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Motivation: deep learning beyond images
Deep learning is extremely successful at certain tasks.

CNNs use filters that seem to exploit intrinsic symmetries of images.

source: Jonathan Hui

Not all data are images. Learning on graphs.

source: Choma et al ’18. Neutrino detection with GNNs
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Neural networks on graphs

Input: G = (V ,E , xv , xe). Output: fΘ(G ) embedding of the graph.

Fundamental property: equivariance with respect to permutations.

Many types of GNN architectures

I Message passing neural networks
[Gilmer et al ’16, Hamilton et at ’17]

I Graph convolutional networks
[Duvenaud et al ’15, Defferrard et al ’16, Kipf & Welling, ’17]

I Spectral graph neural networks [Chen et al ’19]

I k-invariant networks [Maron et al ’19]

I ...
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Message passing neural networks
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Gilmer et al ’16, Hamilton et at ’17, image: Leskovec ’18
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Graph convolutional networks

Classical convolutions: Ht+1 = σ(W tHt + bt)

Graph convolution: Ht+1 = σ(W tHtA)
(A adjacency matrix of graph)

Duvenaud et al ’15, Defferrard et al ’16, Kipf & Welling, ’17, image: Wu et. al ’19
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Spectral GNNs
Originally motivated by “Bethe Hessian” for clustering the stochastic block model

Graph with adjacency matrix A. Set M = {In,D,A,A2, . . . ,AJ},

Combine graph operators M to produce a “good spectral method”

Unroll as power method: v t+1 = Mv t t = 1, . . . ,T .
And overparametrize:

v t+1

l

=

ρ

( ∑
M∈M

Mv tθM

,l
t

)
,

l = 1, . . . , dt+1

with v t ∈ Rn×dt ,
Θ = {θt1, . . . , θt|M|}t , θ

t
M ∈ Rdt×dt+1 trainable parameters.

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017
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Invariant graph networks

I Linear case:
I If L : Rnk → R invariant, then vec(L) = π⊗kvec(L).
I If L : Rnk → Rnk equivariant, then vec(L) = π⊗2kvec(L)

I The space of invariant [equivariant] linear functions on
k-tensors has dimension b(k) [b(2k)].
(b(k) denotes Bell Number: number of partitions of a size k set).

I Universal approximation:
I Invariant networks constructed by composition of linear

invariant layers Lt : Rnk×a → Rb with ReLU or sigmoid
activation functions universally approximate the space of
invariant functions.

I Extension to equivariant functions.

Arbitrary high order tensors are needed.

Rates of convergence are not known.

Maron, Ben-Hamu, Shamir, Lipman, 2019

Maron, Fetaya, Segol, Lipman, 2019

Keriven, Peyré, 2019
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Approximation power of MPNN

How powerful are graph neural networks? [Xu et al’ 19, Morris et al’ ’19]

Expressive power of GNNs ←→ distinguish non-isomorphic graphs

GNN ≡ {fΘ : Θ ∈ RN parameters}
Q: Let G1,G2 not isomorphic. Does there exists Θ such that

fΘ(G1) 6= fΘ(G2)?

A: If and only if the Weisfeler-Lehman test (1968) can distinguish them.

W-L test is as powerful as the LP relaxation [Ullman et al ’94].

In particular MPNN cannot distinguish between non-isomorphic regular
graphs with the same degree.
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Graph isomorphism equivalence to universal approximation

GNN architecture ≡ {fΘ : Θ ∈ RN parameters}

Universal approximation of
invariant functions

←→ Distinguish all pairs of non-
isomorphic graphs

dd

ee

Chen, V., Chen, Bruna, NeurIPS 2019
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Comparison of architectures through GIso

C ⊆ C′ if for all pairs of non-isomorphic graphs G1,G2, if there
exists h ∈ C so that h(G1) 6= h(G2) then there exists h′ ∈ C′ so
that h′(G1) 6= h′(G2).

Chen, V., Chen, Bruna, NeurIPS 2019
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Counting substructures

Given G ,M graphs. How many embeddings i : G ↪→ M exist?

I as a subgraph

I as an induced subgraph

Motivations:

I More natural expressive power measurement than graph
isomorphism

I Identify structures in social networks

I Compute similarities between molecules

Chen, Chen, V., Bruna, NeurIPS 2020
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Can graph neural networks count substructures?

I MPNN [Gilmer et al ’17] and 2-IGNs [Maron et al ’19] cannot count
connected induced subgraphs of more than 2-nodes.

I MPNNs and 2-IGNs can count star-shaped subgraphs of any size.

I k-WL and k-IGNs can count induced subgraphs of size k

I Upper bound on the size of subgraphs that k-WL can count after T
iterations: (k + 1)2T .

I Propose a Local relation pooling architecture designed to count
substructures.

Chen, Chen, V., Bruna, 2020
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Local relational pooling

Inspired by [Murphy et al ’19]
At each layer we consider all permutations on neighborhoods of
size k for each node:

f (G ) =
∑
i∈V

∑
Π∈Sk

f̂ (ΠBi )

Where Bi is the (cropped) neighborhood of i in G represented by a
k × k matrix.
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Extensions - Future work

I Design expressive architectures:
GNN architecture depends on the task.

I Optimization landscape of GNNs:
Current analysis of optimization landscape relies in simplified models to

show that all local minima are confined in low-energy configurations.

I Connection with SoS:
For some classes of “detecting hidden structures problems” existence of

degree-d SoS refutations implies success of certain (typically non-explicit)

spectral methods.

I Can we express such class of spectral methods with GNNs.
I Can we learn them?

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer, 2017
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TRIPODS Winter School & Workshop on Graph Learning
and Deep Learning

Winter School: January 6-8th. Workshops: January 13-15.

Johns Hopkins University
https://www.minds.jhu.edu/2020/12/08/tripods-winter-school-workshop/

https://www.minds.jhu.edu/2020/12/08/tripods-winter-school-workshop/
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