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Goal
Given elements   with symmetry group  


Construct useful equivariant/invariant models 


Examples: 
— Translation equivariance,  —> CNNs


— Permutation equivariance,  —> DeepSets


— General ?

x ∈ ℝn H ≤ Sn

H = Cn

H = Sn

H



Outline

• Symmetry induced parameter sharing


• Examples:


• Parameter sharing for learning graphs


• Parameter sharing for learning sets of symmetric elements



Permutation group actions
• Permutation actions can model natural transformations on vectors


• Examples:


•  is an image, transformation=translation 


•  encodes set elements, transformation=reordering 
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Invariance

• More formally. Let  be a subgroup:


•  is invariant if , for all  


• e.g. image classification 


H ≤ Sn

f : ℝn → ℝ f(τ ⋅ x) = f(x) τ ∈ H τ

f f

“Cat”



Equivariance
• Let  be a subgroup:


•  is equivariant if , 


• e.g. edge detection 


H ≤ Sn

f : ℝn → ℝn f(τ ⋅ x) = τ ⋅ f(x)

τ

τ
f f



Invariant neural networks

⋯

Equivariant FC Invariant 

• Invariant by construction



Challenges

• What is the space of linear equivariant layers for specific ?
H



Challenges

• What is the space of linear equivariant layers for specific ?


• Do we lose expressive power?

H

-invariant networksH

-invariant continuous functionsH

Continuous functions

Gap?



ℒ(x) = σ(L(x)) = σ( A x + b)

Structure?
A =

Equivariance and parameter 
sharing



Symmetry induced 
parameter sharing

Definition: A parameter matrix  has an -induced parameter sharing scheme if it 
is induced by  in the following way:


A ∈ ℝn×n H
H

(i, j)

A =
(k, l)







 for some  

Aij = Akl

⟺

(τ(i), τ( j)) = (k, l) τ ∈ H

τ



Symmetry induced 
parameter sharing

Theorem: A matrix  represents a maximal linear -equivariant operator if and 
only if its parameter sharing scheme is induced by .


L ∈ ℝn×n H
H

Wood & Shawe-Taylor 1996, Ravanbakhsh et al. 2017, M. et al. 2019

A =
(k, l)







 for some  

Aij = Akl

⟺

(τ(i), τ( j)) = (k, l) τ ∈ H

τ

(i, j)



Examples

• Translations 


•

H = Cn = {t0, …tn−1}

ti( j) = i + j (mod n)

(1,2)

A =
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Examples

• Translations 
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Examples

• Translations 


•
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Examples

• Translations 


• 


•  parameters

H = Cn = {t0, …tn−1}

ti( j) = i + j (mod n)

n
A =



Examples

• Translations 


• 


•  parameters

H = Cn = {t0, …tn−1}

ti( j) = i + j (mod n)

n
A =



Examples

• General permutations  H = Sn

(1,1)

(2,2)

Zaheer et al. 2017

A =
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Examples

• General permutations  


•  parameters!

H = Sn

2

Zaheer et al. 2017

A =



Examples

•  


•  parameters!


• No parameter sharing

H = {id}

n2

A =



Parameter-sharing for 
learning graphs



Learning graphs
• 3D Shapes


• Molecules and chemical compounds


• Social Networks


• Scenes in images



Supervised learning for graphs

f ( ) ≈ ‘label’



graphs as matrices
• Graphs:



graphs and hyper graphs as tensors



Graph symmetries



Graph symmetries
1 2

3 4

1 2

3 4



Graph symmetries

PPT

1 2

3 4

1 2

3 4



Graph symmetries

τ ⋅

1 2

3 4

1 2

3 4



Equivariance in the graph case
• H = Sn ≤ Sn2

τ ⋅ L(X) = L(τ ⋅ X)

τ

τ

L L



Parameter-sharing

• 15 parameters


• Independent of graphs size


• Here n = 5

Figure taken from Siamak Ravanbakhsh

n2

n2



Expressive power

• Theorem: Can represent message-passing neural networks to arbitrary precision

v

w

ww



More expressive graph 
networks

• Polynomial layers improve expressivity


• High-order tensors improve expressivity

M. et al., NeurIPS 2019

M. et al., ICML 2019, NeurIPS 2019



Parameter-sharing for 
learning sets of 

symmetric elements

, ,
Input Output

M. et al., ICML  2020



Set Symmetry

{ }
Input set

Previous work (DeepSets, PointNet) targeted training a deep network over sets 

Deep

Net

x1
x2
⋮
xm ,

x1
x2
⋮
xm ,

x1
x2
⋮
xm , …



Set+Elements symmetry

{ }
Input set

Main challenge: What architecture is optimal when elements of the set have their own symmetries?

Deep

Net, , …

Both the set and its elements have symmetries. 



Deep Symmetric sets


{ }
Input image set Output 



Set symmetry: 

Order invariance/equivariance

{ }
=



Set symmetry: 

Order invariance/equivariance

{ }
={ }



Set symmetry: 

Order invariance/equivariance

{ }
={ }



Element symmetry: 

Translation invariance/equivariance

{ }



{ }
{ }

Element symmetry: 

Translation invariance/equivariance



{ }
{ }

Element symmetry: 

Translation invariance/equivariance



Applications

Modalities
1D signals 2D images 3D pointclouds Graph



Setup

 with symmetry group 


Want to be invariant/equivariant to both  and the ordering 


Formally the symmetry group is 

x1, …, xn ∈ ℝd G ≤ Sd

G

H = Sn × G ≤ Snd

G



Theorem: Any linear −equivariant layer  is of the form





where  are linear -equivariant functions


We call these layers Deep Sets for Symmetric elements layers (DSS)


SN × G L : ℝn×d → ℝn×d

L(X)i = LG
1 (xi) +

n

∑
j=1

LG
2 (xj)

LG
1 , LG

2 G

Equivariant layers



DSS for images

 are images


 is the group of  circular translations


-equivariant layers are convolutions

x1, …, xn

G 2D

G

Single DSS layer
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DSS for images

Siamese part


Information sharing part

CONV

CONV

CONV

CONV

+ +

Single DSS layer



Parameter sharing scheme

• n = 5,d = 4,H = C4



Expressive power

Theorem 

If G-equivariant networks are universal approximators for G-equivariant functions, then so 
are DSS networks for -equivariant functions.SN × G



Conclusions

• Architectures for structured objects can benefit from taking into account underlying 
symmetries 

• Boils down to a parameter-sharing scheme for permutation actions 
• Pay attention to expressivity



The end

Relevant papers: 
• Invariant and Equivariant Graph Networks. M. et al., ICLR 2019

• On the Universality of Invariant Networks. M. et al., ICML 2019 
• Provably Powerful Graph Networks. M. et al., NeurIPS 2019 
• Approximation Power of Invariant Graph Networks. M. et al., NeurIPS 2019 GRLW 
• On Learning Sets of Symmetric Elements. M. et al., ICML 2020, Outstanding paper award


Collaborators: Yaron Lipman, Heli Ben-Hamu, Nadav Shamir, Hadar Serviansky, Nimrod 
Segol, Ethan Fetaya, Gal Chechik, Or Litany.


• Also see multiple very related papers papers by Siamak Ravanbakhsh


