Can graph neural networks count substructures?

Soledad Villar
Applied Mathematics and Statistics
Mathematical Institute for Data Science

Lid JOHNS HOPKINS
 UNIVERSITY

Based on joint work with Zhengdao Chen, Lei Chen and Joan Bruna

String-data 2020

Motivation: deep learning beyond images

Deep learning is extremely successful at certain tasks.
CNNs use filters that seem to exploit intrinsic symmetries of images.

source: Jonathan Hui
Not all data are images. Learning on graphs.

source: Choma et al '18. Neutrino detection with GNNs

Neural networks on graphs

Input: $G=\left(V, E, x_{v}, x_{e}\right)$. Output: $f_{\Theta}(G)$ embedding of the graph.

Fundamental property: equivariance with respect to permutations.

Neural networks on graphs

Input: $G=\left(V, E, x_{v}, x_{e}\right)$. Output: $f_{\Theta}(G)$ embedding of the graph.

Fundamental property: equivariance with respect to permutations.

Many types of GNN architectures

- Message passing neural networks [Gilmer et al '16, Hamilton et at '17]
- Graph convolutional networks [Duvenaud et al '15, Defferrard et al '16, Kipf \& Welling, '17]
- Spectral graph neural networks [Chen et al '19]
- k-invariant networks [Maron et al '19]

Message passing neural networks

$$
\begin{gathered}
a_{v}^{(k)}=\operatorname{AGGREGATE}^{(k)}\left(\left\{h_{u}^{(k-1)}: u \in \mathcal{N}(u)\right\}\right) \\
h_{v}^{(k)}=\operatorname{COMBINE}^{(k)}\left(h_{v}^{(k-1)}, a_{v}^{(k)}\right)
\end{gathered}
$$

Layer-0

Graph convolutional networks

Classical convolutions: $H^{t+1}=\sigma\left(W^{t} H^{t}+b^{t}\right)$
Graph convolution: $H^{t+1}=\sigma\left(W^{t} H^{t} A\right)$
(A adjacency matrix of graph)

Spectral GNNs

Originally motivated by "Bethe Hessian" for clustering the stochastic block model
Graph with adjacency matrix A. Set $\mathcal{M}=\left\{I_{n}, D, A, A^{2}, \ldots, A^{J}\right\}$,
Combine graph operators \mathcal{M} to produce a "good spectral method"

Spectral GNNs

Originally motivated by "Bethe Hessian" for clustering the stochastic block model
Graph with adjacency matrix A. Set $\mathcal{M}=\left\{I_{n}, D, A, A^{2}, \ldots, A^{J}\right\}$,
Combine graph operators \mathcal{M} to produce a "good spectral method"
Unroll as power method: $v^{t+1}=M v^{t} \quad t=1, \ldots, T$.
And overparametrize:

$$
v^{t+1}=\left(\sum_{M \in \mathcal{M}} M v^{t} \theta_{M}\right),
$$

with $v^{t} \in \mathbb{R}^{n \times d_{t}}$,
$\Theta=\left\{\theta_{1}^{t}, \ldots, \theta_{|\mathcal{M}|}^{t}\right\}_{t}, \theta_{M}^{t} \in \mathbb{R}^{d_{t} \times d_{t+1}}$ trainable parameters.

Spectral GNNs

Originally motivated by "Bethe Hessian" for clustering the stochastic block model
Graph with adjacency matrix A. Set $\mathcal{M}=\left\{I_{n}, D, A, A^{2}, \ldots, A^{J}\right\}$,
Combine graph operators \mathcal{M} to produce a "good spectral method"
Unroll as power method: $v^{t+1}=M v^{t} \quad t=1, \ldots, T$.
And overparametrize:

$$
v_{l}^{t+1}=\left(\sum_{M \in \mathcal{M}} M v^{t} \theta_{M, I}\right), I=1, \ldots, d_{t+1}
$$

with $v^{t} \in \mathbb{R}^{n \times d_{t}}$,
$\Theta=\left\{\theta_{1}^{t}, \ldots, \theta_{|\mathcal{M}|}^{t}\right\}_{t}, \theta_{M}^{t} \in \mathbb{R}^{d_{t} \times d_{t+1}}$ trainable parameters.

Spectral GNNs

Originally motivated by "Bethe Hessian" for clustering the stochastic block model
Graph with adjacency matrix A. Set $\mathcal{M}=\left\{I_{n}, D, A, A^{2}, \ldots, A^{J}\right\}$,
Combine graph operators \mathcal{M} to produce a "good spectral method"
Unroll as power method: $v^{t+1}=M v^{t} \quad t=1, \ldots, T$.
And overparametrize:

$$
v_{l}^{t+1}=\left(\sum_{M \in \mathcal{M}} M v^{t} \theta_{M, I^{t}}\right), I=1, \ldots, d_{t+1}
$$

with $v^{t} \in \mathbb{R}^{n \times d_{t}}$,
$\Theta=\left\{\theta_{1}^{t}, \ldots, \theta_{|\mathcal{M}|}^{t}\right\}_{t}, \theta_{M}^{t} \in \mathbb{R}^{d_{t} \times d_{t+1}}$ trainable parameters.

Spectral GNNs

Originally motivated by "Bethe Hessian" for clustering the stochastic block model
Graph with adjacency matrix A. Set $\mathcal{M}=\left\{I_{n}, D, A, A^{2}, \ldots, A^{J}\right\}$,
Combine graph operators \mathcal{M} to produce a "good spectral method"
Unroll as power method: $v^{t+1}=M v^{t} \quad t=1, \ldots, T$.
And overparametrize:

$$
v_{l}^{t+1}=\rho\left(\sum_{M \in \mathcal{M}} M v^{t} \theta_{M, I^{t}}\right), I=1, \ldots, d_{t+1}
$$

with $v^{t} \in \mathbb{R}^{n \times d_{t}}$,
$\Theta=\left\{\theta_{1}^{t}, \ldots, \theta_{|\mathcal{M}|}^{t}\right\}_{t}, \theta_{M}^{t} \in \mathbb{R}^{d_{t} \times d_{t+1}}$ trainable parameters.

Invariant graph networks

- Linear case:
- If $L: \mathbb{R}^{R^{k}} \rightarrow \mathbb{R}$ invariant, then $\operatorname{vec}(L)=\pi^{\otimes k} \operatorname{vec}(L)$.
- If $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}^{n^{k}}$ equivariant, then $\operatorname{vec}(L)=\pi^{\otimes 2 k} \operatorname{vec}(L)$
- The space of invariant [equivariant] linear functions on k-tensors has dimension $b(k)[b(2 k)]$. $(b(k)$ denotes Bell Number: number of partitions of a size k set).

Invariant graph networks

- Linear case:
- If $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}$ invariant, then $\operatorname{vec}(L)=\pi^{\otimes k} \operatorname{vec}(L)$.
- If $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}^{n^{k}}$ equivariant, then $\operatorname{vec}(L)=\pi^{\otimes 2 k} \operatorname{vec}(L)$
- The space of invariant [equivariant] linear functions on k-tensors has dimension $b(k)[b(2 k)]$. $(b(k)$ denotes Bell Number: number of partitions of a size k set).
- Universal approximation:
- Invariant networks constructed by composition of linear invariant layers $L_{t}: \mathbb{R}^{n^{k} \times a} \rightarrow \mathbb{R}^{b}$ with ReLU or sigmoid activation functions universally approximate the space of invariant functions.
- Extension to equivariant functions.

Invariant graph networks

- Linear case:
- If $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}$ invariant, then $\operatorname{vec}(L)=\pi^{\otimes k} \operatorname{vec}(L)$.
- If $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}^{n^{k}}$ equivariant, then $\operatorname{vec}(L)=\pi^{\otimes 2 k} \operatorname{vec}(L)$
- The space of invariant [equivariant] linear functions on k-tensors has dimension $b(k)[b(2 k)]$. $(b(k)$ denotes Bell Number: number of partitions of a size k set).
- Universal approximation:
- Invariant networks constructed by composition of linear invariant layers $L_{t}: \mathbb{R}^{n^{k} \times a} \rightarrow \mathbb{R}^{b}$ with ReLU or sigmoid activation functions universally approximate the space of invariant functions.
- Extension to equivariant functions.

Arbitrary high order tensors are needed.
Rates of convergence are not known.

Approximation power of MPNN

How powerful are graph neural networks? [Xu et al' 19, Morris et al' '19]
Expressive power of GNNs \longleftrightarrow distinguish non-isomorphic graphs

Approximation power of MPNN

How powerful are graph neural networks? [Xu et al' 19, Morris et al' '19]
Expressive power of GNNs \longleftrightarrow distinguish non-isomorphic graphs
$\mathrm{GNN} \equiv\left\{f_{\Theta}: \Theta \in \mathbb{R}^{N}\right.$ parameters $\}$
Q: Let G_{1}, G_{2} not isomorphic. Does there exists Θ such that

$$
f_{\Theta}\left(G_{1}\right) \neq f_{\Theta}\left(G_{2}\right) ?
$$

Approximation power of MPNN

How powerful are graph neural networks? [Xu et al' 19, Morris et al' '19]
Expressive power of GNNs \longleftrightarrow distinguish non-isomorphic graphs
$\mathrm{GNN} \equiv\left\{f_{\Theta}: \Theta \in \mathbb{R}^{N}\right.$ parameters $\}$
Q: Let G_{1}, G_{2} not isomorphic. Does there exists Θ such that

$$
f_{\Theta}\left(G_{1}\right) \neq f_{\Theta}\left(G_{2}\right) ?
$$

A: If and only if the Weisfeler-Lehman test (1968) can distinguish them.
W-L test is as powerful as the LP relaxation [Ullman et al '94].
In particular MPNN cannot distinguish between non-isomorphic regular graphs with the same degree.

Graph isomorphism equivalence to universal approximation

GNN architecture $\equiv\left\{f_{\Theta}: \Theta \in \mathbb{R}^{N}\right.$ parameters $\}$

Universal approximation of invariant functions

Distinguish all pairs of nonisomorphic graphs

Comparison of architectures through Glso

$\mathcal{C} \subseteq \mathcal{C}^{\prime}$ if for all pairs of non-isomorphic graphs G_{1}, G_{2}, if there exists $h \in \mathcal{C}$ so that $h\left(G_{1}\right) \neq h\left(G_{2}\right)$ then there exists $h^{\prime} \in \mathcal{C}^{\prime}$ so that $h^{\prime}\left(G_{1}\right) \neq h^{\prime}\left(G_{2}\right)$.

Counting substructures

Given G, M graphs. How many embeddings $i: G \hookrightarrow M$ exist?

- as a subgraph
- as an induced subgraph

Motivations:

- More natural expressive power measurement than graph isomorphism
- Identify structures in social networks
- Compute similarities between molecules

Can graph neural networks count substructures?

- MPNN [Gilmer et al '17] and 2-IGNs [Maron et al '19] cannot count connected induced subgraphs of more than 2-nodes.
- MPNNs and 2-IGNs can count star-shaped subgraphs of any size.
- k-WL and k-IGNs can count induced subgraphs of size k
- Upper bound on the size of subgraphs that k-WL can count after T iterations: $(k+1) 2^{\top}$.
- Propose a Local relation pooling architecture designed to count substructures.

Local relational pooling

Inspired by [Murphy et al '19]
At each layer we consider all permutations on neighborhoods of size k for each node:

$$
f(G)=\sum_{i \in V} \sum_{\Pi \in S_{k}} \hat{f}\left(\Pi B_{i}\right)
$$

Where B_{i} is the (cropped) neighborhood of i in G represented by a $k \times k$ matrix.

	Erdős-Renyi				Random Regular			
	Triangle		3-Star		Triangle		3-Star	
	top 1	top 3						
LRP-1-4	1.56E-4	$2.49 \mathrm{E}-4$	$2.17 \mathrm{E}-5$	5.23E-5	$2.47 \mathrm{E}-4$	$3.83 \mathrm{E}-4$	$1.88 \mathrm{E}-6$	2.81E-6
LRP-1-4 (dp) ${ }^{\dagger}$	$2.81 \mathrm{E}-5$	4.77E-5	$1.12 \mathrm{E}-5$	3.78E-5	$1.30 \mathrm{E}-6$	5.16E-6	$2.07 \mathrm{E}-6$	4.97E-6
2-IGN	$9.83 \mathrm{E}-2$	$9.85 \mathrm{E}-1$	$5.40 \mathrm{E}-4$	5.12E-2	$2.62 \mathrm{E}-1$	5.96E-1	$1.19 \mathrm{E}-2$	3.28E-1
Powerful-IGN	5.08E-8	$2.51 \mathrm{E}-7$	$4.00 \mathrm{E}-5$	$6.01 \mathrm{E}-5$	$1.40 \mathrm{E}-6$	$3.71 \mathrm{E}-5$	$8.49 \mathrm{E}-5$	$9.50 \mathrm{E}-5$
GIN	$1.23 \mathrm{E}-1$	$1.25 \mathrm{E}-1$	$1.62 \mathrm{E}-4$	3.44E-4	$4.70 \mathrm{E}-1$	$4.74 \mathrm{E}-1$	$3.73 \mathrm{E}-4$	$4.65 \mathrm{E}-4$
GCN	$6.78 \mathrm{E}-1$	$8.27 \mathrm{E}-1$	$4.36 \mathrm{E}-1$	$4.55 \mathrm{E}-1$	1.82	2.05	2.63	2.80
sGNN	$9.25 \mathrm{E}-2$	$1.13 \mathrm{E}-1$	$2.36 \mathrm{E}-3$	7.73E-3	$3.92 \mathrm{E}-1$	4.43E-1	$2.37 \mathrm{E}-2$	$1.41 \mathrm{E}-1$

Extensions - Future work

- Design expressive architectures:

GNN architecture depends on the task.

- Optimization landscape of GNNs:

Current analysis of optimization landscape relies in simplified models to show that all local minima are confined in low-energy configurations.

- Connection with SoS:

For some classes of "detecting hidden structures problems" existence of degree- d SoS refutations implies success of certain (typically non-explicit) spectral methods.

- Can we express such class of spectral methods with GNNs.
- Can we learn them?

TRIPODS Winter School \& Workshop on Graph Learning and Deep Learning

Winter School: January 6-8th.
Workshops: January 13-15.

Johns Hopkins University https://www.minds.jhu.edu/2020/12/08/tripods-winter-school-workshop/

References

A Survey on The Expressive Power of Graph Neural Networks R. Sato, 2019

On the equivalence between graph isomorphism testing and function approximation with GNNs
Z. Chen, S. Villar, L. Chen, J. Bruna, NeurIPS 2019

Can graph neural networks count substructures?
Z. Chen, S. Villar, L. Chen, J. Bruna, NeurIPS 2020

