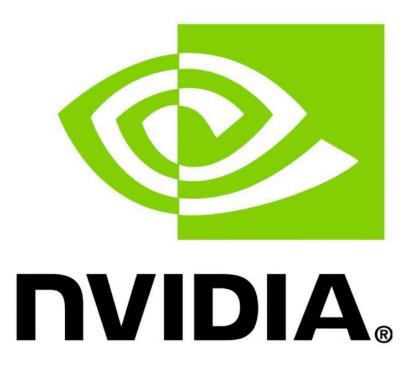
December 16th 2020, String Data Workshop

Leveraging Permutation Group Symmetries for Designing Equivariant Neural Networks

Haggai Maron NVIDIA Research



Given elements $x \in \mathbb{R}^n$ with symmetry

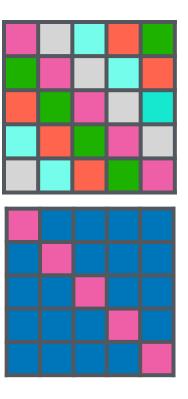
Construct useful equivariant/invariant models

Examples:

- Translation equivariance, $H = C_n -> CNNs$
- Permutation equivariance, $H = S_n$ -> DeepSets
- General *H*?

Goal

group
$$H \leq S_n$$



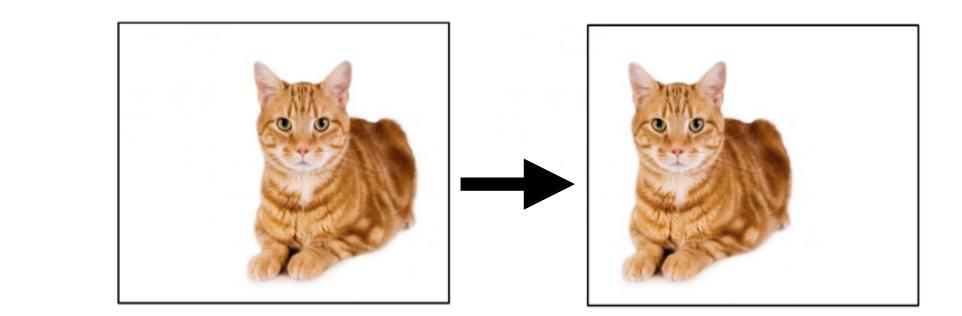
- Symmetry induced parameter sharing
- Examples:
 - Parameter sharing for learning graphs
 - Parameter sharing for learning sets of symmetric elements

Outline

Permutation group actions

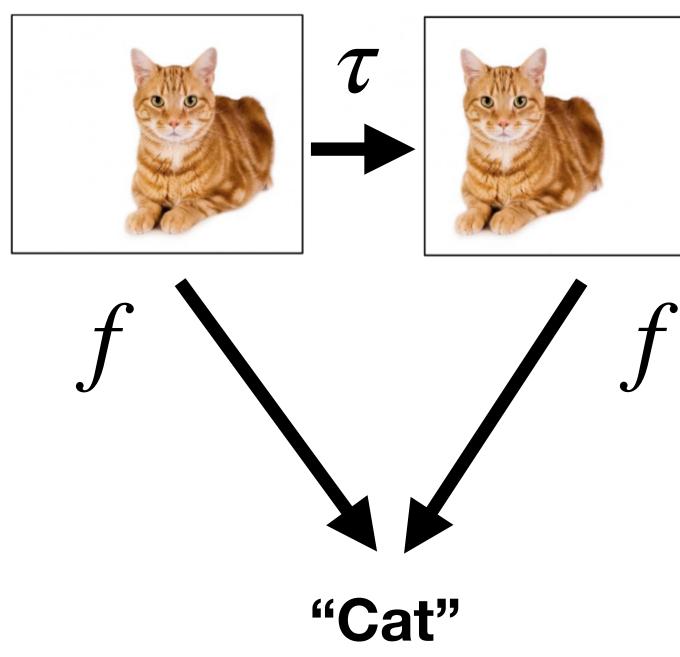
- Permutation actions can model natural transformations on vectors
- Examples:
 - *x* is an image, transformation=translation

• *x* encodes set elements, transformation=reordering



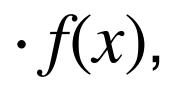
Invariance

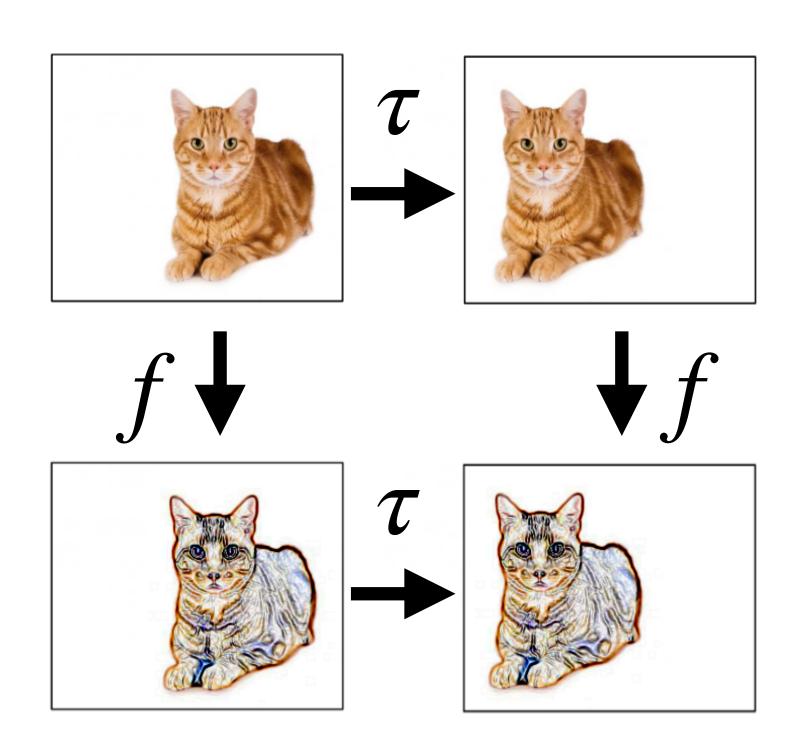
- More formally. Let $H \leq S_n$ be a subgroup:
 - $f: \mathbb{R}^n \to \mathbb{R}$ is invariant if $f(\tau \cdot x) = f(x)$, for all $\tau \in H$
 - e.g. image classification



Equivariance

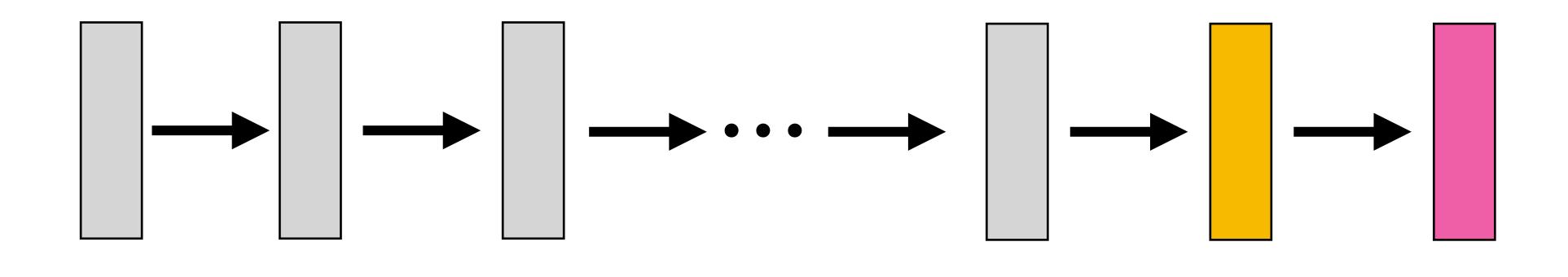
- Let $H \leq S_n$ be a subgroup:
- $f: \mathbb{R}^n \to \mathbb{R}^n$ is equivariant if $f(\tau \cdot x) = \tau \cdot f(x)$,
- e.g. edge detection





Invariant neural networks

Invariant by construction

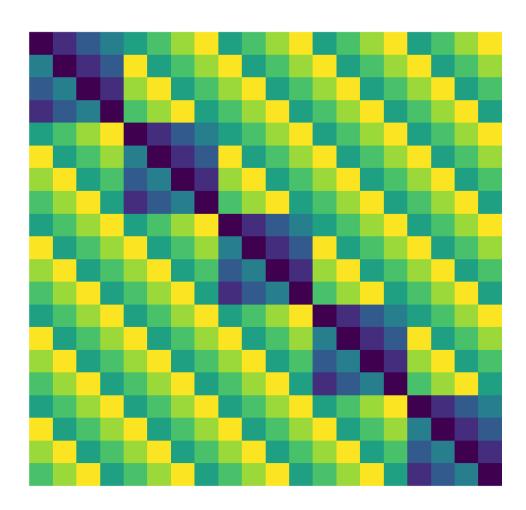


Equivariant

Invariant FC

Challenges

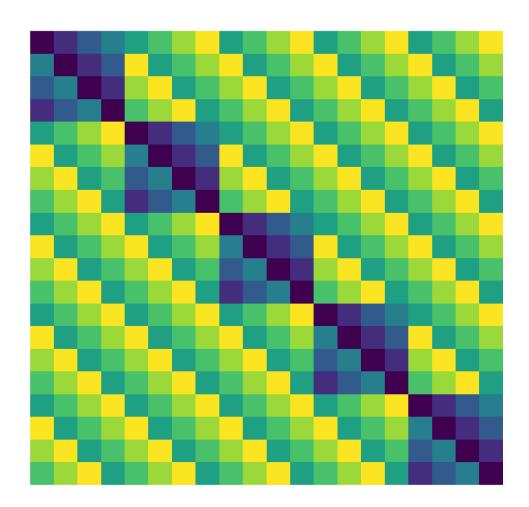
• What is the space of linear equivariant layers for specific H?

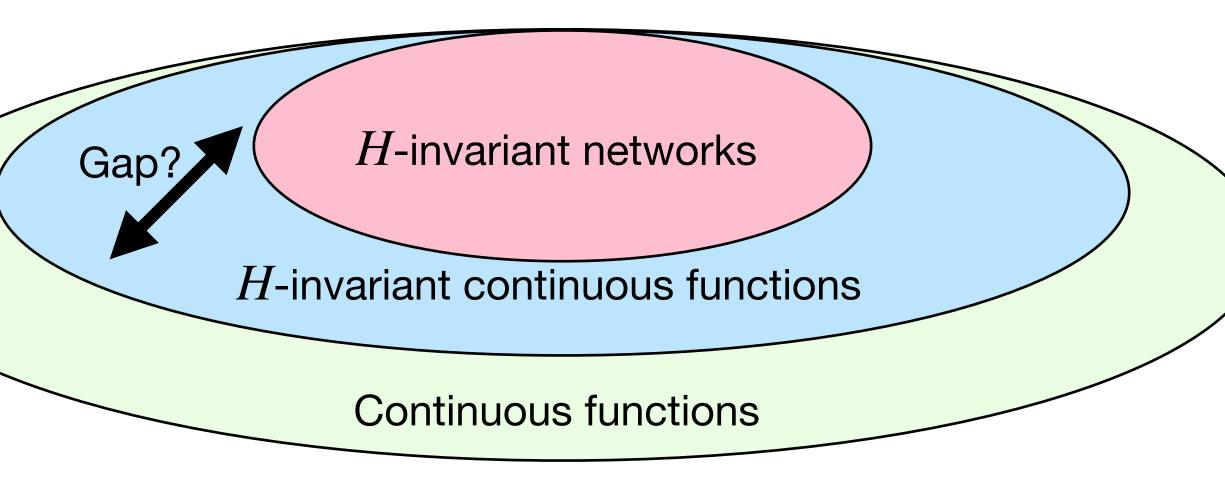


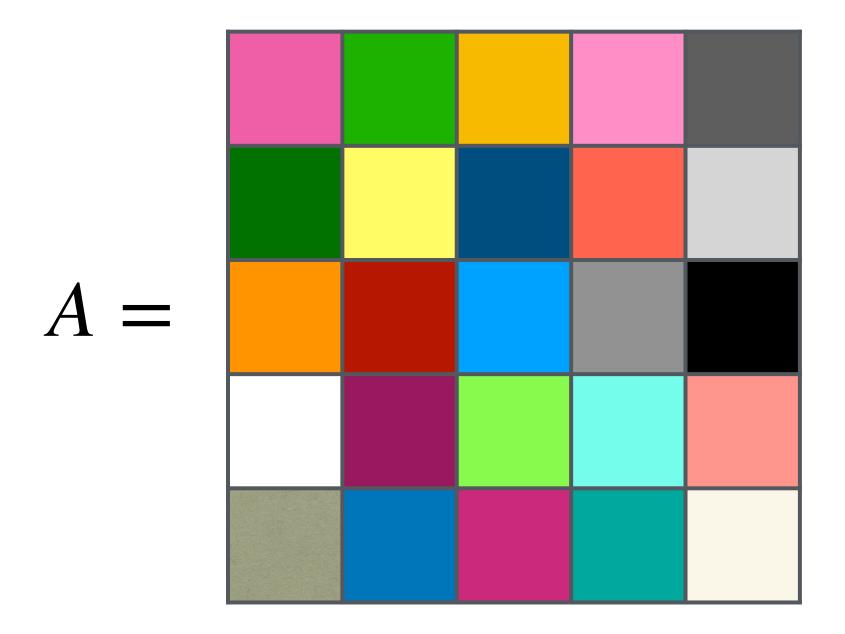
Challenges

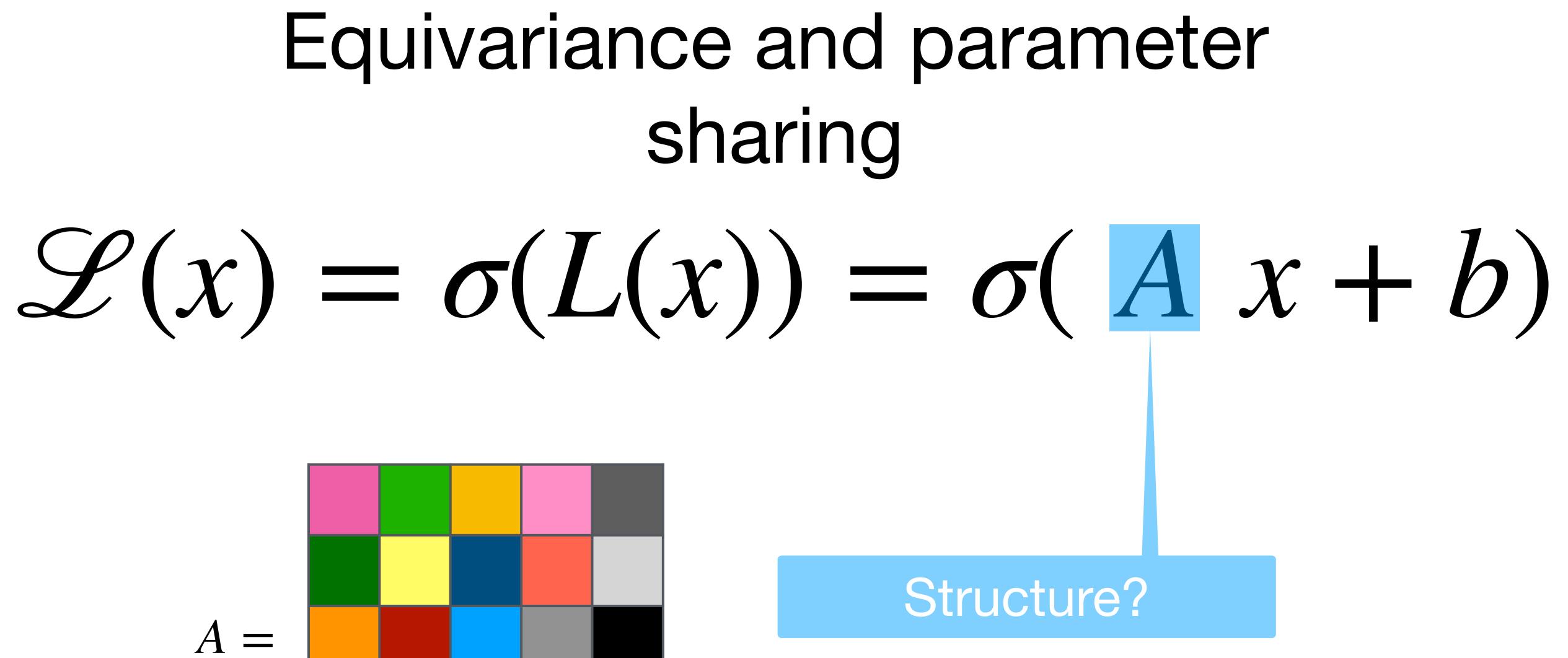
• What is the space of linear equivariant layers for specific H?

• Do we lose expressive power?







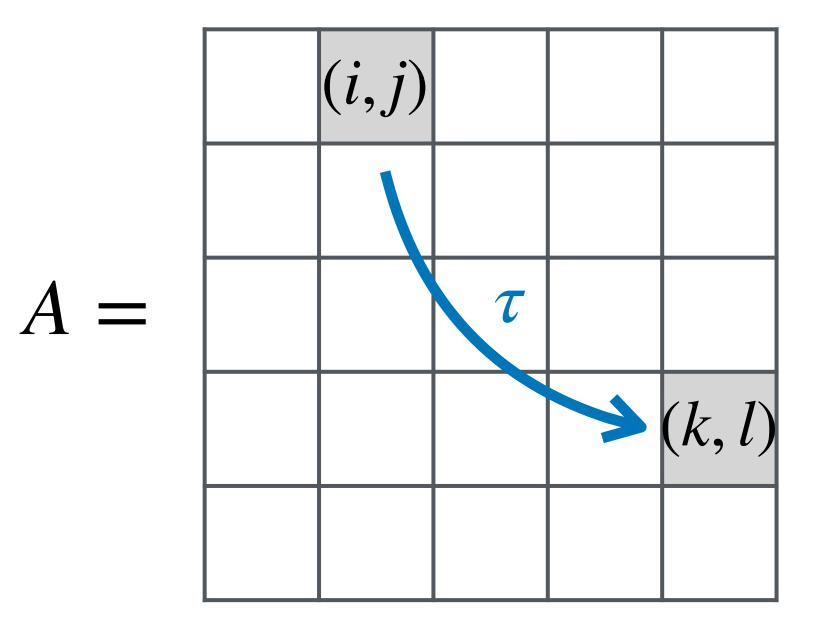


Symmetry induced parameter sharing

Definition: A parameter matrix $A \in \mathbb{R}^{n \times n}$ has an H-induced parameter sharing scheme if it is induced by H in the following way:

$$A_{ij} = A_{kl}$$

 $(\tau(i), \tau(j)) = (k, l)$ for some $\tau \in H$

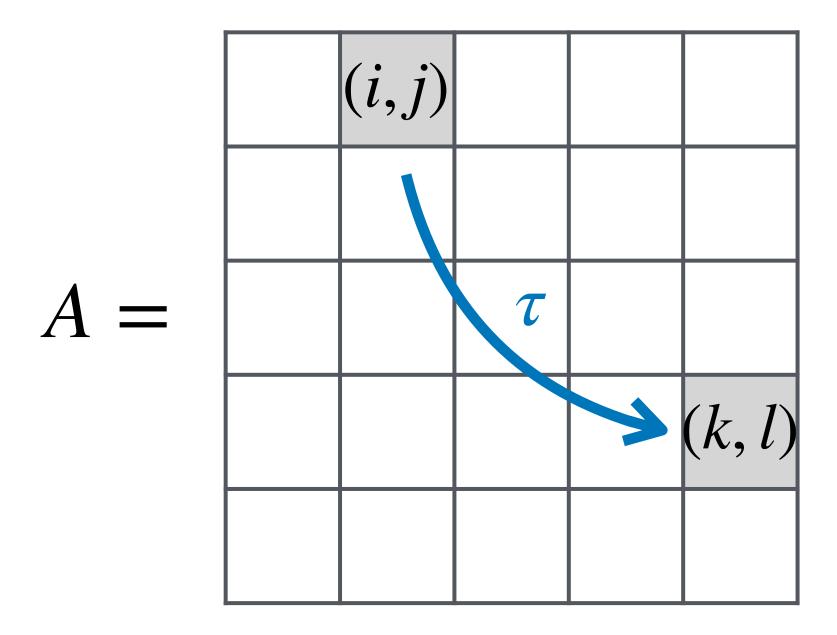


Symmetry induced parameter sharing

Theorem: A matrix $L \in \mathbb{R}^{n \times n}$ represents a maximal linear <u>H-equivariant operator</u> if and only if its parameter sharing scheme is induced by H.

$$A_{ij} = A_{kl}$$

 $(\tau(i), \tau(j)) = (k, l)$ for some $\tau \in H$





- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$

	(1,2)		
A =			

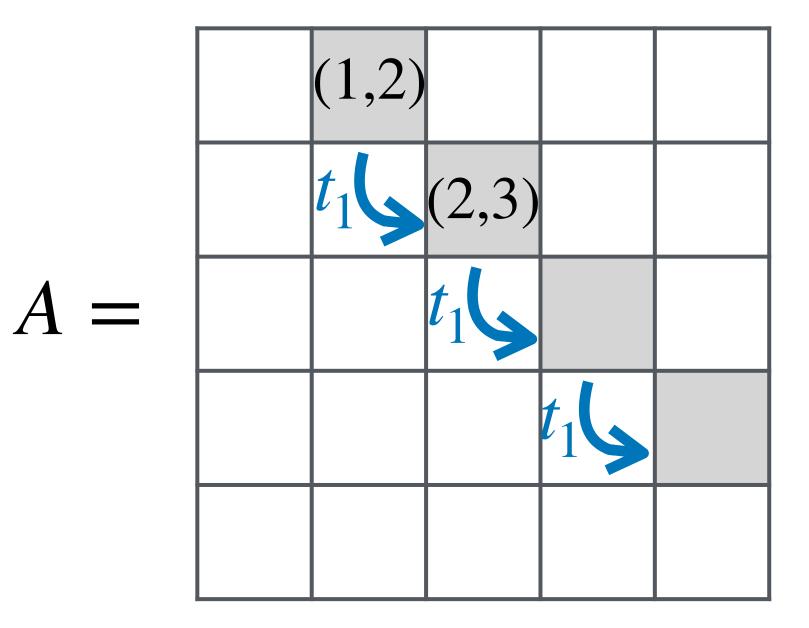
- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$

	(1,2)		
	t_1	(2,3)	
A =			

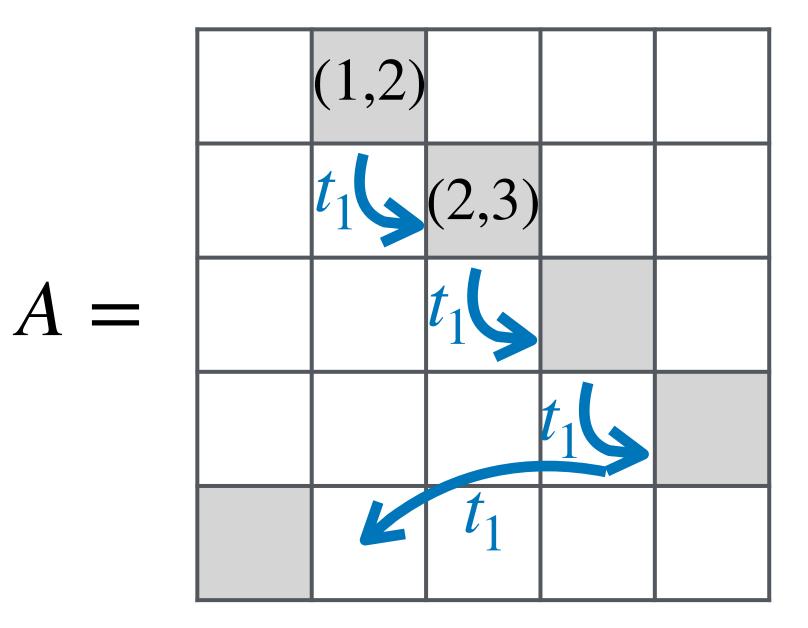
- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$

	(1,2)		
	t_1	(2,3)	
A =		t_1	

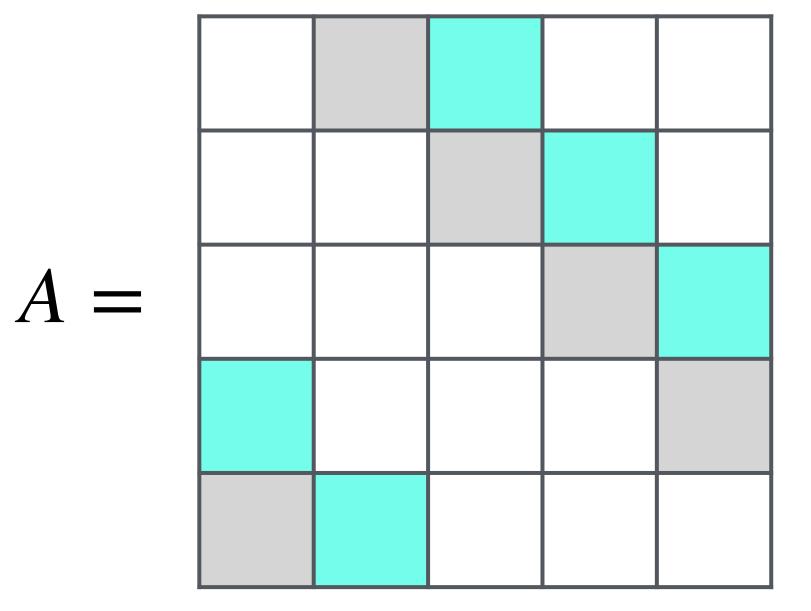
- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$



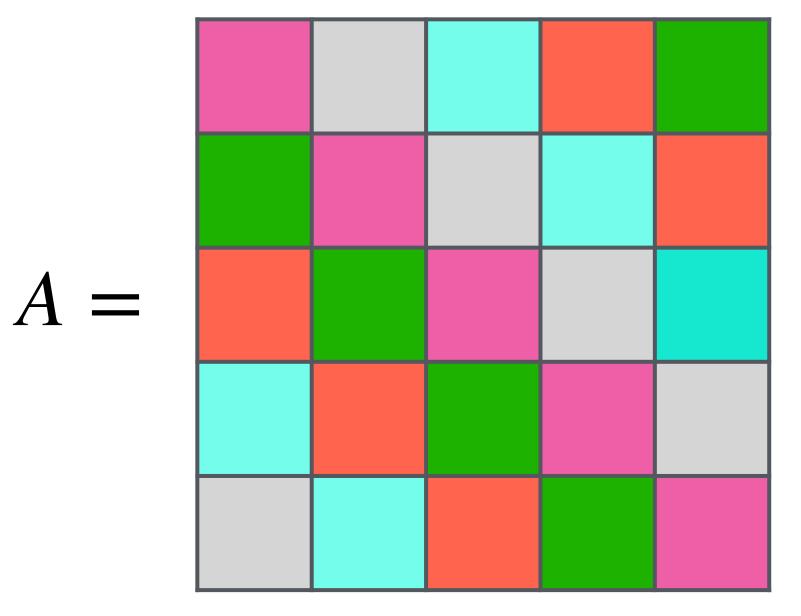
- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$



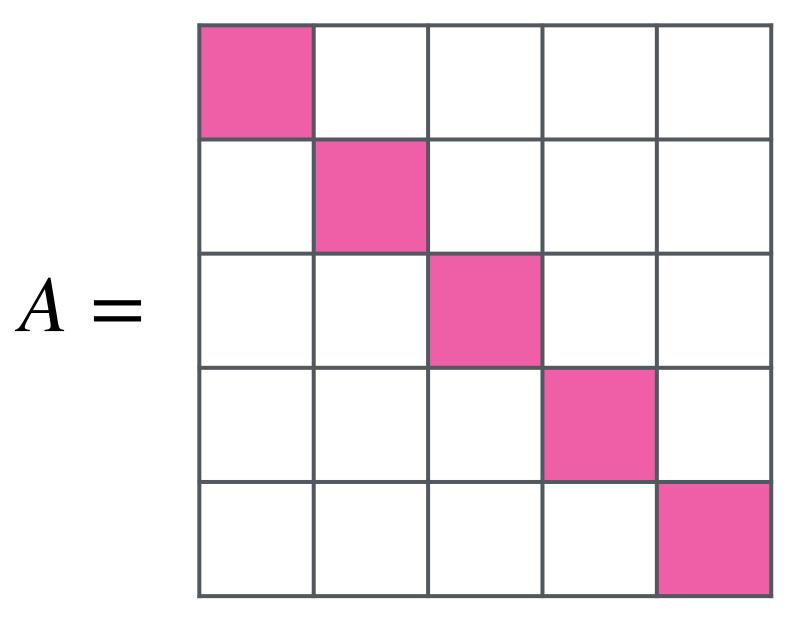
- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$
- *n* parameters

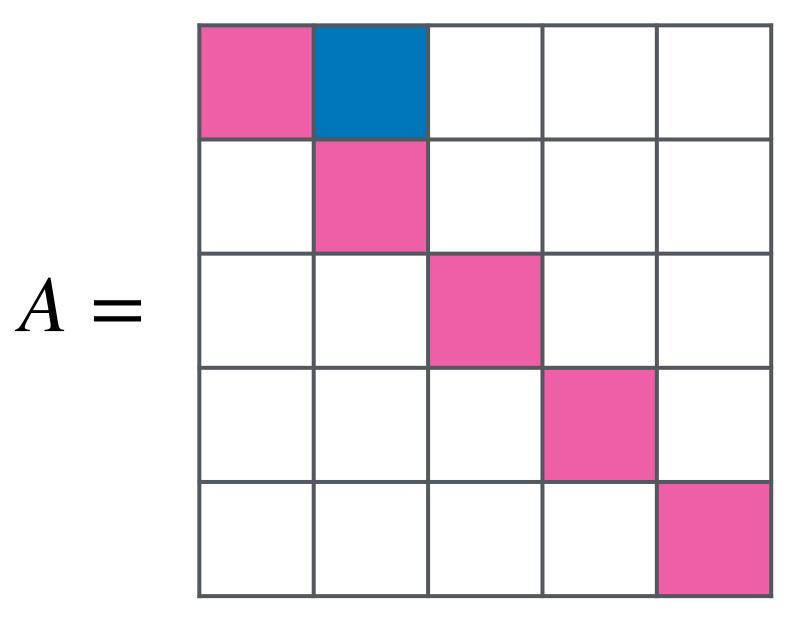


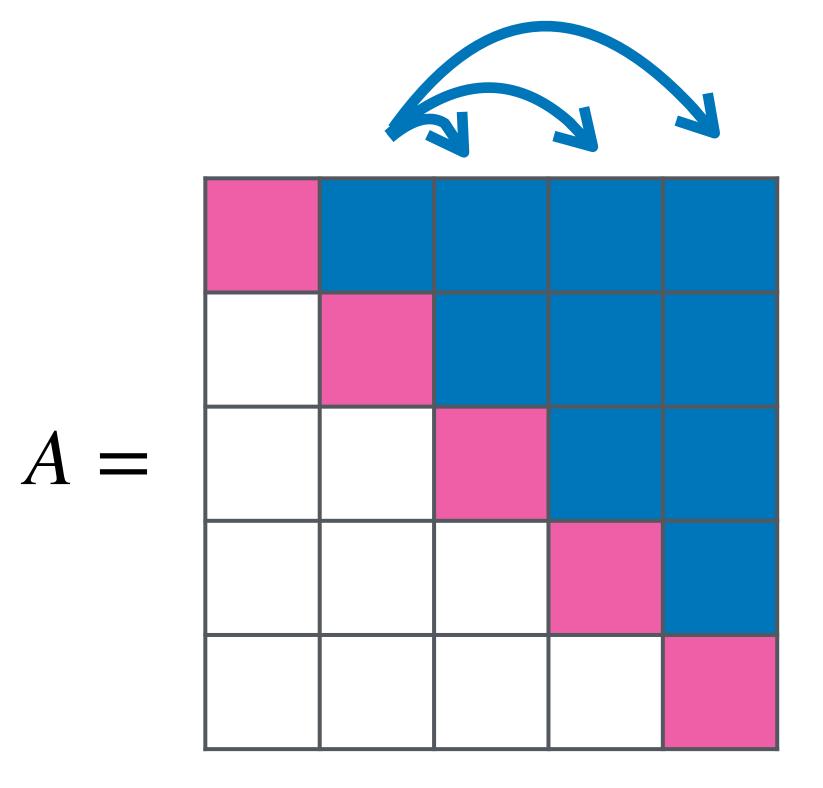
- Translations $H = C_n = \{t_0, ..., t_{n-1}\}$
- $t_i(j) = i + j \pmod{n}$
- *n* parameters



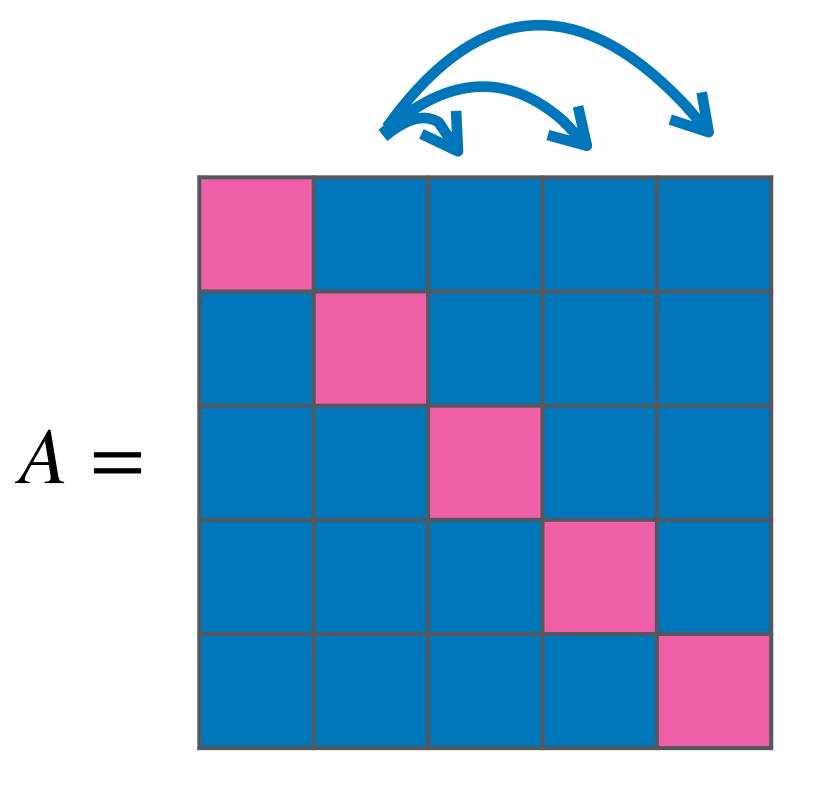
	(1,1)			
	6	(2,2)		
A =				



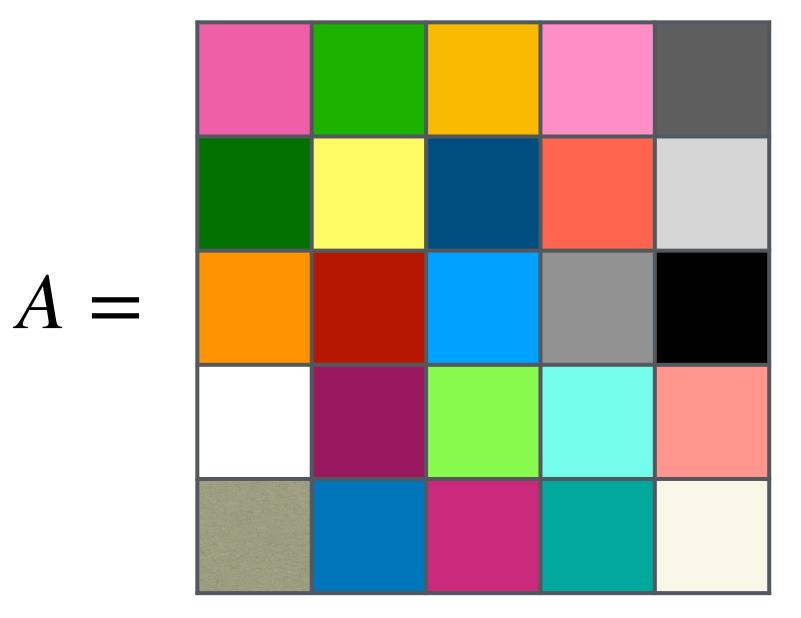




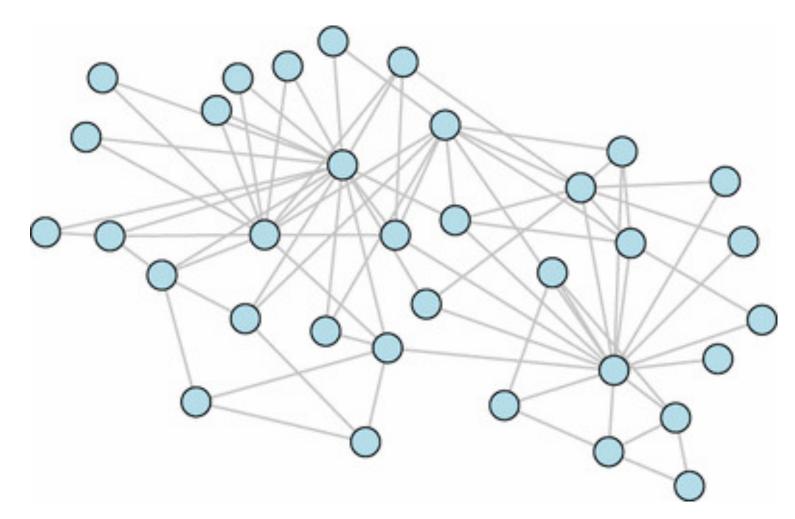
- General permutations $H = S_n$
- 2 parameters!



- $H = \{id\}$
- n^2 parameters!
- No parameter sharing



Parameter-sharing for learning graphs



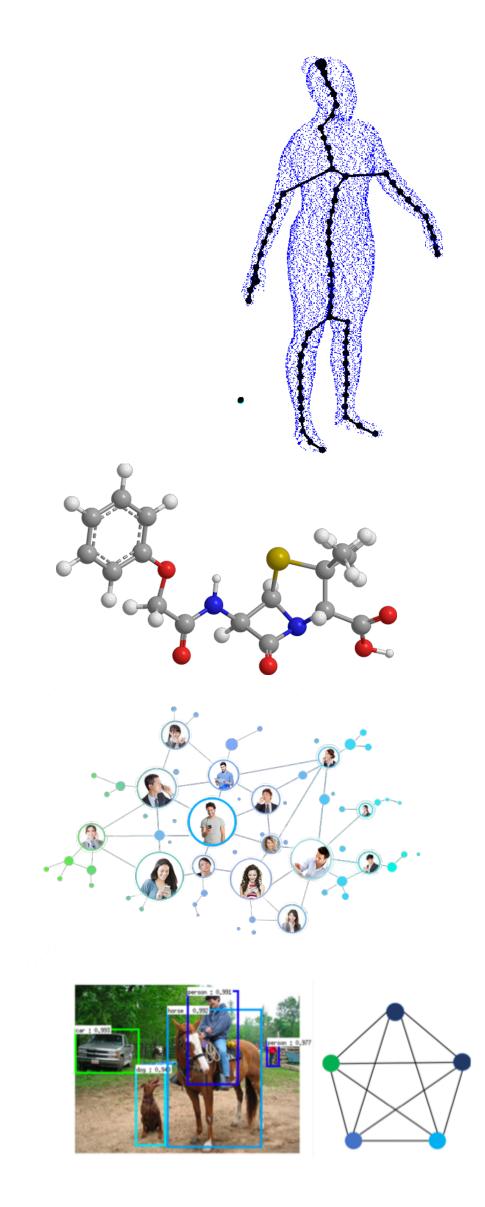
Learning graphs

• 3D Shapes

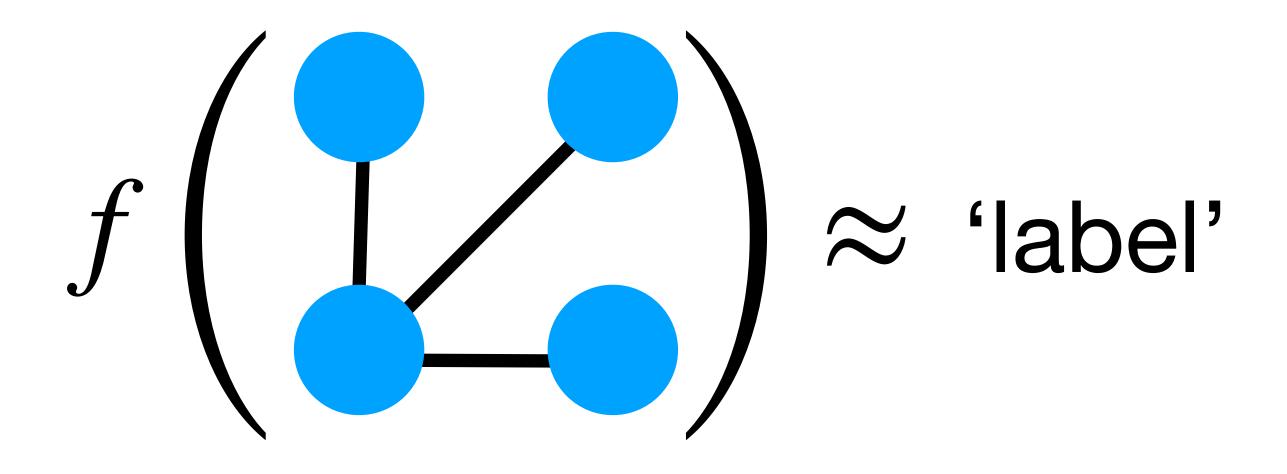
• Molecules and chemical compounds

Social Networks

• Scenes in images

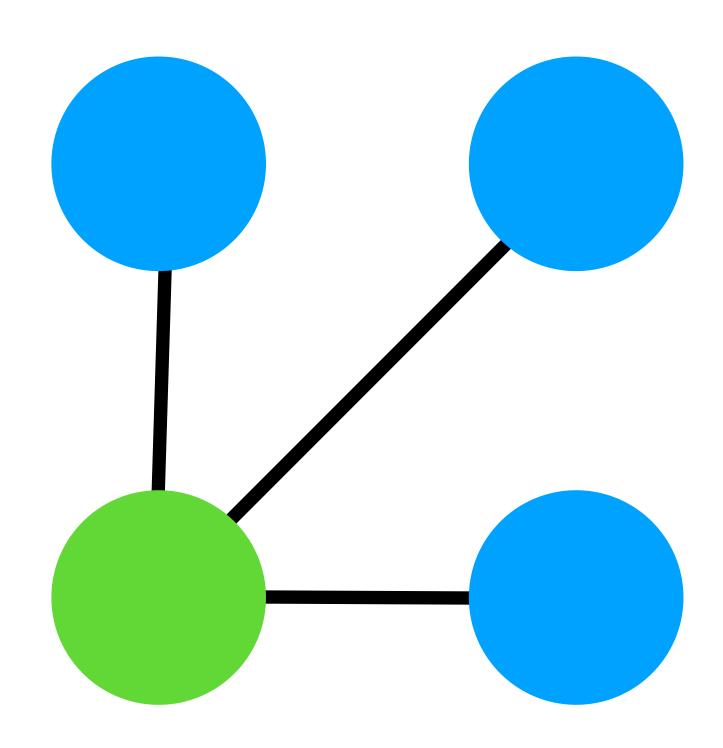


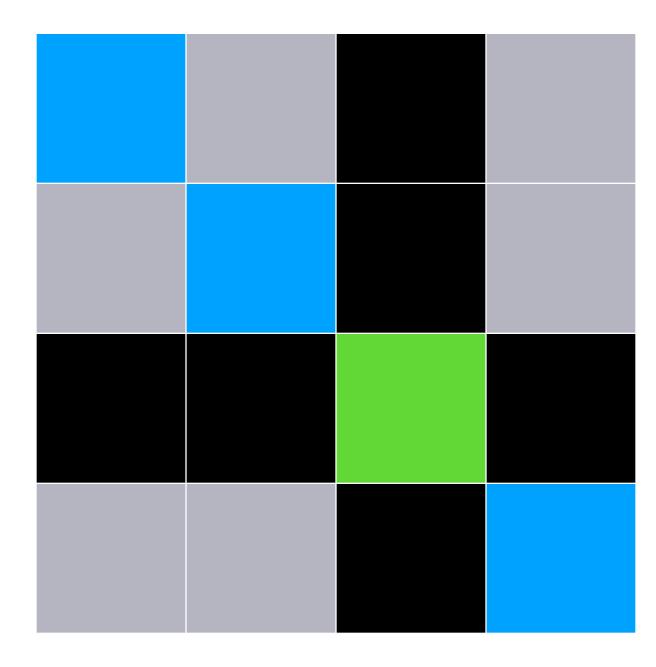
Supervised learning for graphs



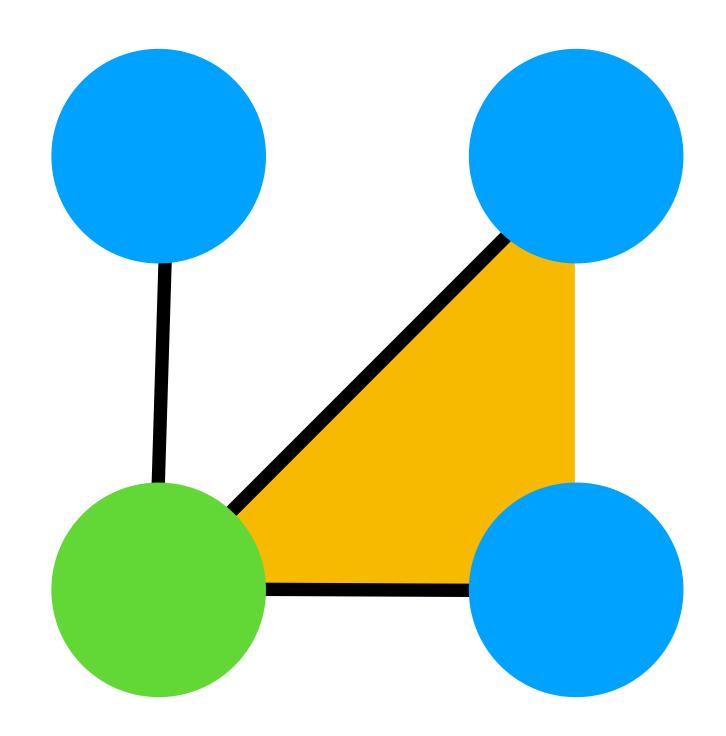
graphs as matrices

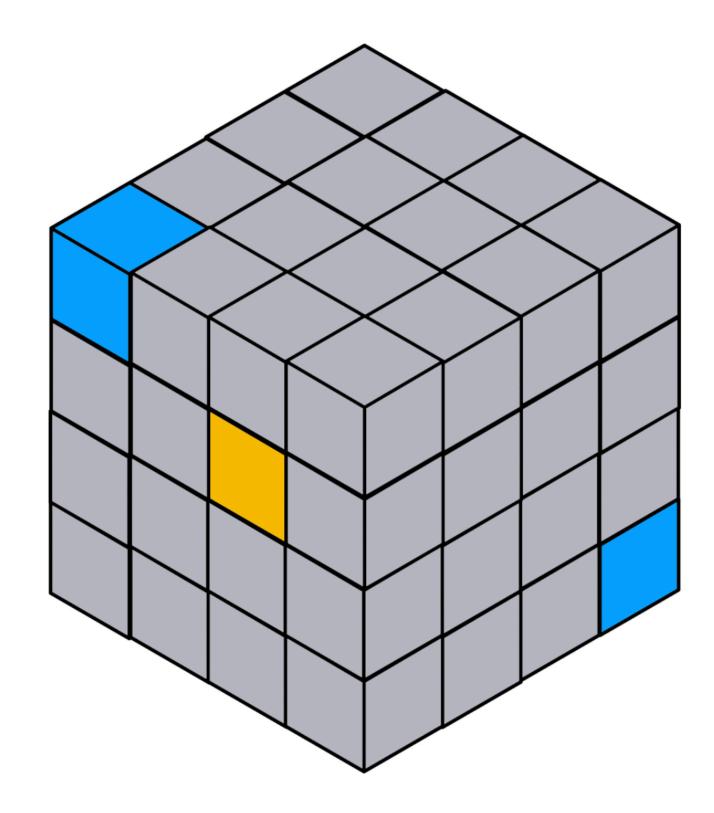
• Graphs:

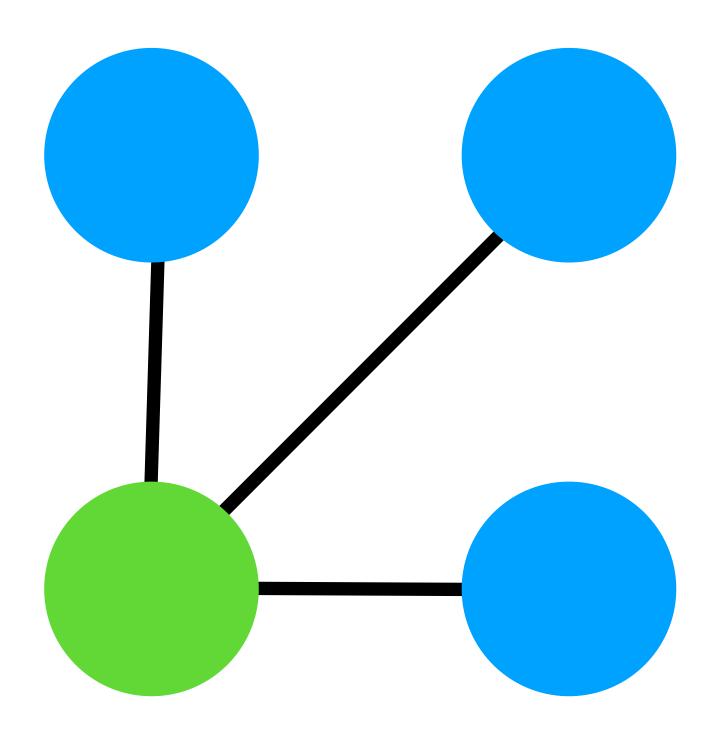


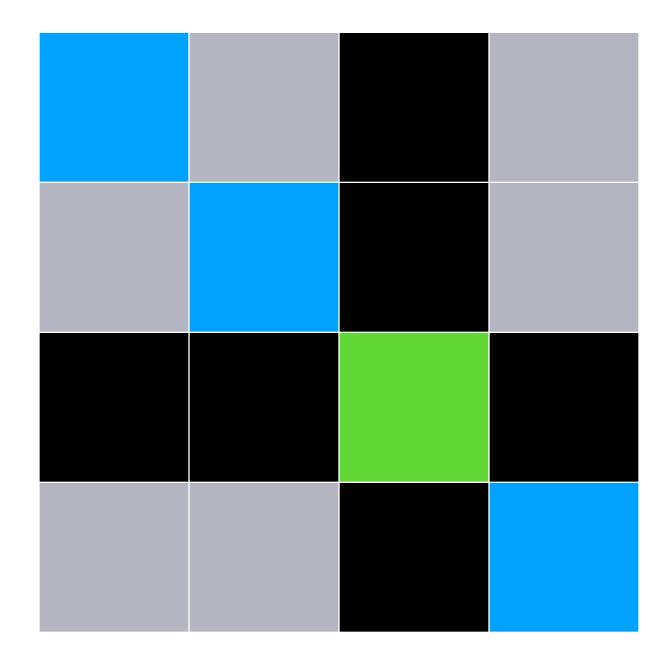


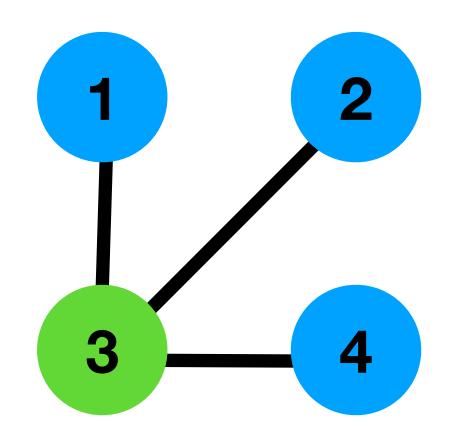
graphs and hyper graphs as tensors



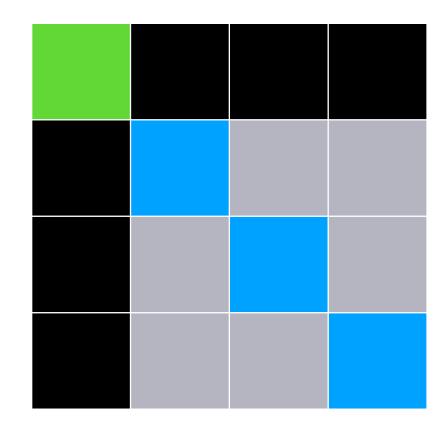


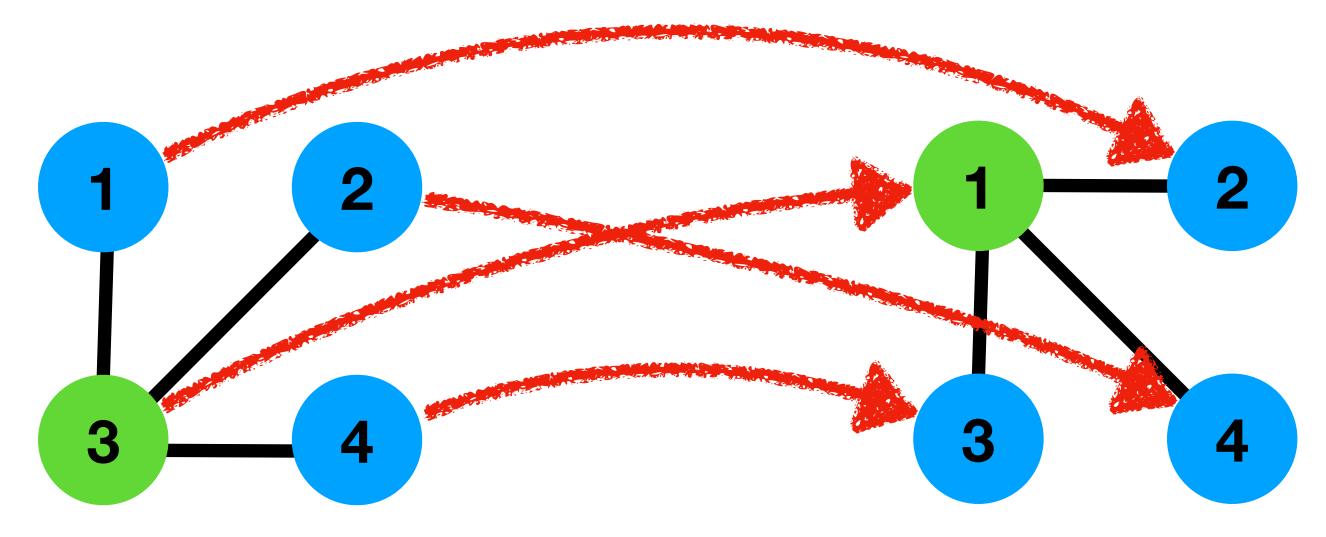


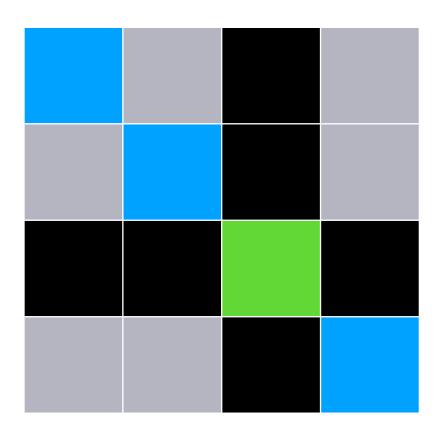


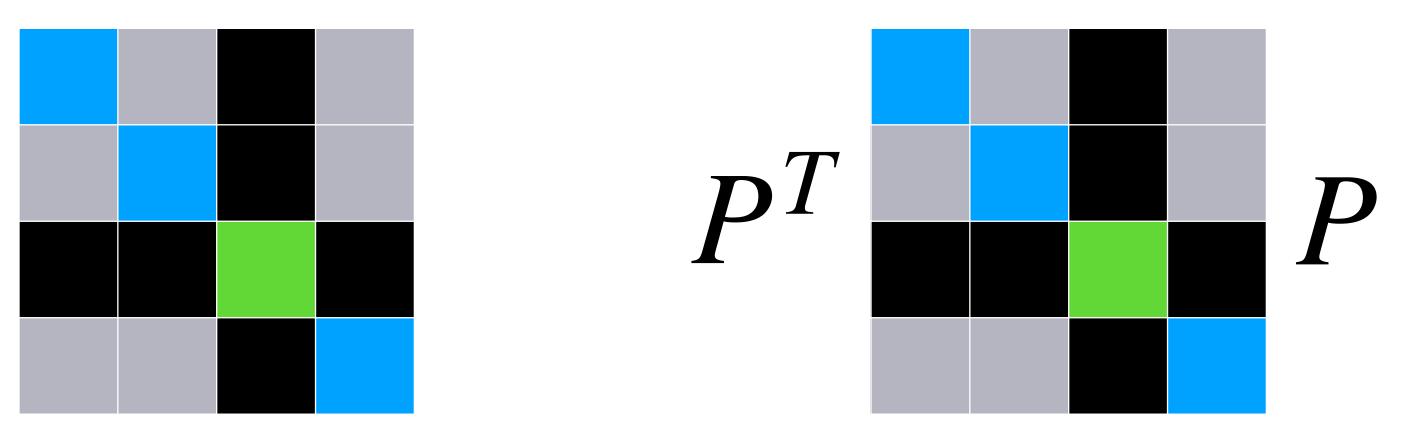


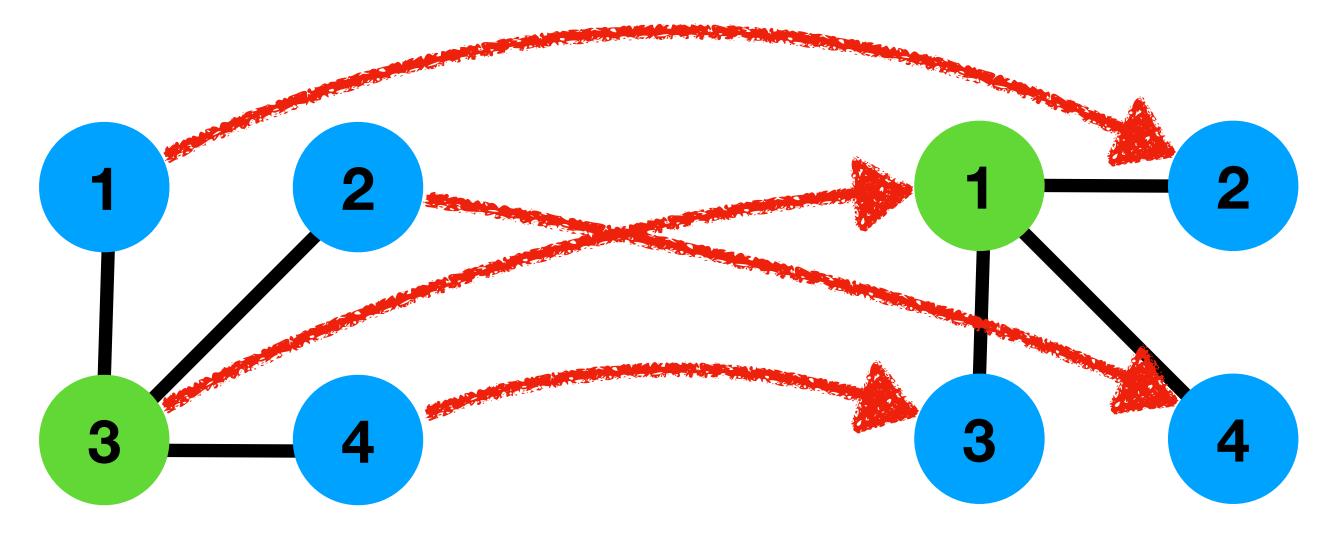


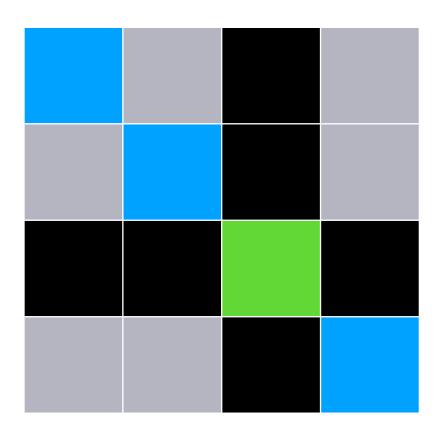


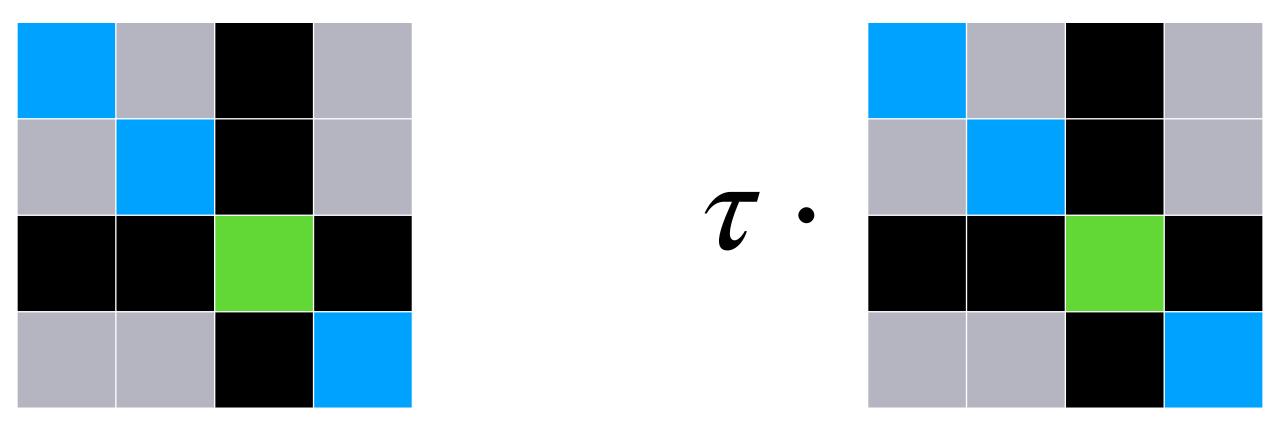






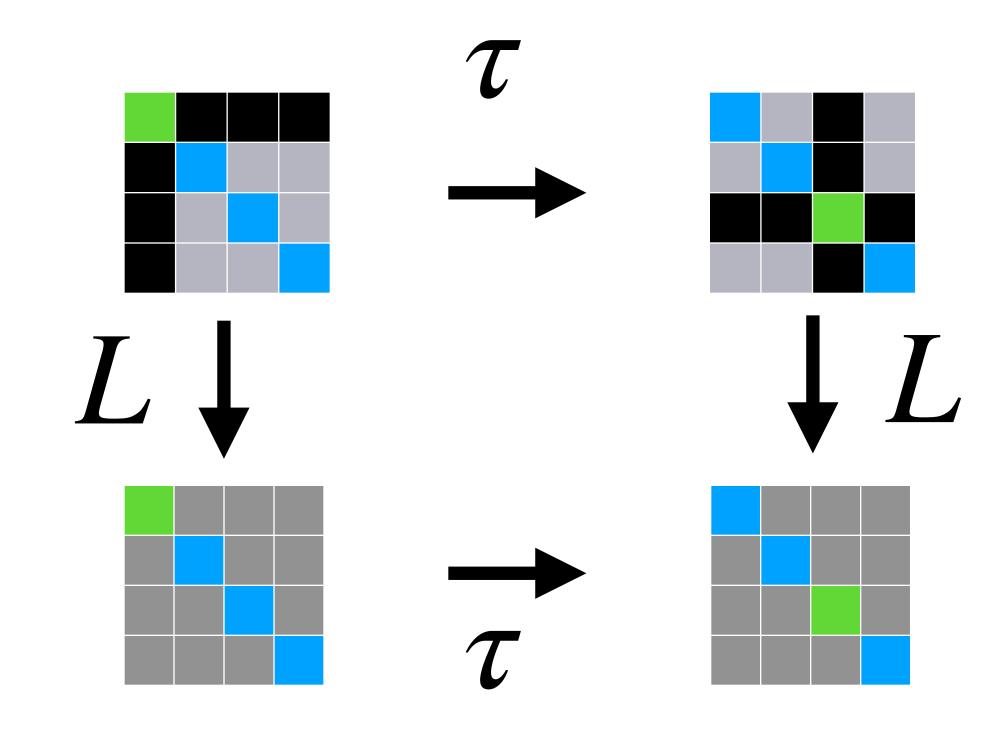






Equivariance in the graph case

• $H = S_n \leq S_{n^2}$



$\tau \cdot L(\mathbf{X}) = L(\tau \cdot \mathbf{X})$

- 15 parameters
- Independent of graphs size
- Here n = 5

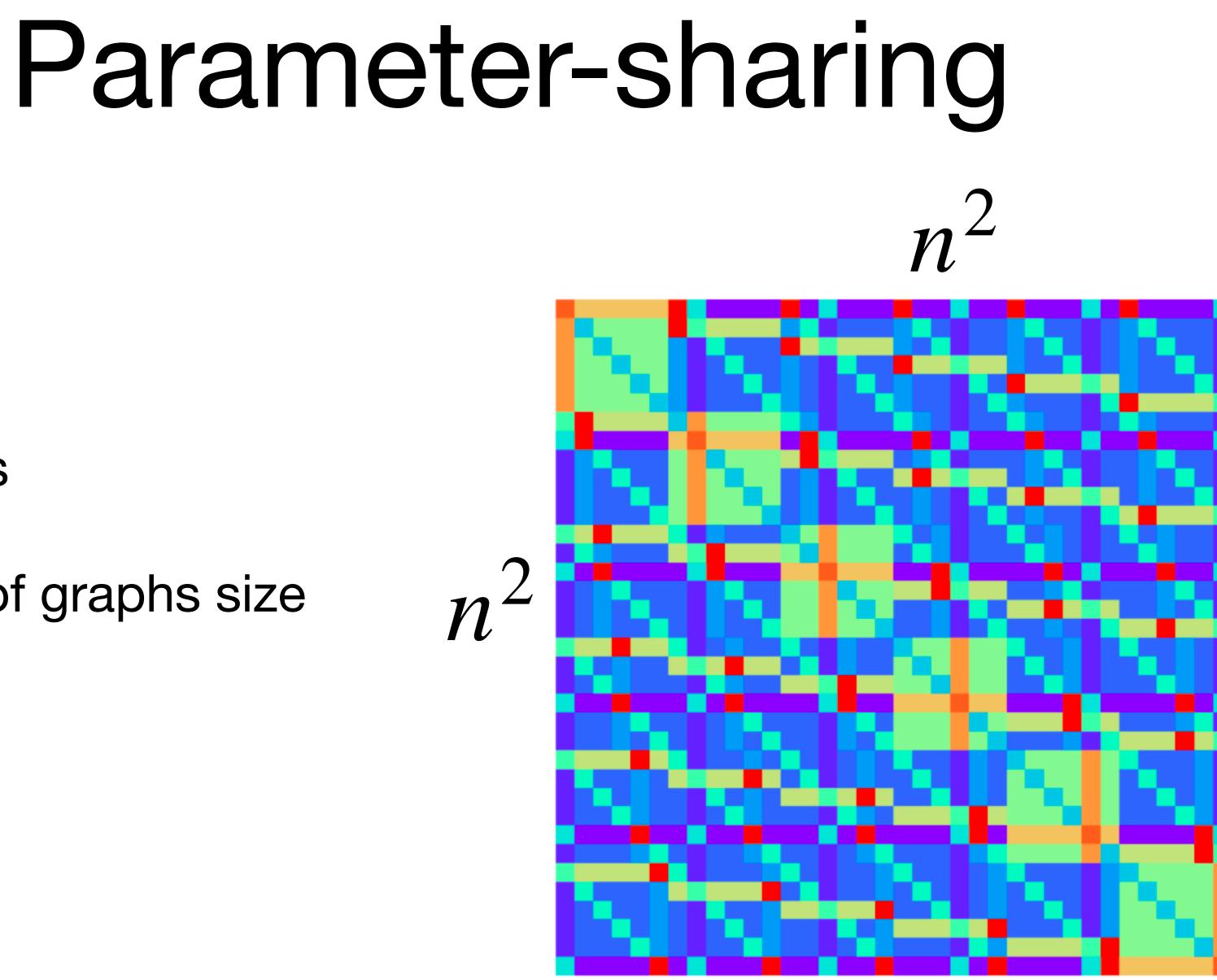
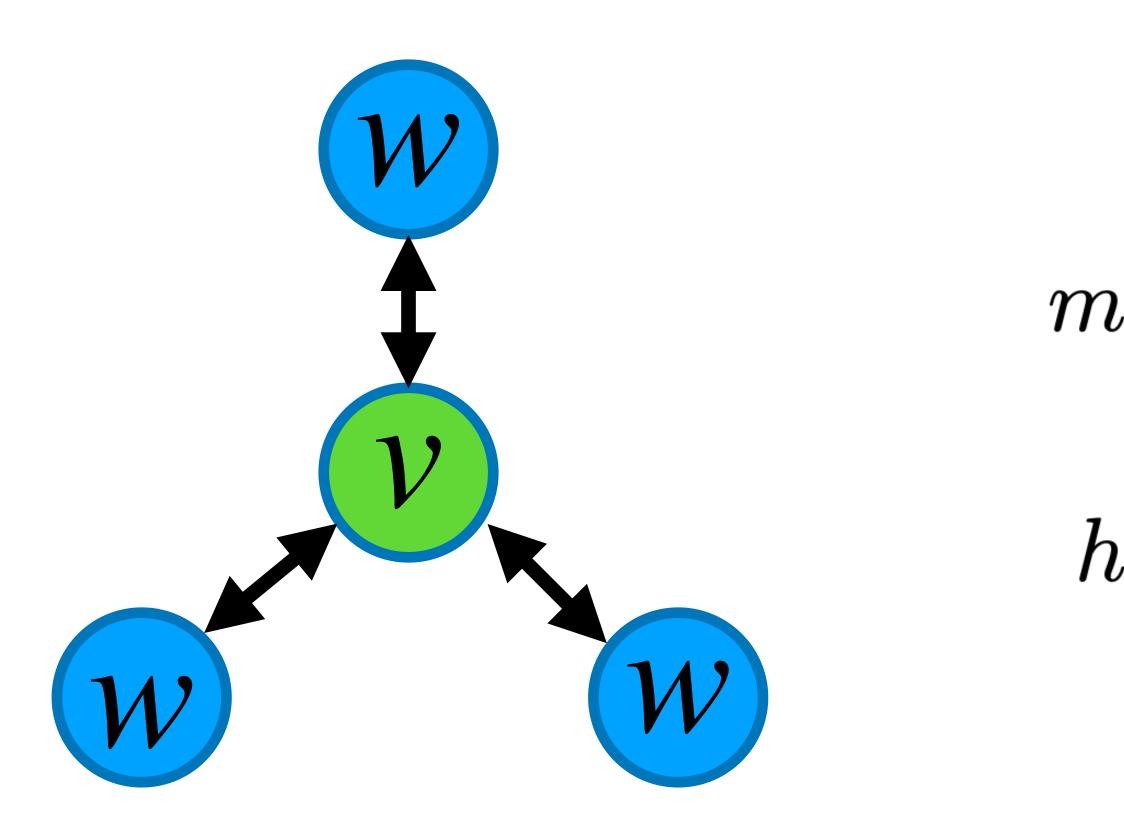


Figure taken from Siamak Ravanbakhsh

Expressive power

• Theorem: Can represent message-passing neural networks to arbitrary precision

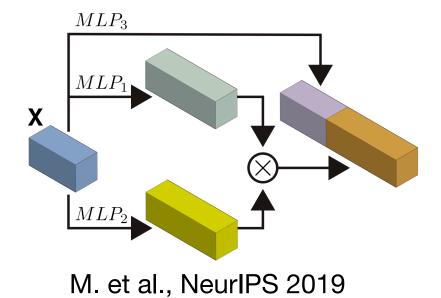


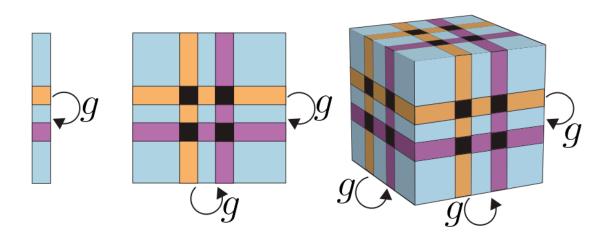
 $m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$ $h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$

More expressive graph networks

Polynomial layers improve expressivity

• High-order tensors improve expressivity

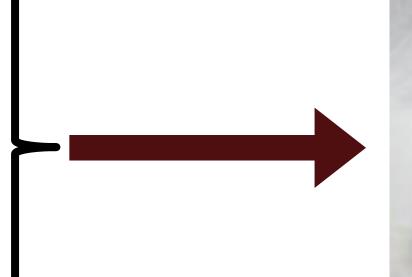




M. et al., ICML 2019, NeurIPS 2019

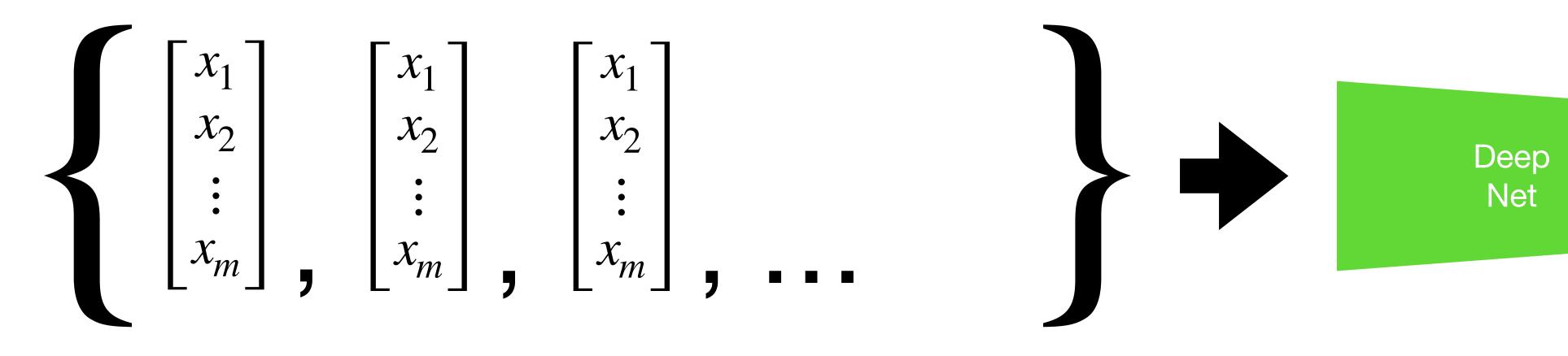
Parameter-sharing for learning sets of symmetric elements

Input



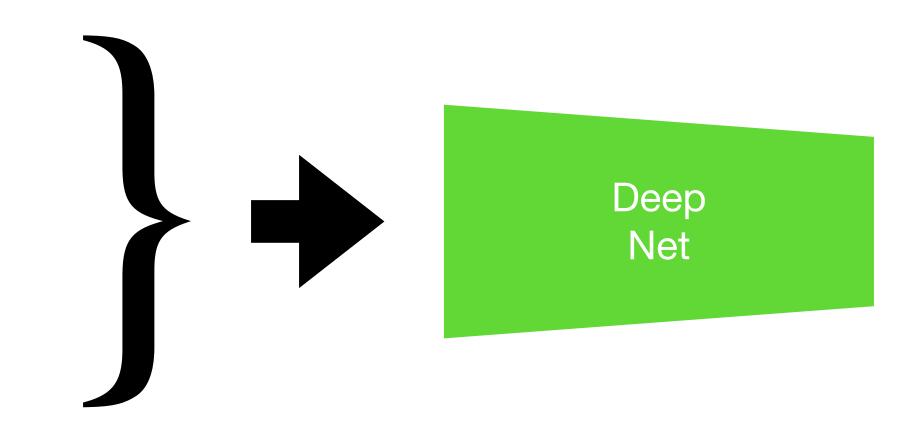
Output

Set Symmetry



Input set

Previous work (DeepSets, PointNet) targeted training a deep network over sets



Set+Elements symmetry

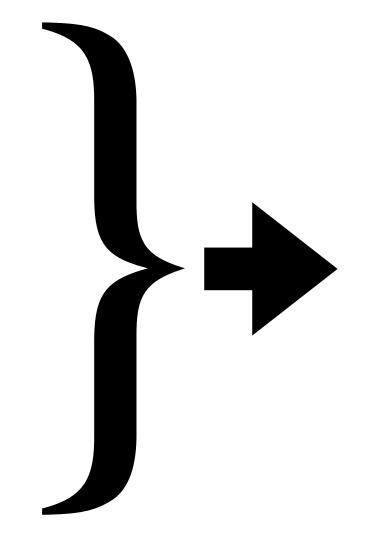
Both the set and its elements have symmetries.

Input set

Main challenge: What architecture is optimal when elements of the set have their own symmetries?

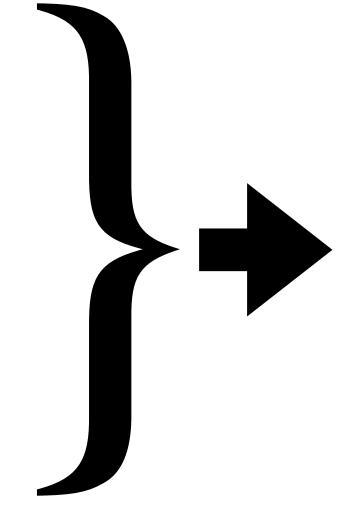
Deep Symmetric sets

Input image set

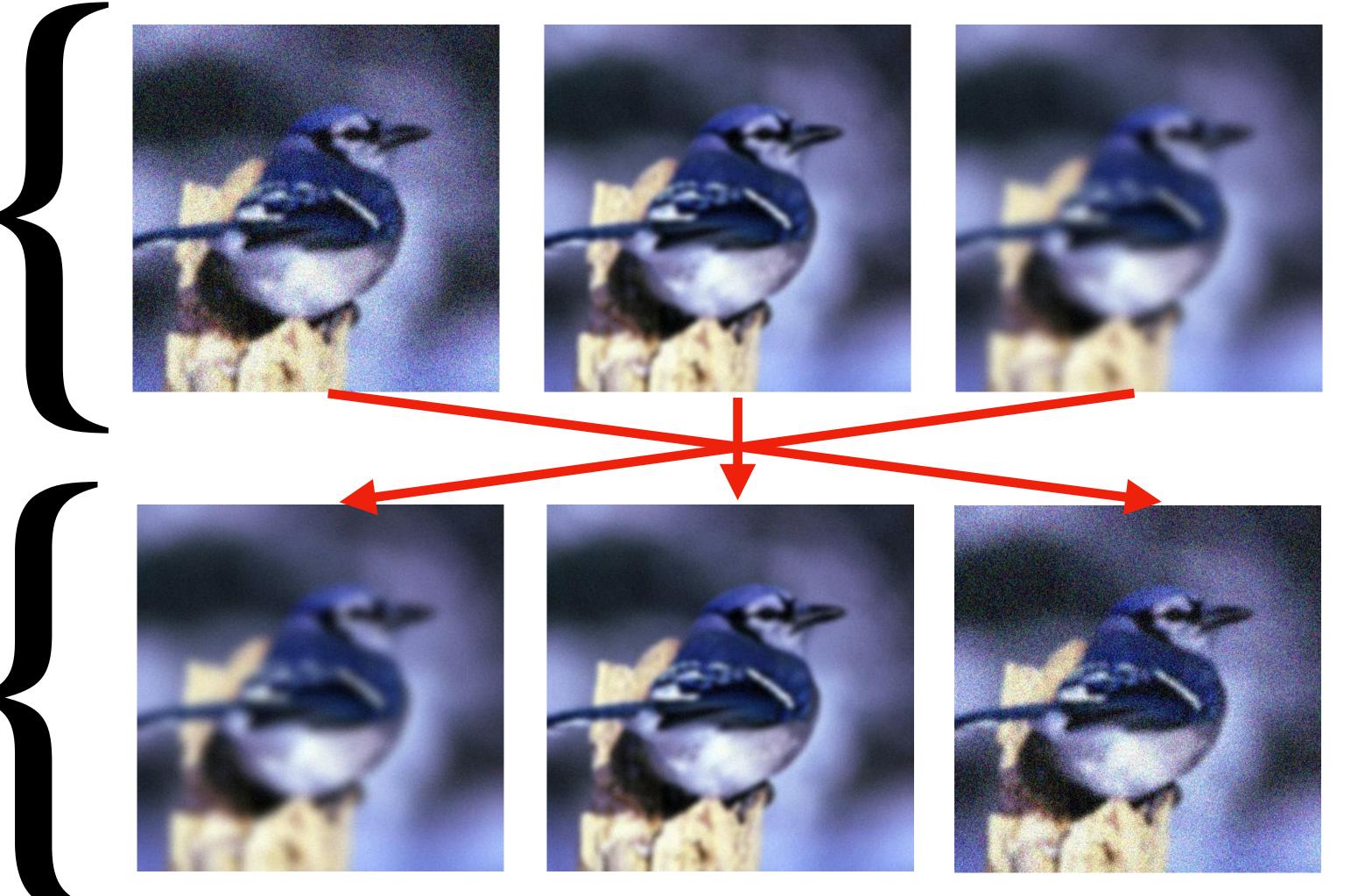


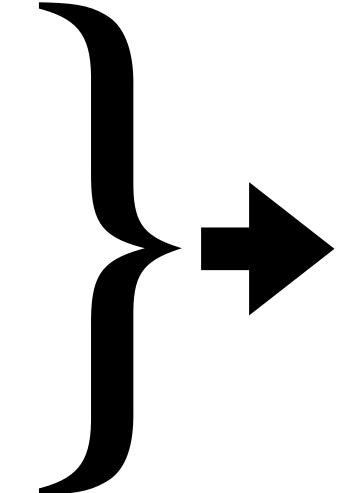
Output

Set symmetry: Order invariance/equivariance

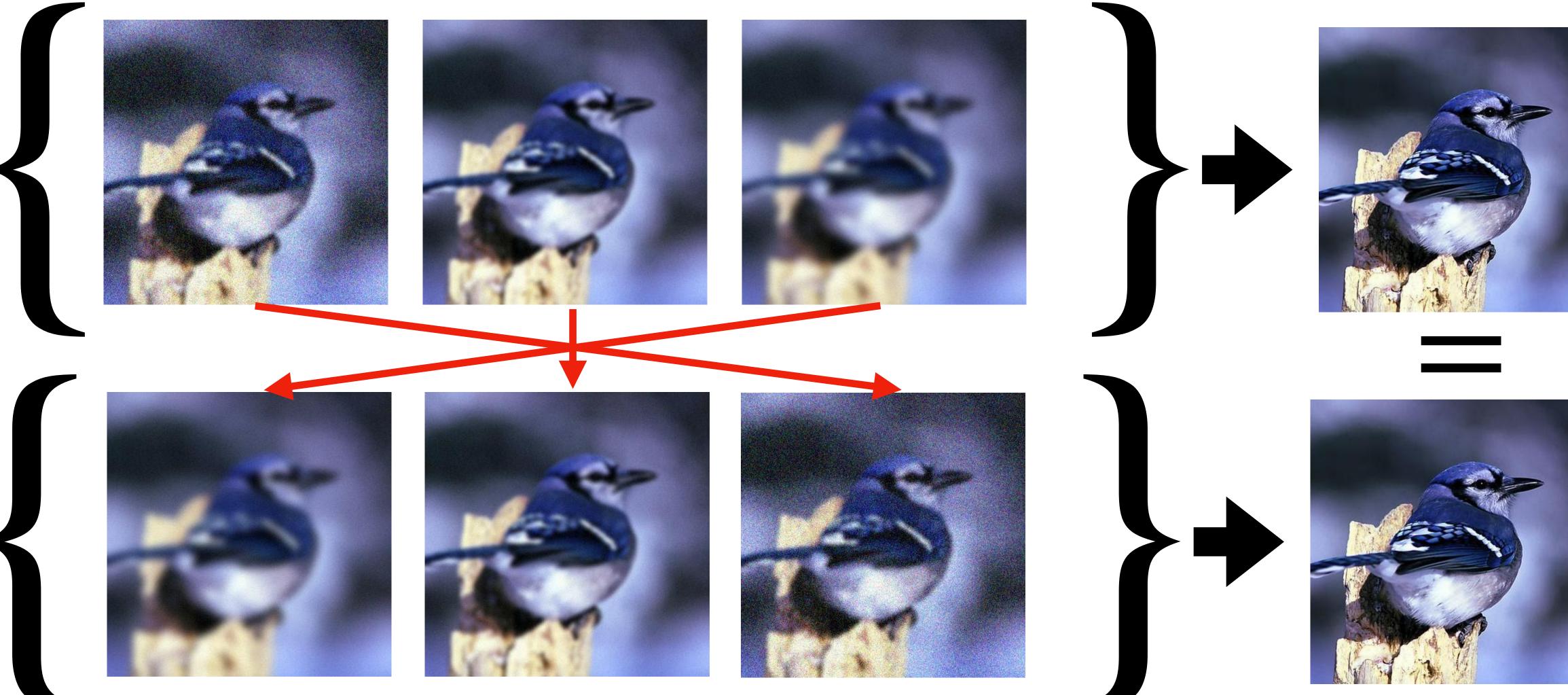


Set symmetry: Order invariance/equivariance

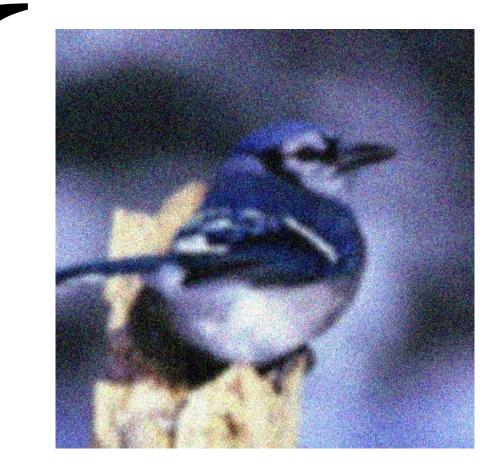


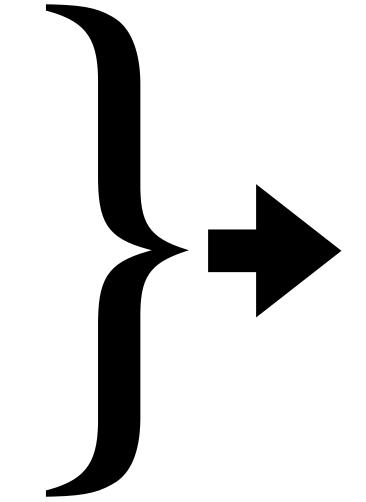


Set symmetry: Order invariance/equivariance

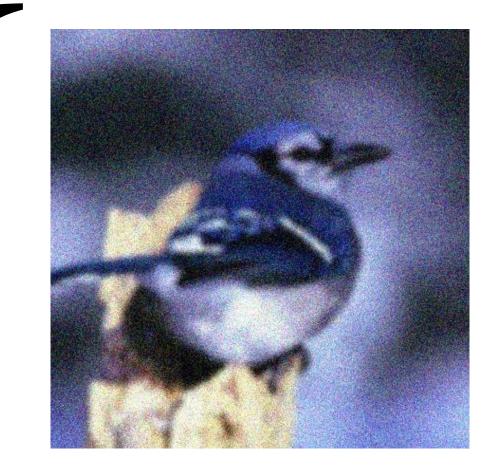


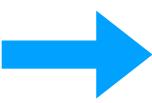
Element symmetry: Translation invariance/equivariance

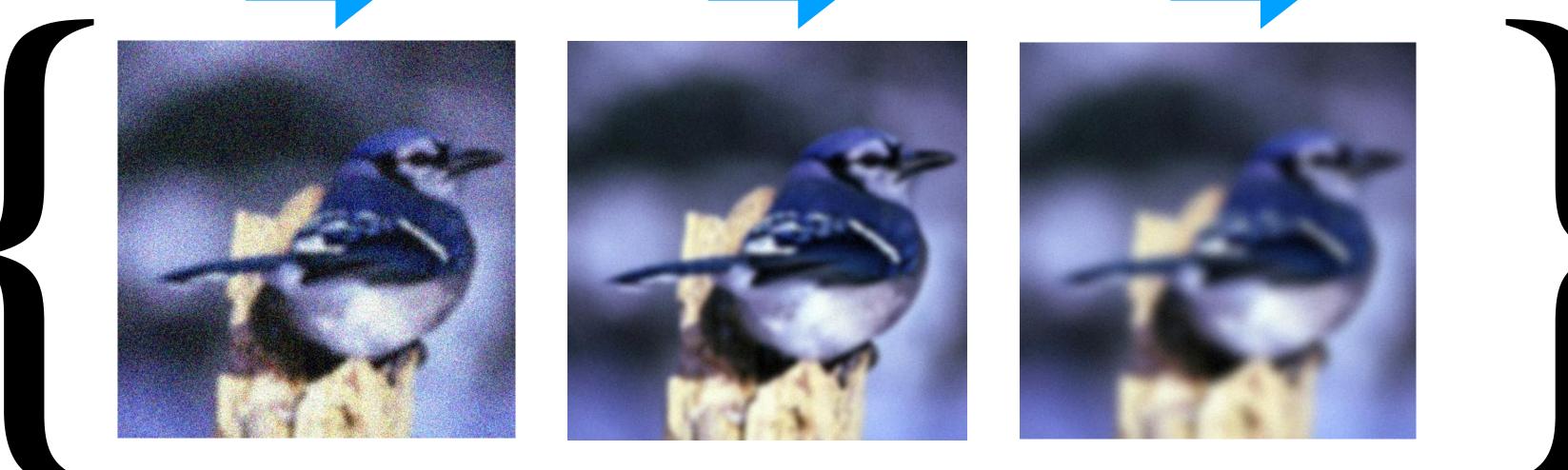


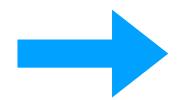


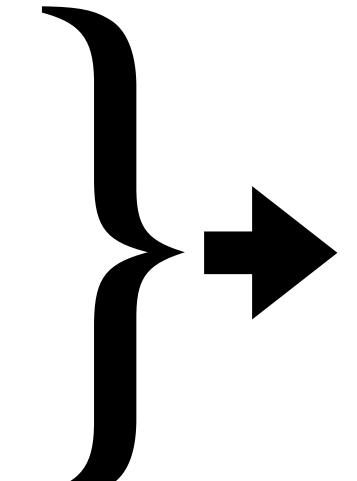
Element symmetry: Translation invariance/equivariance

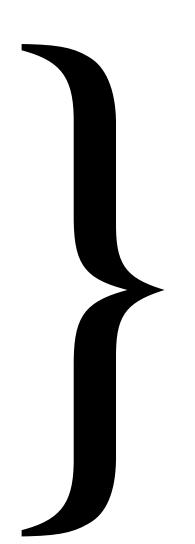




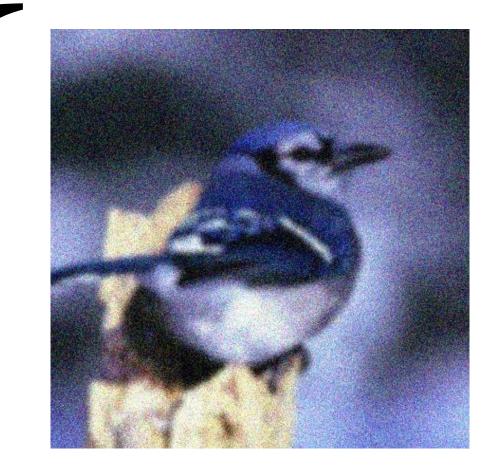


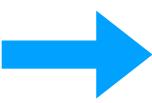


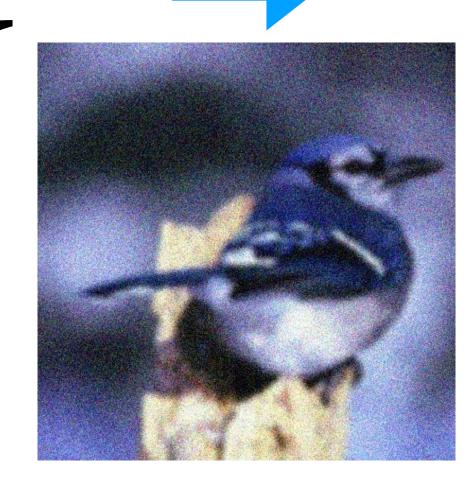




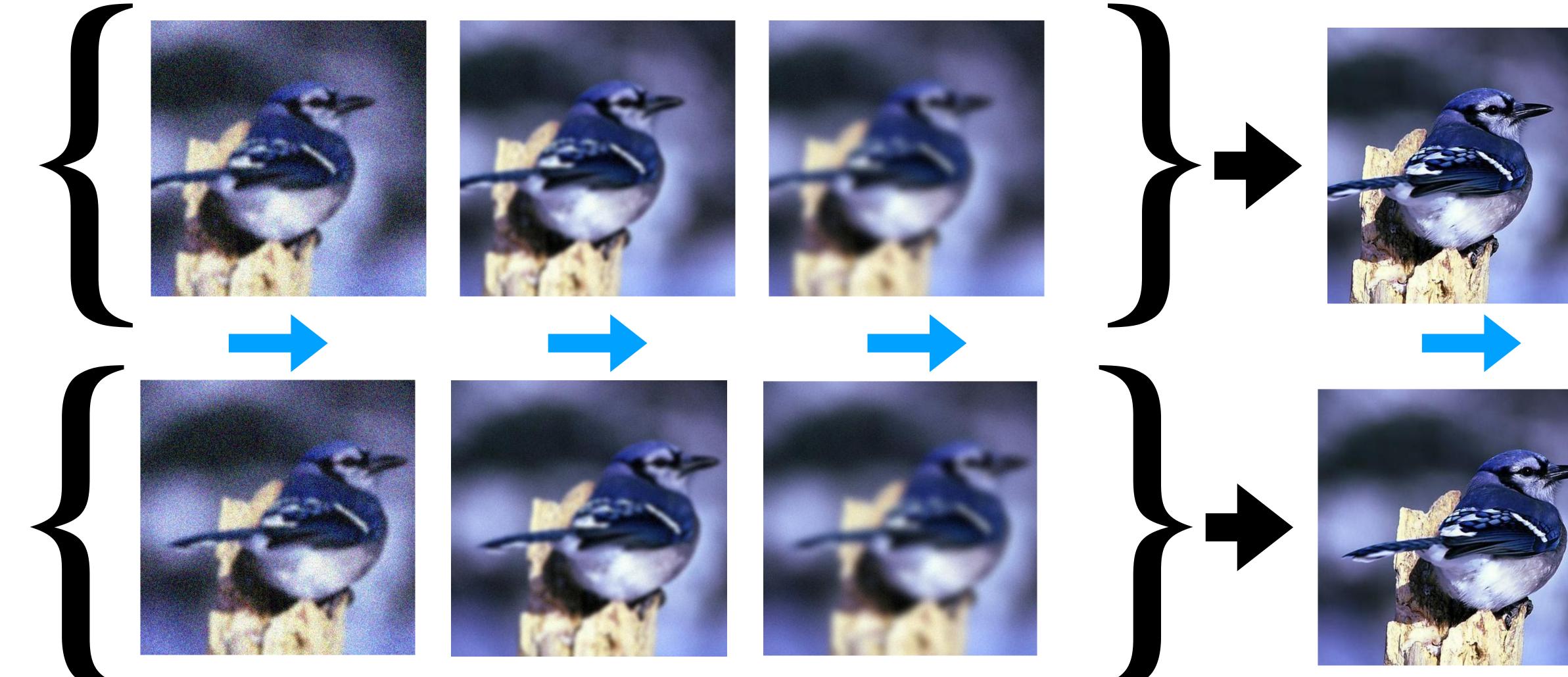
Element symmetry: Translation invariance/equivariance



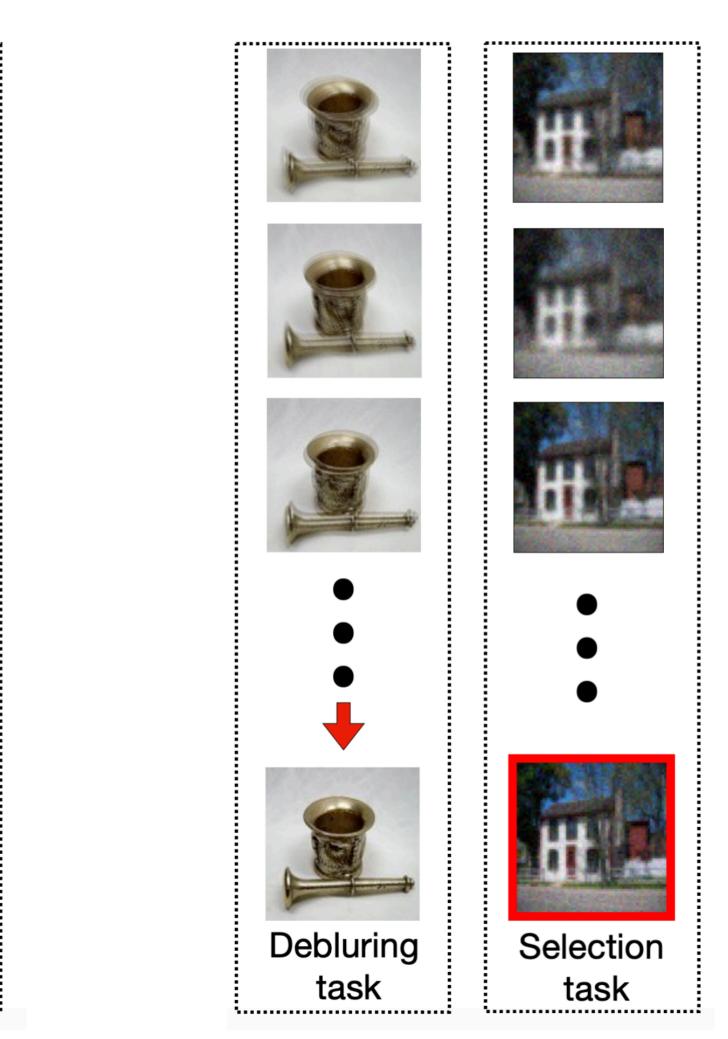


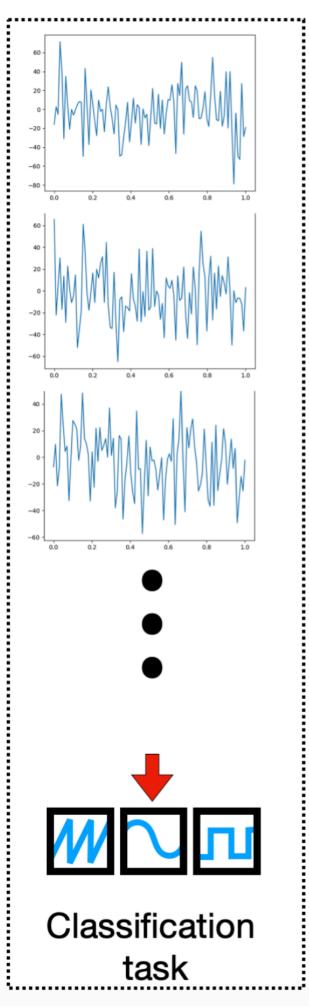






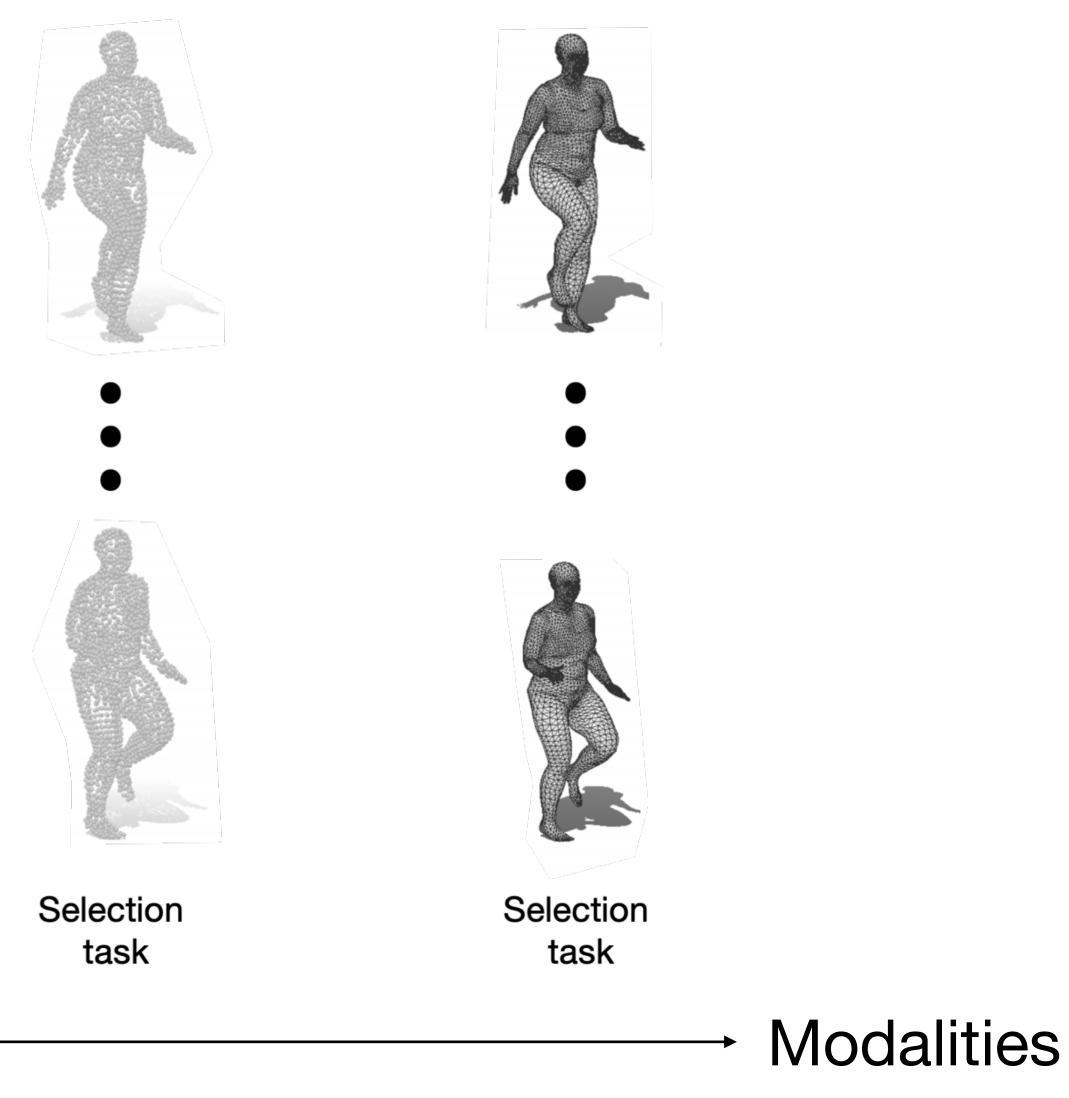
Applications





1D signals

2D images



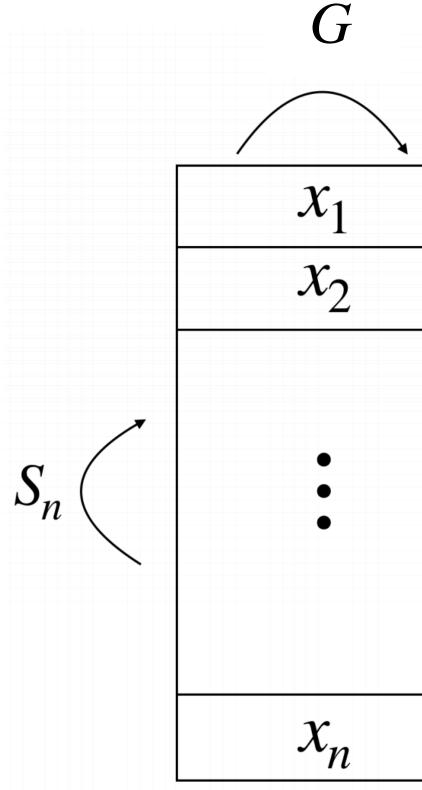
3D pointclouds

Graph

$x_1, \ldots, x_n \in \mathbb{R}^d$ with symmetry group $G \leq S_d$ Want to be invariant/equivariant to both G and the ordering

Formally the symmetry group is $H = S_n \times G \leq S_{nd}$

Setup

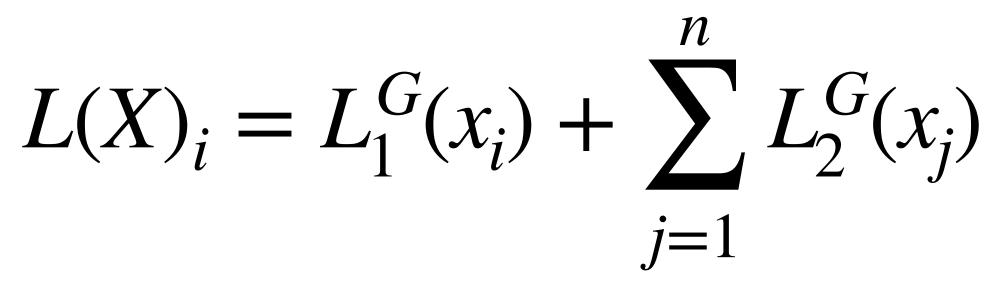


Equivariant layers

Theorem: Any linear $S_N \times G$ -equivariant layer $L : \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$ is of the form

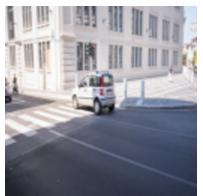
where L_1^G , L_2^G are linear G-equivariant functions

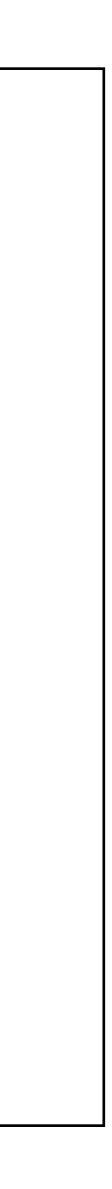
We call these layers **Deep Sets for Symmetric elements layers** (DSS)



- x_1, \ldots, x_n are images
- G is the group of 2D circular translations
- G-equivariant layers are convolutions

Single DSS layer



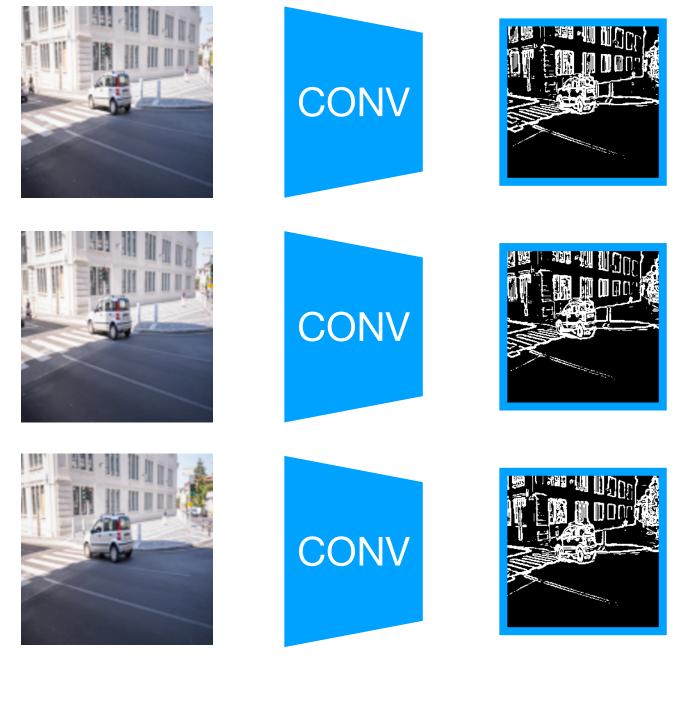


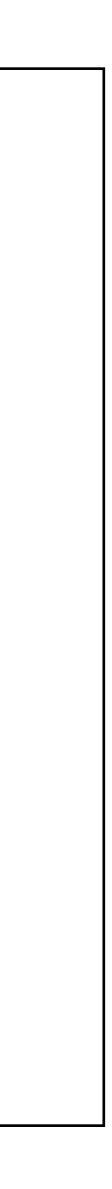
 x_1, \ldots, x_n are images

G is the group of 2D circular translations

G-equivariant layers are convolutions

Single DSS layer

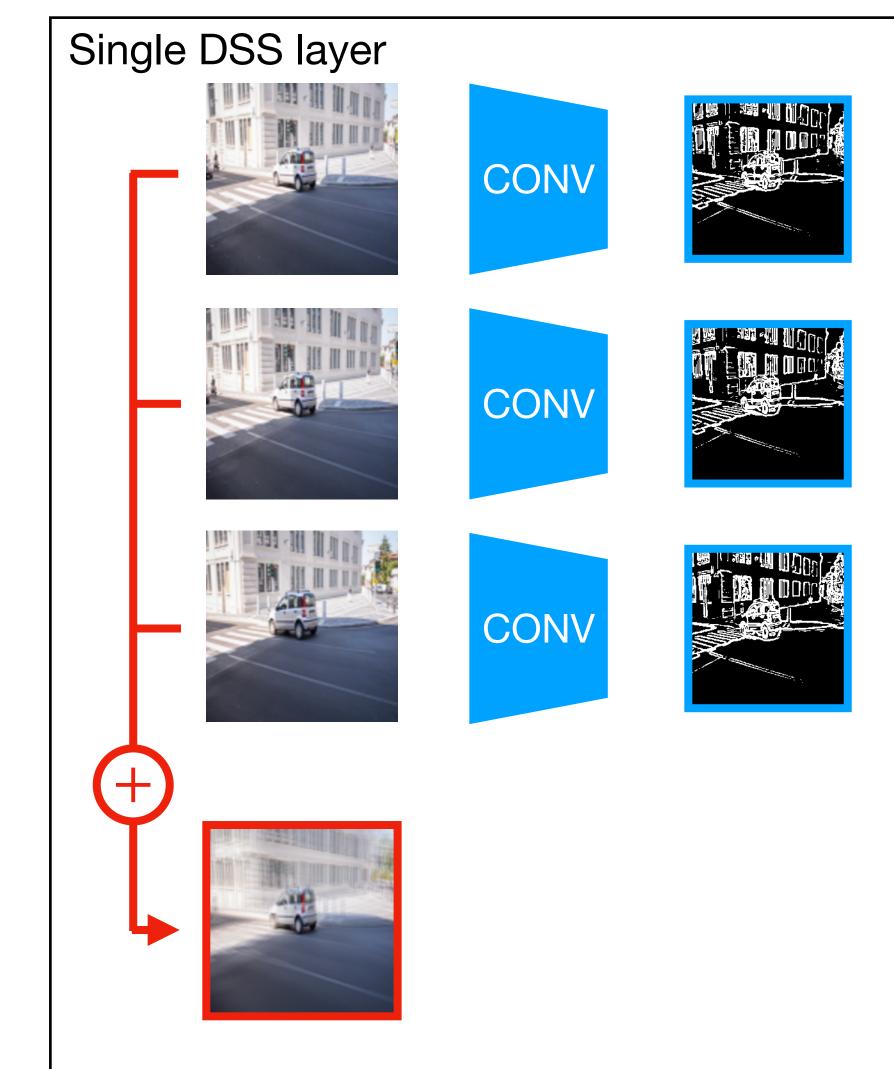


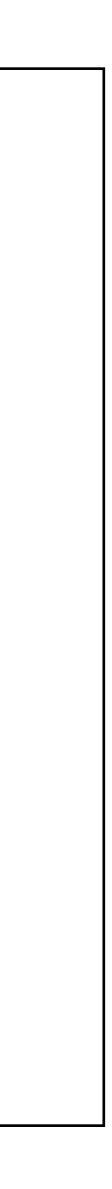


 x_1, \ldots, x_n are images

G is the group of 2D circular translations

G-equivariant layers are convolutions

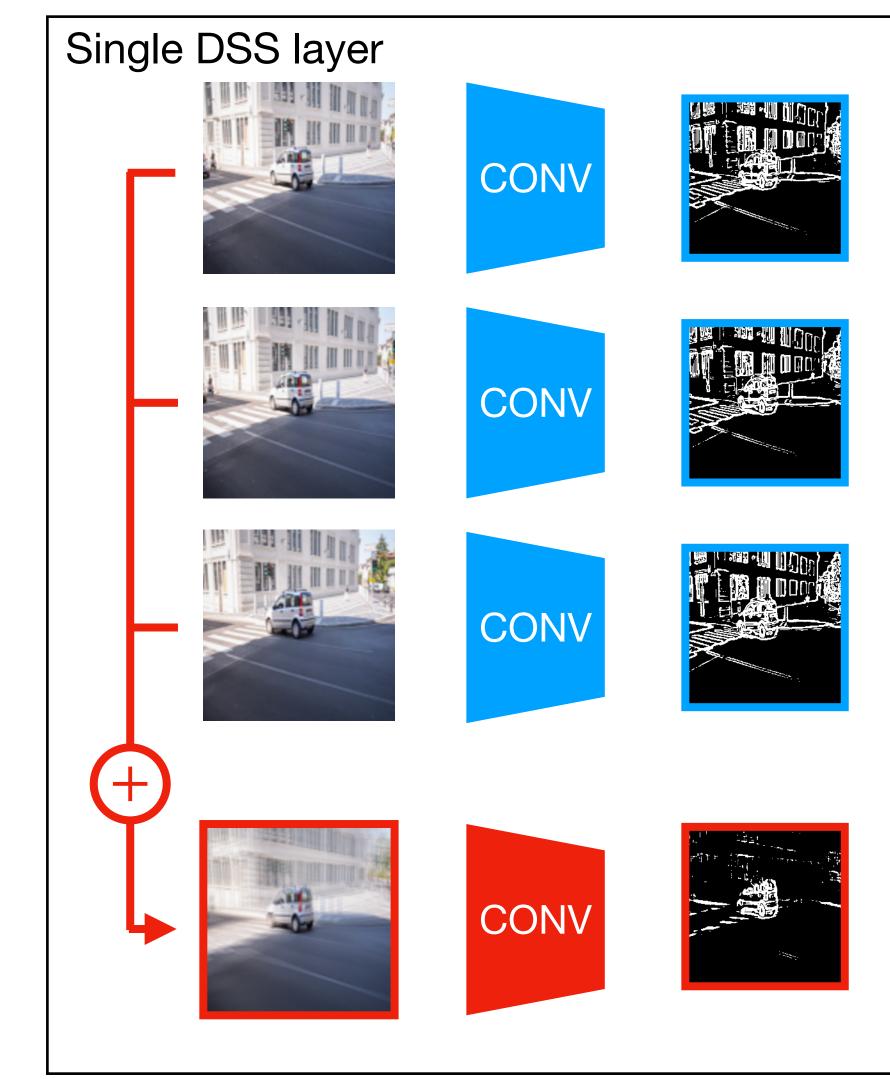


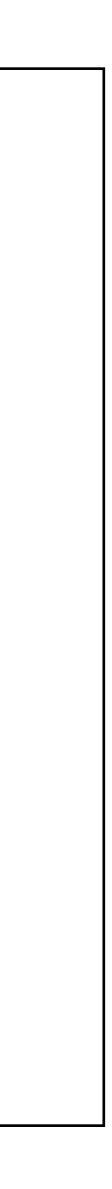


 x_1, \ldots, x_n are images

G is the group of 2D circular translations

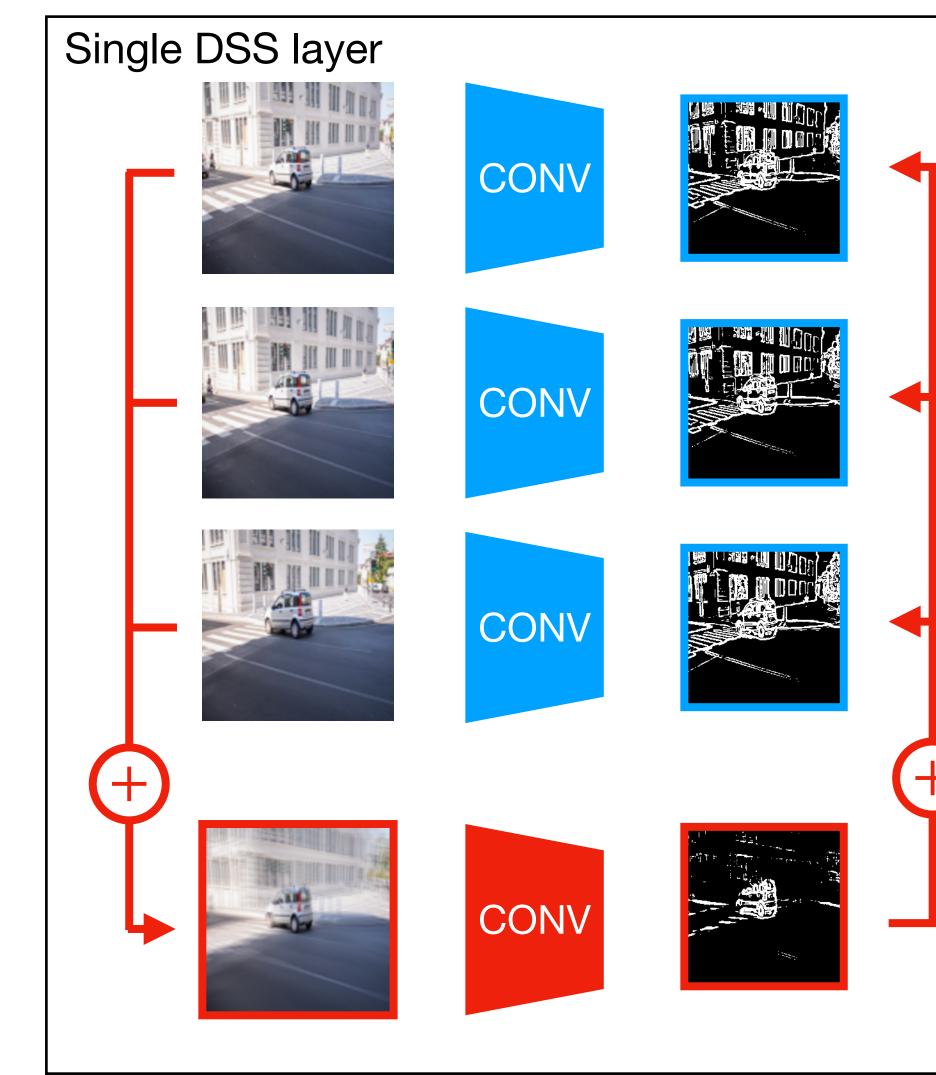
G-equivariant layers are convolutions

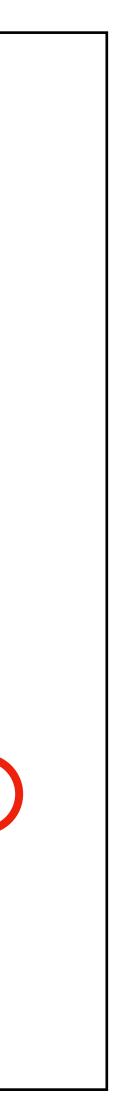




Siamese part

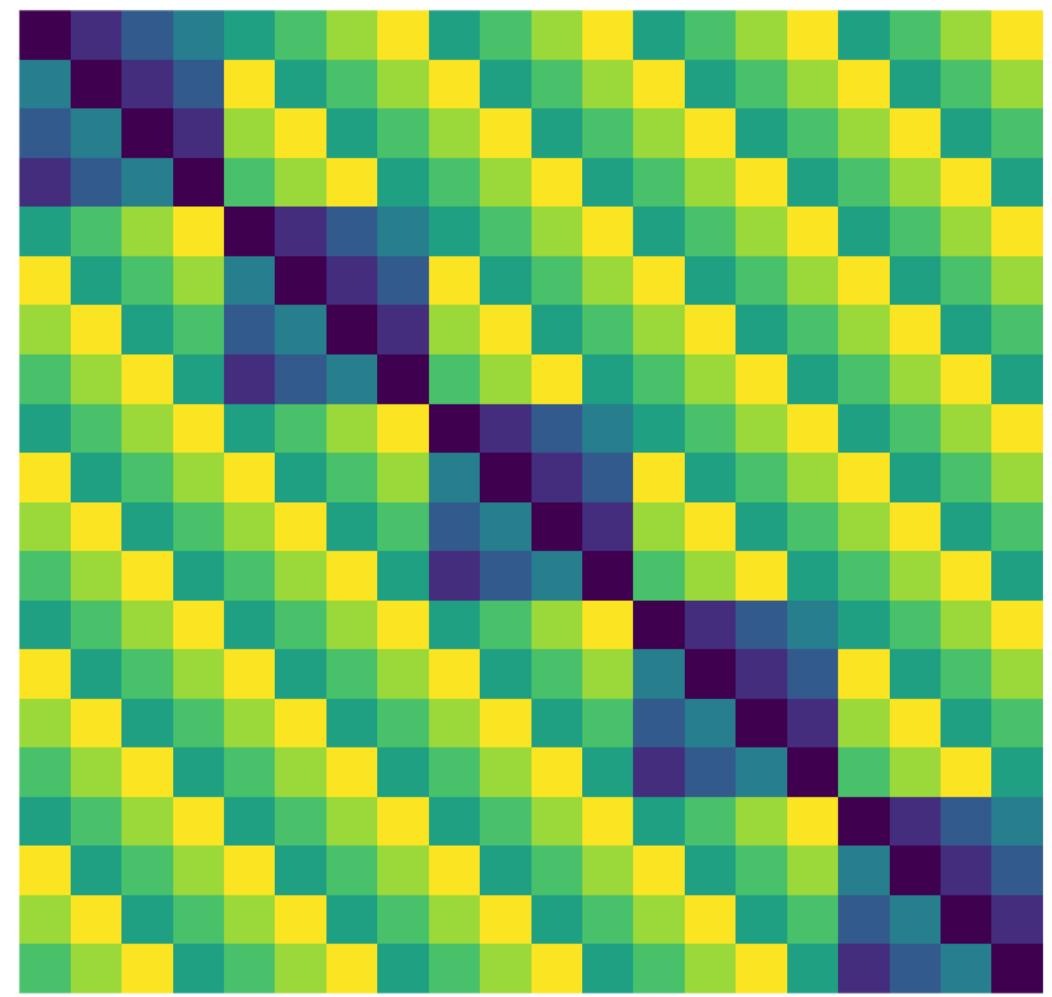
Information sharing part





Parameter sharing scheme

• $n = 5, d = 4, H = C_4$



Expressive power

Theorem

If G-equivariant networks are universal approximators for G-equivariant functions, then so are DSS networks for $S_N \times G$ -equivariant functions.

Conclusions

- symmetries
- Boils down to a parameter-sharing scheme for permutation actions
- Pay attention to expressivity

Architectures for structured objects can benefit from taking into account underlying

The end

Relevant papers:

- Invariant and Equivariant Graph Networks. M. et al., ICLR 2019
- On the Universality of Invariant Networks. M. et al., ICML 2019
- Provably Powerful Graph Networks. M. et al., NeurIPS 2019

Collaborators: Yaron Lipman, Heli Ben-Hamu, Nadav Shamir, Hadar Serviansky, Nimrod Segol, Ethan Fetaya, Gal Chechik, Or Litany.

Also see multiple <u>very</u> related papers papers by Siamak Ravanbakhsh

 Approximation Power of Invariant Graph Networks. M. et al., NeurIPS 2019 GRLW • On Learning Sets of Symmetric Elements. M. et al., ICML 2020, Outstanding paper award

