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Motivation

Overview

We want to connect ideas of statistical inference with quantum
field theory and in particular focus on something called Bayesian
up-dating.

In what follows, the objects of study are probability distributions
(in fact often we will consider a family of distributions called a
model with some set of parameters on which the distribution
depends). Learning is using the data we collect to alter these
probablility distributions to conincide as much as possible to some
true underlying distribution.

This is quite generaland include: Neural Networks, Gaussian
Random Processes, simple regression etc. etc.
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Motivation

Notation and fundamentals
A generic probability distribution for a set of random variables
S = {X1, ..., Xn} will be denoted by a P subscript S.

PS(s) = PX1,...,Xn(x1, ..., xn) (1)

A joint probability distribution can be marginalized or
conditionalized:

Let A ⊆ S with A′ = S \A. Then PA(a) =

∫
A′
da′PS(a, a′) (2)

Let A ⊆ S with A′ = S \A. Then PA|A′(a | a′) =
PS(a, a′)

PA′(a′)
(3)

From the definition of the conditional distribution we have the
following string of equalities:

PS(a, a′) = PA|A′(a | a′)PA′(a′) = PA′|A(a′ | a)PA(a) (4)

This is Bayes’ Rule.
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Bayes

The Bayesian problem involves two kinds of random variables:
Data, denoted by Y , and Parameters of the model denotes by Θ.
Denote the true underlying joint probability distribution over the
probability space (Θ, Y ) with the letter T . That is:

TΘ,Y (θ, y) (5)

We will have a model of the true distribution denoted by

MΘ,Y (θ, y) . (6)

Lets have an example before we get lost in abstraction: Take our
model of the data in question (eg. my publication date) to be
gaussian with mean µ and variance σ but I don’t know µ and σ
perfectly. These are the parameters of my model θ. Based on
experience, I declare a prior distribution for µ and θ and thus state
M(θ).
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Bayes

Statistical Inference

The Bayesian approach is to use Bayes’ Rule to contruct a new
distribution on the parameters of the model, MΘ(θ, posterior),
based on the data available y.
This is called the Posterior Distribution, given by:

MΘ|Y (θ | y; post) =
MY |Θ(y | θ)MΘ(θ)∫
dθMY |Θ(y | θ)MΘ(θ)

(7)

So the so called posterior distribution on the parameters of our
model is what we have leant given our date y
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Bayesian Updating

Bayesian Updating

We will consider the inclusion of data iteratively and apply Bayes
theorem everytime we get more data to change MΘ,Y (θ, y). At
iteration t the model distribution will be indexed by the iteration
number t:

MΘ,Y (θ, y; t) . (8)

To make this updating scheme dynamic, we employ the additional
identification that the Posterior Distribution in iteration t of the
update becomes the Prior Distribution in iteration t+ 1. Explicitly:

MΘ(θ; t+ 1) = MΘ|Y (θ | y; t) (9)
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Information Geometry

KL divergence and the Fisher Metric

As we do updates using this how do we approach the true
distribution. A measure of the promixity of two distributions is
given by the Kullback-Leibler divergence:

DKL(P1(x)||P2(x)) =

∫
dxP1(x)log

(
P1(x)

P2(x)
.

)
(10)

For the case that the distributions are “near” we can expand the
KL divergence
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Information Geometry

For two models that are parameterically close we can take the
Hessian of the KL divergence in the parameters of the model ηi to
define the Fisher information metric:

gij =
∂2

∂ηi∂ηj
DKL(P1(η) ‖ P2(η0)) (11)

This metric describes the proximity of distributions and , from
Chentsov’s theorem it is the unique information metric for
statistical models that gives ”sufficient statistics” in the Fisher
sense.
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Information Geometry

Note, for a Gaussian probability distribution with moduli σ, ~x0:

p(~x; ~x0, σ) = (πσ2)−(N)/2exp

(
−
∑
i

(xi − xi0)2

σ2

)

the Fisher information metric is given by:

ds2 = 2
dσ2 + d~x0 · d~x0

σ2

which is the Poincare Patch for AdS.
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Information Geometry

Back to updating
The idea now is to examine updating by looking at a time
dependent KL divergence and then take the large data limit so
that we can move from difference equations for M(θ, t) to
differential equations.
After some work, we find the following from the update equation:

∂

∂t
ln(MΘ(θ; t)) = DKL(TY |Θ(y | θ∗) ‖MY (y; t)) (12)

Solve with simple example, take the true distribution to be normal,
fix the variance but take data to find the mean.Thus

MY,Θ(y, α(t), σ; t) = N (α(t), σ2)(y) (13)

and
TY,Θ(y, µ, σ; t) = N (µ, σ2)(y) (14)
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Information Geometry

The dynamical equation becomes:

∂

∂t

(
(α(t)− µ)2

)
= − 1

σ2

(
(α(t)− µ)2

)
(15)

Which we solve by:

α(t) =
√
A exp(−1

2

t

σ2
) + µ . (16)

This is how the mean of the model as a function of “time”
approaches the true mean µ.
A crucial part that made this calculation work so easily is the idea
of Bayesian self-conjugacey. This is the where the posterior and
prior distributions are in the same model and only the parameters
shift. Practically much of Bayes works because the Gaussian is
self-conjugate. Just as in QFT where we do Gaussian integrals.
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Information Geometry

Distance Weighted Probability Models

Define a Probability Distribution as:

PΘ(θ | α) ∝ exp(−Dα(θ)) (17)

with Dα(θ) is a distance between θ and α, some reference state.
This is very physical, think of:
The Boltzmann Weight: Probability is exponentially weighted as
the difference between the energy of a state and some ground state
energy:

PE(ε | ε0) ∝ exp(−(ε− ε0)) (18)

e.g. the distance function is on the space of energetics.
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Information Geometry

We take this idea and construct a distance wieghted prior
distriubtion using the KL divergence as compared to some
reference distribution, PY |Θ(y | θ):

MΘ(θ) = f(θ)e−DKL(MY (y)‖PY |Θ(y|θ)) (19)

working with this prior, the model has a greater possibility for
self-conjugacey and we can apply the flow equations on a broader
set of problems.
But what is f(θ)? After some work, one sees:

f(θ) =
√

detg(θ) , (20)

ie. the measure given the Fisher information.
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The geometry of Bayesian updating

Using the above parameterisation we revist the normal distribution
with non-fixed variance. Instead of using the KL divergence,
expand to get the update equation in terms of the Fisher metric.
This becomes:

d(gij)

dt
= −2R[g]ij (21)

with R[g]ij the Ricci tensor of the Fisher metric.
This we recognise as the Ricci flow equation.
Cavaet: I used the detailed form of the Fisher metric for the
normal distribution to derive the above equation. I do not know
about its generality but it is suggestive.
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The geometry of Bayesian updating

One can tackle multivariate normal distributions in the exactly
same way, or even have an infinite number of normals to produce a
Gaussian Random Process.
The one constructs a metric functional over the infinte dimensional
space of the GRP. The updating would then evolve the GRP
Kernel according to the update equation as new data arrives.
As we have seen this can be related to Neural Nets in some limit.
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The geometry of Bayesian updating

What about neural net training?
Often one describes the training for neural nets using the neural
tangent Kernel gradient equation. We describe a neural net as a
function, f(x; θ) with input, x and weights, θ.
Then learning is described by:

df(x1, θ)

dt
= K(x1, x2; θ)∂gC(g, y)

∣∣∣∣
g=f(x2,θ(t))

(22)

Where the function C(f(x; θ), y) is the cost function, usually
taken to be least squares.
K(x1, x2; θ) is the neural tangent Kernel given by:

K(x1, x2; θ) = ∂θif(x1; θ)∂θif(x2; θ) (23)
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The geometry of Bayesian updating

This bares resemblence to the Bayes update equation but it is
certainly not the same. However, it is suggestive, if instead of
using the least squares cost one took the the cost function to be
the exponential of the KL divergence and if f(x, θ) takes on a
particular form then the update equations may be related. (Note
for a Restricted Boltzman Machine-NN, the KL divergence is the
cost function).
Note, that taking the “NTK scaling” for a NN of infinite width,
reproduces the results of the Bayes answer as one ends up on the
maximum a posteriori estimate given a Gaussian prior on
functions- the result of [Jacot, Gabriel and Hongler].



Bayesian Inference, Quantum field theory and Geometry

The Exact renormalisation Group equation and updating

QFT

We have a probability distribution for fields given by:

PΦ[φ] =
1

Z
e−SE [φ] (24)

and a partition function as follows

Z =

∫
Dφe−SE [φ] (25)

to calculate moments (correlation functions) it is useful to define a
generating function:

Z[J ] =

∫
Dφe−SE [φ]e

∑
Φ

∫
Jφ∧φ

(26)
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The Exact renormalisation Group equation and updating

We may also define the effective field:

ϕ(x) = 〈φ(x)〉 =
δ ln(Z[J ])

δJφ(x)
(27)

Schematically, the generating functional has the following form:

Z[J ] = e

∑
Φ

1
2

∫
ddxddx′Jφ(x)Gφ(x−x′)Jφ(x′)

(28)

Where Gφ(x− x′) is the Green’s Function and then we can write

ϕ(x) =
δ ln(Z[J ])

δJφ(x)
=

∫
ddx′Gφ(x− x′)Jφ(x′) (29)



Bayesian Inference, Quantum field theory and Geometry

The Exact renormalisation Group equation and updating

Often, we choose some energy scale, e.g. by defining a set of fields
with a given range of momenta – A = {φ ∈ Φ | p2

φ > k2}). Then,
we integrate only over fields in that set. This defines an effective
Generating Functional at scale given by k:

Zk[J ] =

∫
DAφe−SE [φ]e

∑
Φ

∫
Jφ∧φ

(30)

Here, DAφ is indicating we integrate only over fields in the set A.
From Zk[J ] we can define a scale dependent effective action:

Γk[ϕ] = − ln(Zk[J [ϕ]]) (31)
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The Exact renormalisation Group equation and updating

We can now ask, how does the effective action depend on the
scale. This is the Exact renormalisation group equation:
Define the parameter t = ln(k), then Polchinski’s Exact
Renormalisation Group Equation is:

dΓk
dt

= −1

2
Tr(

δ2Γk
δϕδϕ

− δΓk
δϕ

δΓk
δϕ

) (32)

what is happening is that as we change the scale we integrate out
over more fields giving us an alterted distribution on the remaining
fields.
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The Exact renormalisation Group equation and updating

Now, lets consider this as a joint distribution over the data we have
and the data we don’t have. In the usual approach we have an
energy scale that will provide the split. This is not the case now.
Divide the set of all fields, Φ into two subsets Φ = Y ∪Θ in a
manner which depends on some continuous parameter t that we
identify with the Bayesian iteration parameter. Y is the set of
fields that form the observable data. We will write the full
probability distribution as PY,Θ[y, θ] to signify that we are thinking
of it as a joint probability density. Similarly, the complete partition
function for the theory will be written as ZY,Θ.
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The Exact renormalisation Group equation and updating

Then we can write,

PΘ(t) =

∫
DY φPY,Θ[y, θ] =

1

ZY,Θ

∫
DY φe−SE [φ]e

∑
Φ

∫
Jφ∧φ

=
ZY (t)

ZY,Θ
(33)

and

PY |Θ[y | θ] =
PY,Θ[y, θ]

PΘ(t)
=
e−ŜE

ZY,Θ

ZY,Θ
ZY (t)

=
e−ŜE

ZY (t)
(34)
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The Exact renormalisation Group equation and updating

Now we can start to calculate KL divergences between PY,Θ[y, θ]
and PΘ[θ; t] and take the “time derivative” and follow the update
equation from before where now the true distribution is the total
joint distribution and the model distribution M(θ; t) is PΘ[θ; t] .
After various manipulations and some additional assumptions about
the details of the distributions then, the update equation looks like:

d(− ln(ZY (t)))

dt
= −1

2
Tr(

δ2(− ln(ZY (t)))

δθδθ
−δ(− ln(ZY (t)))

δθ

δ(− ln(ZY (t)))

δθ
)

(35)
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Discussion

Quantum Field theory intuition is a good starting point to
understand learning. We parameterise our ignorance and see how
probabilty distributions change as we have more data.
A key difference is that we do not have energy, so there is not the
same notion of a Wilsonian effectve action. But for distance
weighted probability models we have an ordering based on
likelyhood given by the distance. The low energy effective action is
then the action for the most likely configurations.
Much, much more to do...
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What goes wrong?
In all of this there was an implicit assumption about the Hessian of
the KL divergence being positive definite. This is true for the same
models parametrically seperated eg the normal model.
However, importantly it is not true in general. If our model is not
the same as the true distribution then we can have negative modes
of the Hessian of the KL divergence. This leads to “unlearning”
and perturbations drive the distribution away from the true
distiubtion. We have examples of this.
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