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Physics Language:
Learning is a data-induced flow from an initialization
function-space distribution to a trained distribution.

Learning is approximating the posterior over functions
given a prior, a likelihood, and data.

Bayesian Statistics:

What is learning?



Function-space distributions are central
objects in machine learning.

Already sounds a little like the path integral of QFT.

What can we say about the function-space distributions of NNs?



Start Simple: Single-Layer Networks
A single-layer feedforward network is just

        parameters drawn as

Limit of interest: infinite width N → ∞.

Then output adds an infinite number of i.i.d. entries from W1 matrix, so CLT applies, output drawn from Gaussian!
Language: the neural network f is drawn from a Gaussian process, i.e. Gaussian function-space distribution. 



∞ width single-layer networks drawn from GP
Was just a simple consequence of CLT.

Surely this must be more general!

Just need a discrete hyperparameter N such that as N → ∞,
the associated asymptotic NN adds infinite number of i.i.d. variables,

then apply CLT.



Most architectures admit GP limit
Single-layer infinite width feedforward networks are GPs.

Deep infinite width feedforward networks are GPs.
Infinite channel CNNs are GPs.

Tensor programs show any standard architecture admits GP limit.

GP property persists under appropriate training. 

[Neal], [Williams] 1990’s

[Lee et al., 2017], [Matthews et al., 2018]

[Novak et al., 2018] [Garriga-Alonso et al. 2018]

[Yang, 2019]

[Jacot et al., 2018] [Lee et al., 2019]

Greg’s “tensor programs” (next talk?) are a 
language for showing, amongst other things,
how general GP limits are. 



NN-QFT correspondence: the essential logic
Asymptotic NNs are drawn from Gaussian as N → ∞.

@ Large (but finite) N: close-to-Gaussian NN distribution,
with non-Gaussianities 1/N-suppressed.

This structure is the backbone of perturbative QFT.



where:

Asymptotic NNs, GPs, and Free Field Theory
Gaussian Process: Free Field Theory:
distribution: “free” = non-interacting

Feynman path integral:

From P.I. perspective, free theories
are Gaussian distributions on field space.

e.g., free scalar field theory
log-likelihood:

n-pt correlation
functions:

K is the kernel of the GP.



Large N Neural Networks, NGPs, and Interacting QFT
Punchline: finite N networks that admit a GP limit 
should be drawn from non-Gaussian process. (NGP)

where, e.g., could have:

such non-Gaussian terms are interactions in QFT.
their coefficients = “couplings.”

Wilsonian EFT for NGPs:

determines NGP “effective action” = log likelihood.
Some art in this, but done for decades by physicists.

Experiments below: single-layer finite width networks

odd-pt functions vanish → odd couplings vanish.

In fact, 𝜅 more irrelevant than 𝜆 (in Wilsonian sense), 
can be ignored in expts.  even simpler NGP distribution. 



Given NN-QFT, how should we 
determine + model NN distributions?

in the real world, we compare experiments to the moments of the 
distribution, use to infer or approximate the NGP distribution.

i.e., we compute and measure correlation functions.



GP Predictions for Correlation Functions
if asymptotic NN drawn from GP
use Feynman diagrams for correlators.

Right: analytic and Feynman diagram expressions
for n-pt correlations of asymptotic NN outputs.

Physics analogy: mean-free GP is totally 
determined by 2-pt statistics, i.e. the GP kernel.

kernel = propagator, so GP = a QFT where all 
diagrams rep particles flying past each other.



NGP Correlation Functions from Feynman Diagrams
Correlation functions of neural network outputs
defined by associated NGP distribution.

use usual physics trick

to compute diagrammatically as Feynman diagrams.

Essentials from QFT reviewed in paper, e.g. cancellation 
of “vacuum bubbles” (components with no external 
points) by expanding the denominator.

Feynman Rules:

these rules are a picture to analytic 
expression dictionary.

note: in our experiments, GP kernel happens 
to be exact all-width 2-pt function.



2-pt, 4-pt, and 6-pt Correlation Functions point: theory equations that 
actually enter our NN codes.



When Correlators Diverge: Wilsonian RG in NN-QFT
Experiments: the central insight in renormalization.

Evaluate set of NNs on inputs

and measure experimental correlation functions,

these just are what they are! One set of corr fns.

Goal of theory is to explain them.

Theory: put cutoff in NGP corrections

Λ finite puts input in box, regulates divergences.
For any Λ sufficiently big, measure couplings, 
make predictions, verify with experiments.

Infinite number of      , that are supposed to work, 
but only one set of experiments. Requires:

allows for extraction of 𝛽-functions.

 

[Zee] for beautiful textbook discussion.



A Flash of Some Experimental Results
NGP correlators become GP correlators as N → ∞

Dependence of Quartic Coupling on Cutoff

Depends on input dimension.
See quartic is asymptotically free.

Verification of EFT Predictions

Perturbative correction in measured quartic
coupling bring 6-pt function closer to experiment.

Experimental description
Experiments in three different single-layer networks,
with ReLU, Erf, and a custom “GaussNet” activation.

Drew millions of models and evaluated on fixed sets 
of input to do experiments with correlators and the 
EFT description of NN distribution.



Summary of Results from First Paper

asymptotic NN’s “=” Free QFT

b/c drawn from GPs

NNs “=” QFT

b/c drawn from NGPs

fairly general: any “standard architecture” (Yang) 
admits a GP limit. persists under some training.

therefore, away from limit, NGP. use EFT to model.
import QFT ideas directly into NNs.

QFT treatment of NN distribution yields:
1) output correlation functions as Feynman diagrams.
2) measure couplings in experiments, predict, verify. 
3) Wilsonian RG induces flow in couplings, simplifies the 
model of the NN distribution.

Verified experimentally, single layer networks,
indeed QFT gives function-space perspective on NNs.

central idea: model NGP / NN distribution using
QFT techniques, e.g. Wilsonian EFT.



What does this treatment of NNs get you?

Duality: 
In physics, means two perspectives on a single system, 
where certain things are easier from one. 

Parameter-space / function-space duality:
at large N, parameter-space complexity explodes.

but in function-space complexity decreases due to 
renorm. and 1/N suppression of non-Gaussianities.

Acute example: single number in NGP dist. was sufficient 
to approximate NGP corrections, despite losing an ∞ 
number of parameters in moving away from GP.

Training:
Our formalism only requires being “close” to GP, 
where measure of closeness determined 
experimentally and in examples is relatively low N.

Some training preserves GP at large N, in principle 
allowing QFT treatment of NGP during training.

Supervised learning:
in QFT language, it is just learning the 1-pt function.

in general this will break symmetry of NGP (see 
paper next week for priors), bring in even more QFT.



Outlook and Motivation
Most NN’s at moderate N are drawn from non-Gaussian processes (NGPs).

Perturbative QFT = NGP + extra widgets / axioms.

Which NNs, if any, satisfy the extra axioms?

Which techniques that we love from QFT apply 
even in the absence of the axioms, i.e. to general NGPs / NNs?



Thanks!
Questions?

Please feel free to get in touch:
e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com

mailto:jhh@neu.edu
http://www.jhhalverson.com


Our examples and their kernels
Erf-net:

Gauss-net:

ReLU-net:


