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The Landscape is Big Data
• Number of F-theory/IIb string vacua (effective theories from string theory): 


• number of geometries  (extra-dimensional configurations)


• flux per geometry  (discrete data within a given geometry)


• Vacua all connected in network of topological transitions. Each vacuum 
corresponds to a distinct physical theory. 


• The number of theories is enormous, impossible to enumerate, and increasingly 
difficult to study as the number of scalar fields  increases, where computational 
complexity takes over.


• Physics involves vacua themselves, and the connections between the vacua.
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Data Science and String Theory
• Viewing String Theory from a large data and statistical perspective is a 

necessary perspective, at least to make connections with realistic particle 
physics and cosmology.


• Due to absolute enormity of the landscape, or set of string theory vacuum 
solutions. 


• Data science and computer science techniques (machine learning, 
complexity, network/graph theory, statistics) have come to the forefront, and 
have allowed for remarkable progress is many areas.



Progress via exploration and modeling

• At large  we cannot fully enumerate BUT 

• Efficient construction of physical theories is 
improving with better sampling and 
computational techniques (see e.g. talk by McAllister). 


• Modeling of vacua as a function of  has 
been improved by applying ML techniques.  
Example: Modeling the moduli space metric  
on Kähler moduli using a Wasserstein GAN  
constructing of a random matrix theory.


• Increasingly optimistic that data science techniques will allow us to further 
understand string theory vacua as sets, especially at large .
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Assigning importance
• However, the number of solutions consistent with our observed universe may 

still be enormous. How do we make predictions?


• We need a way of assigning importance to vacua,  
or assigning probability. This is known as  
prescribing a measure. 


• Simple example: flat measure. Probability is given  
by simply counting. This measure would  
predict that we see features that show  
up the most often in the string landscape.


• However, the flat measure lacks physical motivation, in the sense that it is 
ignorant to how universes are produced (dynamics).


• Physically instead we should consider dynamical measures.



Dynamics
• In a landscape with multiple inflating/dS vacua, 

one starts in a universe corresponding to a 
single vacuum, but then bubbles of other  
vacua will form via tunneling (baby universes). 


• Bubbles with positive  will expand, and  
then nucleate other bubbles within. In the case  
that the expansion rates are faster than the  
nucleation rates (eternal inflation), this  
process will continue forever,  
producing an infinite number of bubbles. 


• Bubbles with non-positive  are called terminal, and are thought to not produce 
any new bubbles themselves. Act as probability sinks from inflating vacua.
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Measures
• Two clear ways to assign importance: 


1. At late times probability of a given vacuum is proportional to number of 
the bubbles in that vacuum. 
 
                                                      . 


2. At early times, probability of a given vacuum is determined by how easy it 
is to produce it, or how accessible it is.


• Today’s focus is on the first type of measure, but very interesting to consider 
the second type, which is work in progress.
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Selection at late times

• : fraction of comoving volume in vacuum . 


• Dynamics governed by , where 


• Late time solution given by 


•   , independent of initial conditions. 


• Terminal vacua act as probability sinks.
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Downwards
• We will consider the downward approximation, where one only has transitions from higher  

to lower . Probably not completely accurate in a landscape as complex as the string 
landscape, but a useful first step.


• Define , which is the total downward tunneling rate out of vacuum . 


• Dominant vacuum  given by inflating vacuum with smallest  .  has highest probability. 


• Probability of other inflating vacua given by relative strength of upward transitions from  : 
 
                                      


• Goal: find . 
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Vacua in the F-theory/IIB Landscape

• The landscape is vast and we’ve likely only explored a tiny fraction of it. Still, 
can use the already incredibly complex landscape that’s been constructed to 
understand how vacuum selection works.


• I will focus on flux vacua, as studied by Ashok, Denef, and Douglas (ADD), 
since most known vacua lie in this regime.


• Goal: incorporate what we know about flux vacua to understand selection, 
including transition rates . Consider types of vacua, density of vacua, and 
number of vacua. 

κiα



The ADD Flux Landscape
• F-theory on elliptically fibered CY4 . 


•
Tadpole constraint:             ,  

 
SUSY: , , write  and so can write 
 

                                     , 


•                                                    


•  are integral, so the counting of flux configurations corresponds to counting appropriate 
lattice points that satisfy the inequality. 
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ADD SUSY Vacua: Number and Density
• Given a flux configuration, one wishes to estimate the number of vacua. Let’s count SUSY vacua.


•
                                               , 

 
 are curvature, Kähler form on moduli space.  are the number of four-form fluxes with a 

single leg along the elliptic fiber, and .


•
We have , and so ignoring the curvature gives average 

 
density of vacua of the form 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Density and Number
• In the large  limit we have , , and so we find 
 

             average distance between vacua     

 

                                             


• This was all SUSY vacua. However our main interest is in dS vacua. 


• Assume that number of dS vacua is on order or (much) smaller than the number of SUSY AdS 
vacua.


• Typical distance between a dS vacuum and any other vacuum is  . Always expect a nearby 
AdS vacuum to tunnel towards.
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Estimating decay rates and Perturbativity

• To bound the downward decay rate, we want to compute the most important decay 
rate for a given vacuum  to produce another vacuum . 


• However, to compute this, we need to be able to compute it: need to be in a regime 
where semi-classical and perturbative expansions are valid.


• Dine: when there are many fields , they can enhance loop diagrams by factors of 
, and so this imposes a scaling on the couplings with . 


• Updated question: If  is in the regime of control, where is ?


• In particular, at what  is  located? 
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Estimating decay rates and Perturbativity
• Consider Lagrangian of the form 
 




• Assumption for perturbative control: 
 
 


• In particular,  the cubic/quartic coupling satisfies 
 

,    
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Estimating decay rates
• Transition rate for tunneling is . Need to compute leading bounce action . 


• Following Dine and Paban, we will model the bounce by a straight line path in field space, 
with toy single field potential  
 




• Field distance through the barrier is then  .


• Bounce action derived numerically by Sarid, given by 
 

 ,          


• Given distributions for  we can derive a distribution for bounce action.  

∼ e−B B

V(ϕ) = μ2ϕ2 − γϕ3 + …

Δϕ =
μ2

γ

B = B0y ; y ≡
μ2

γ2
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Distributions for μ2, γ
• Via Dine’s perturbativity argument, we take the probability distribution function 

(PDF) for  to be uniform distribution between .


• Assume  uniformly distributed between , determine  by matching with 
average ADD distance between vacua . 


• Field distance governed by ratio PDF:


• Matching the median  to  gives  .  

γ [0, 1/n]

μ2 [0, C] C
∼ 1/n

Cn 1/n C = 1/n2



Bounce distribution
• Define , PDF again defined by a ratio PDF. 


• Cumulative distribution:

y = B =
μ2

γ2



Lifetime probability distribution
• In  dimensions, decay rate set by smallest bounce action among its  

allowed transitions. Denote minimal bounce action by , where 
. 


• Would like to compute the median of . Since  is the min of  we have the 
complementary cumulative distribution function (CCDF):

n n
Bmin ≡ B0W

W ≡ min(Y1, …, Yn)

W W Yi



Lifetime probability distribution
• We then have


• Median smallest bounce  given by . Anticipating at large  that 
, we find 

 




• Thus vacua in large-  geometries have shorter lifetimes on average. 

w̄ FW(w̄) = 1/2 n
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(1 −
w̄
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Pressure from above
• Our calculation, Dine-Paban, Greene et. al: average bounce action decreases 

with . 


• In addition, probability of a generic critical point to be classically stable also 
decreases with . 


• Studied in random matrix models of Hessians (mass matrices), probability of 
classical stability: 
 

 for generic iid entries of  
                         the Hessian (wasteland). 
 

 for nearly-SUSY vacua,  
                      also for perturbativity.


• Expect probability of classical and quantum stability to decrease with . 
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Longest Lived Vacuum
• Let  denote the random variables determining the bounce actions 

of the inflating vacua in an -dimensional moduli space. 


• The longest-lived vacuum among these corresponds to
.


• Consider its CDF, . Since  is the largest 
of all ’s

W1, …, WN
n

Wmax = max (W1, …, WN)
FWmax

(wmax) = Pr(Wmax ≤ wmax) Wmax
W



Longest Lived Vacuum

• Consider, the median maximal bounce , given by . 
Anticipating that   is enormous, we obtain  
 

w̄max FWmax
(w̄max) = 1/2

w̄max ≫ 1 N

1 − ( 2
3 w̄max )
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Longest Lived Vacuum

•



• Model number of inflating vacua  as the number of SUSY vacua, multiplied by a 
wasteland factor (accounting for stability): 
 




• For nearly-SUSY/perturbative case with , the first term dominates at large  (for 
instance, largest known ), and we have exponentially many inflating 
vacua. 


• However, for  there is tension with the wasteland factor.
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Longest Lived Vacuum
• Assuming , we find 
 

                                          


• Unless  decreases rapidly with , we see that the lifetime of the longest-lived 
vacuum grows with . In the known F-theory landscape this would select . 


• This can be understood intuitively. Although vacua in large-  geometries tend to be 
shorter-lived, as we have seen, these geometries host an enormous number of 
vacua . As a result, the longest-lived vacuum becomes increasingly stable 
with increasing .


• Interestingly, this is very sensitive to the growth of  . If instead we 
had  (via a e.g. a wasteland factor),  would be constant with . 
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A comment on LCS
• Recent work by Blanco-Pillado, Sousa, Urkiola, Wachter suggests that the complex 

structure moduli masses at large complex structure take a universal form 
 
 
 
 
 
 
 
 

,  is the LCS point. 


• Perturbativity in this case requires , and so the perturbative vacua are expected 

to have SUSY breaking scale that decreases with . 
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A consistency check
• The perturbative vacua that are selected are then large  vacua with very low SUSY-breaking 

scale. 


• Mike Douglas, 2012: “Thus, a reasonable guess is that the master vacuum is some flux sector in 
a vacuum with the smallest …  
 
The question of how to get small  deserves detailed study, but it is a very reasonable 
guess that this will be achieved by taking the topology of the extra dimensions to be as 
complicated as possible, and even more specifically by an extra dimensional manifold with the 
largest possible Euler number  … 
 
Thus, we might look for the master vacuum as an F theory compactification on the fourfold with 
maximal , which (as far as I know) is the hypersurface in weighted projective space given in 
(reference) with  = 24·75852.” 
 
(1204.6626)


• This is , studied further by Taylor and Wang, which has the maximal .
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Summary and Musings
• Density of vacua grows exponentially with , average bounce action decrease 

as . 


• However, the enormous number of vacua at large  allows the tails of the 
distribution of bounce actions to be probed, leading to an increasing lifetime of 
the most stable vacuum as a function of .  Therefore expect  to be at large . 


• Important considerations are wasteland factors, which could provide a 
mechanism for selection at smaller . 


• Work in progress includes considering other distributions for the couplings, 
Kähler moduli/axions, and similar analyses for early-time measures.
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