freely acting discrete symmetry Γ for Wilson line.

Explored systematically −→ 35 000 standard like models
Anderson et al (1106.4804,1202.1757,1307.4787).

For example:

M5302 =




1 0 1 1
1 0 1 1
1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1




6,30

−48

and V =




−1 0 0 0 1
4 −3 −1 0 0
0 0 −1 1 0
0 0 0 0 0
0 0 1 0 −1
1 1 0 −2 0




and |Γ| = 2. There are a total of 6294 such models.
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Environments

Heterotic string compactification with three ingredients

1 Calabi Yau manifold M −→ Fix to CICY with h(1,1) ≥ 5 .

2 Line bundle sum V = ⊕5
a=1La

3 Freely acting discrete symmetry Γ for Wilson line. −→ Fix to |Γ| = 2.

M5302 =




1 0 1 1
1 0 1 1
1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1




6,30

−48

and M5256 =




1 1 1 0 0
1 2 0 0 0
1 0 0 1 1
1 0 0 1 1
3 1 1 0 1




5,29

−48

.
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Environments

Heterotic string compactification with three ingredients

1 Calabi Yau manifold M.

2 Line bundle sum V = ⊕5
a=1La −→ Environment.

3 Freely acting discrete symmetry Γ for Wilson line.

To qualify as a heterotic SLM, the bundle must satisfy physical constraints.

→ Translate constraints to reward structure.
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Environments: Reward Structure

( 1. V is an S(U(1)5) bundle: c1(V ) = 0 Rmax=5)

2. Weak stability constraint: µ(La) = 0, a = 1, ..., 5 Rmax=2

3. Three chiral families: −3|Γ| ≤ index(La) ≤ 0 Rmax= 10

4. Three chiral families. ind(V )
!

= −3|Γ| R=102

5. Bianchi identity and
Bogomolov bound: 0 < c2(V ) ≤ c2(M) R=104

6. No Higgs triplets: ind(La ⊗ Lb) < 0 R=104

7. At least one Higgs doublet: h2(∧2V ) ≥ 0 R=106

8. No antigenerations: h2(V )
!

= 0 R=107

9. V is slope stable: µ(La) = 0 in Kähler cone —
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Environments: Stacking

Precompile list L of nline slope stable line bundles with −3|Γ| ≤ index(La) ≤ 0

Stack four of these, and adjust L5 to satisfy c1(V ) = 0

−→ Constraints 1, 2, 3 are automatic

States: The line bundle sum V . Hence St ∈ Z(5,nProj).

Actions: Pick La ∈ L and replace one of L1−4.

# of configurations: nconf = n4line.

Example: (M5302, qmax = 2, |Γ| = 2) gives nline = 2890 and nconf ≈ 7 · 1013.




−1 0 0 0 1
2 0 −1 −1 0
−2 −1 0 −2 5
0 −1 0 2 −1
0 2 −2 2 −2
2 2 1 0 −5




At→




−1 −2 0 0 3
2 −2 −1 −1 2
−2 0 0 −2 4
0 2 0 2 −4
0 0 −2 2 0
2 2 1 0 −5




Magdalena Larfors (Uppsala University) Reinforcement learning heterotic line bundle models 14 Dec 2020 13 / 24



Environments: Stacking
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Figure: Number of models found in two selected sets of stacking experiments (in blue)
for the manifolds 5256 and 5302 plotted for comparison with each five random walkers
(in red).
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Environments: Flipping

No precompiled list, instead “flip” individual charges in L1−4

Still adjust L5 to satisfy c1(V ) = 0

−→ Constraint 1 is automatic

States: The line bundle sum V . Hence St ∈ Z(5,nProj).

Actions: Pick a charge qji and add ±1. Thus At ∈ {1, ..., 4 · 2 · nProj}.
# of configurations: nconf = (2 · qmax + 1)4·h

1,1

.

Example: (M5302, qmax = 2, |Γ| = 2) gives nconf ≈ 5 · 1016.




1 1 −1 0 −1
−1 0 1 0 0
1 1 0 −1 −1
1 1 −1 −1 0
−1 1 0 0 0
−1 1 0 0 0




At→




2 1 −1 0 −2
−1 0 1 0 0
1 1 0 −1 −1
1 1 −1 −1 0
−1 1 0 0 0
−1 1 0 0 0
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Flipping II
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Figure: Number of models found in two selected sets of flipping experiments (in blue) for
the manifolds 5256 and 5302 plotted for comparison with each five random walkers (in
red).
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Experiments on fixed geometry: Results

Stacking close to human derived strategy of systematic scan
I Runtime about 50 minutes on 32 cores
I Moderately outperform random walker (factor 3-20)
I Gets stuck in local minima −→ low number of unique models.

Flipping strategy different from systematic scan
I Runtime about 3.5 hours on 32 cores
I Rapid increase in performance followed by flattening at late times
I Significantly outperform random walker (factor 300-1700)
I Large number of unique models.
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Experiments on fixed geometry

Experiments require significant design phase (see table 1)

But, eventually, hyperparameters are similar on the two explored geometries

Has agent learned hidden structure?

Successful flip experiments have slow start

Speed up by smart initialization?

Test agent on new manifold −→ Transfer learning
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Transfer learning:

Test 5256 flip agent on new manifold

save the agent with the highest mean reward ( 21 · 106 steps)

run pretrained agent in evaluation mode (no learning)

transfer run: allow last three layers to update (but low learning rate)

M5452 =




1 1 1 0 0
1 0 0 1 1
1 2 0 0 0
1 0 0 2 0
3 1 1 1 1




5,29

−48

and M6890 =




1 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 2
1 0 0 2 0 0
4 1 1 1 1 1




5,37

−64
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Transfer learning: Results
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Figure: Number of models found for selected sets of flipping experiments (in blue),
random walkers (in red), pretrained agents (in yellow), and transfer agents (in green) on
the manifolds 5452 and 6890. Note the logarithmic scale on the y-axis.
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Conclusions and Outlook

Results

A3C agents successfully find heterotic SLM (outperform RW by 3-1700)

Flipping environment  new long term, “non-human” strategy

Reproduce many models found in comprehensive scans (with less runtime)

Computation time similar for h(1,1) = 5, 6

Transfer learning successful  agent knowledge is partly general

Outlook

More (exhaustive) experiments. Better choices for hyperparameters?

More transfer experiments  Explore models on CICY with h(1,1) ≥ 7

Other RL developments: change networks or agents

Explore other types of heterotic SLMs

Combine with new physics/ML developments:
CY Hodge numbers, formulas for line bundle cohomologies, CY metrics, ...
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Conclusions and Outlook

Results

A3C agents successfully find heterotic SLM (outperform RW by 3-1700)

Flipping environment  new long term, “non-human” strategy

Reproduce many models found in comprehensive scans (with less runtime)

Computation time similar for h(1,1) = 5, 6

Transfer learning successful  agent knowledge is partly general

Outlook

More (exhaustive) experiments. Better choices for hyperparameters?

More transfer experiments  Explore models on CICY with h(1,1) ≥ 7

Other RL developments: change networks or agents

Explore other types of heterotic SLMs

Combine with new physics developments:
analytical formulas for line bundle cohomologies, ML CY metrics, ...

Thank you for listening!
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Extra slides: Implementation 1

...

Input

R5·h1,1

...

ReLU

RnH
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ReLU
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ReLU

RnH+150

...
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Policy
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R1
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Output

Figure 1: The fully connected deep neural network architecture of the actor and critic, who output the policy
and value function, respectively. The input states consist of the (5, h(1,1)) integer matrices that specify the
heterotic line bundle sums we want to explore. The dimensions of the policy output are RnL for the stacking

and R8·h(1,1)

for the flipping environments.

A. At any given time, the agent is in a state st 2 S,
and picks some action at 2 A which takes the agent
to a new state st+1, where it receives a scalar reward
rt. The agent’s actions are determined by a policy
⇡, which observes the input state st from which it
determines an action at. The agent is trained, i.e.
updates its policy function, such that it maximizes
the accumulated reward

Rt =
1X

k=0

�krt+k+1 ,

where � is a discount factor with � 2 (0, 1] that can
be used to tune the agent’s strategy towards short
or long term rewards. This process continues until a
terminal state tend is reached.

Asynchronous Advantage Actor-Critic models,
proposed in 2016 [32], provide an e�cient and sta-
ble way to train reinforcement learning algorithms
on a CPU. Actor Critic agents consist of two esti-

mators, usually neural networks, that are competing
with each other. First, the Actor, who is learning the
policy ⇡(at|st; ✓⇡) and second, a Critic that updates
a state value function

V (st; ✓v) = E[Rt|s = st]

giving an approximate scalar value for each state.
The policy and state value functions are determined
by the weights ✓⇡, ✓v of the involved neural networks,
and the learning of the agent is encoding in updat-
ing these weights. The asynchronous behaviour of
the A3C agents arises from distributing the process
over nthreads workers, each exploring E and updating
their own set of parameters. Once a worker has been
active for t = tmax, it will provide information that
updates a global set of parameters, and then restart
its training using the global parameters that encode
the collective learning of all workers. The robustness
of the A3C relies on these asynchronous updates of

4

Figure: NN architecture

implemented via ChainerRL
Actor/Critic architecture differ only in output layer
inspired by Halverson–Nelson–Ruehle (1903.11616)

Back to slide 8
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Extra slides: Implementation 2

Hyperparameter tuning was not systematic.

Table: Hyperparameter values tuned in design phase:

stack flip
parameter 5256 5302 5256 5302

tsteps 5 · 106 5 · 106 50 · 106 50 · 106

msteps 30 30 200 300
lr 5 · 10−4 5 · 10−4 10−4 10−4

nH 100 100 75 100
β 1 0.1 1 1
γ 0.7 0.7 0.95 0.95

Common hyperparameters: local tmax = 5;
physics: qmax = 2, |Γ| = 2; RMSProp: α = 0.99, gc = 20, ε = 0.0001.
Back to slide 8
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