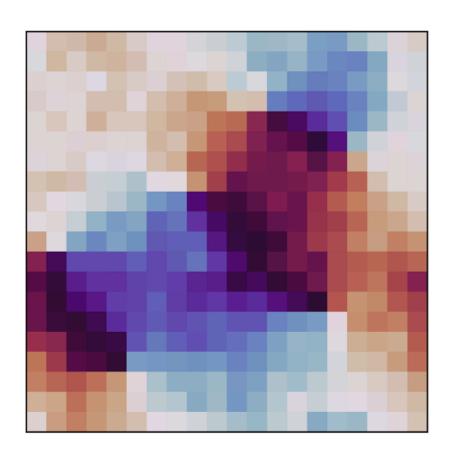
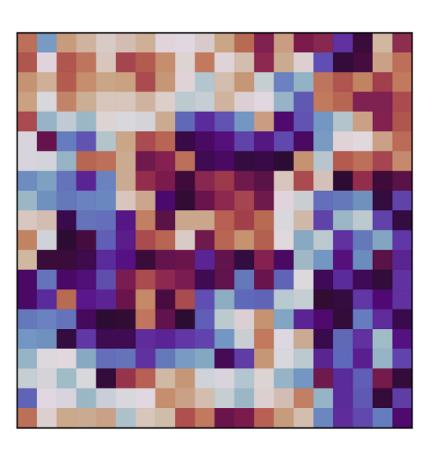
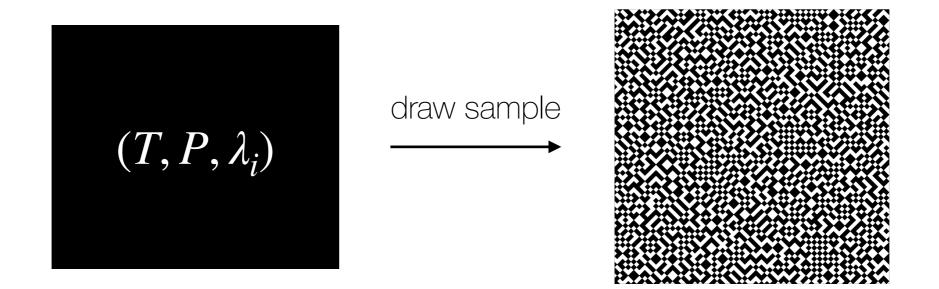
Interpretable features from topology: application to phase transitions Alex Cole Univ. of Amsterdam, GRAPPA and ITFA string_data 2020, CERN Related work: 1712.08159 (w/Shiu, JCAP) 1812.06960 (w/Shiu, JHEP) 209.04819 (w/Biagetti, Shiu)









Q: what is the system's phase structure?

Q: given a sample, can we determine the phase?

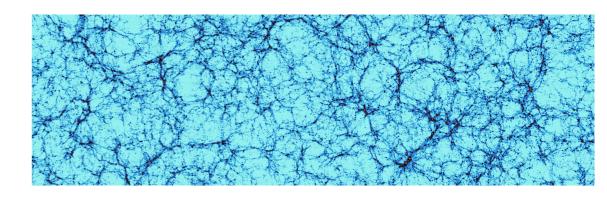
Q: what is the interpretation of differences between phases?

More motivation

- Already in introductory physics courses students learn that solving problems is much easier once a "good" coordinate system is chosen. Alternatively, we can focus on features that reflect relevant symmetries, etc.
- How can we automatically extract relevant features from data?

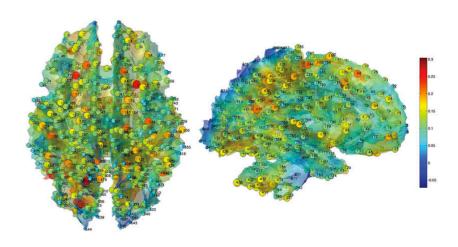
Topological Data Analysis

- Recognize the shape of data in a systematic way
 - Generalize to high-dimensional data sets in abstract spaces



- Main tools: persistent homology, Mapper [AC, Shiu; Biagetti,AC,Shiu]
- Used in cosmology, neuroscience,
 [AC, Shiu] string theory, drug design, sensor networks, image analysis, virology, computer vision, materials science, sports analytics, computational biology, QCD, dynamical systems, ...

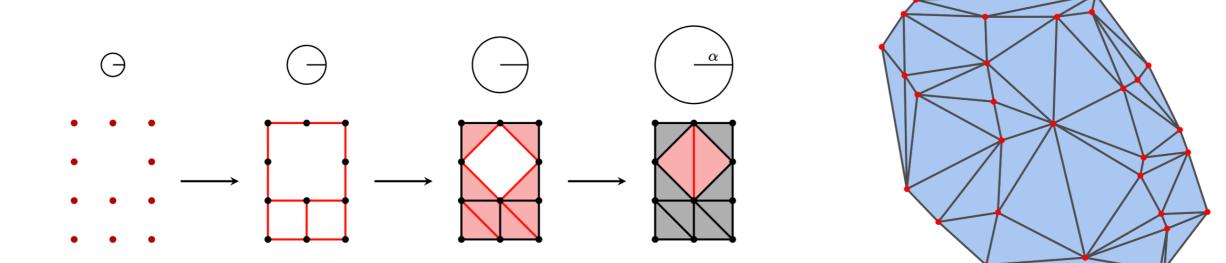
[Biagetti, AC, Shiu]



arXiv:1409.0177

α -filtrations (discrete spins)

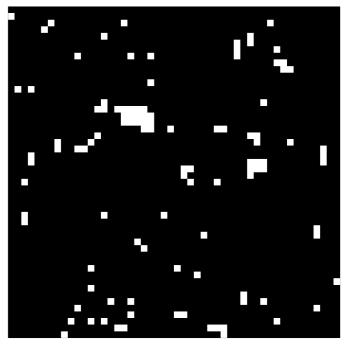
- For discrete spins, put a point at every lattice site agreeing with the *majority*.
- For this point cloud, perform an α -filtration, probing multiscale topology of majority spins.



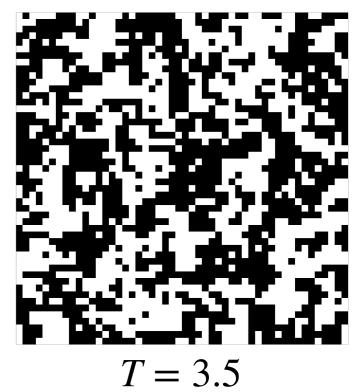
Example: Ising model

•
$$H_{\text{Is}} = -\sum_{\langle i,j \rangle} s_i s_j, \quad s_i \in \{-1,1\}$$

• Spontaneous magnetization below $T_c \approx 2.27$, breaking \mathbb{Z}_2 symmetry.



T = 2.0



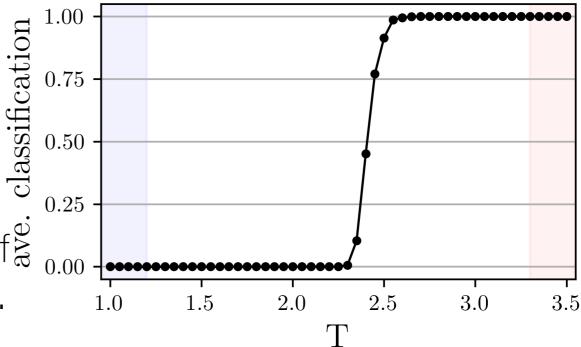
Ising phase classification

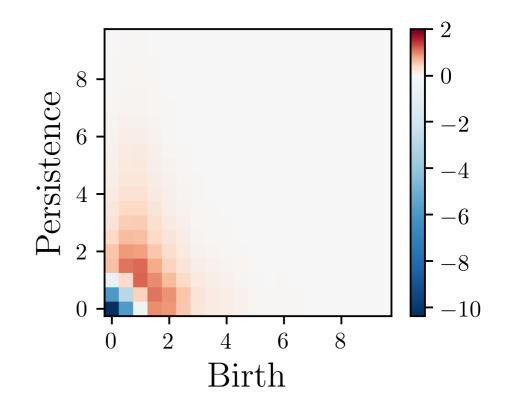
• For each

$T \in \{1.00, 1.05, \dots 3.50\},\$

generate 1000 samples (MCMC with Wolff cluster update).

- Train logistic regression using 25% of simulations at extreme temperatures.
 - The trained LR estimates $T_c pprox 2.37$ (lattice effects)
- LR coefficients identify the magnetization (features at lattice scale) as order parameter.





TL;DR: a "smart" dimensional reduction allows simple and interpretable classification of physical states.

See Gary's talk tomorrow for more details and other physics applications of TDA!

Fun topics in topology and ML

- NeurIPS 2020 workshop "TDA and Beyond" <u>https://tda-in-ml.github.io/</u>. Some personal highlights:
 - Filtered hierarchical clustering via multiparameter persistent homology (Bauer et al.)
 - Topological loss function enhances image segmentation, generation.
 Topological regularization of decision boundaries to improve training with noisy labels (Chen et al.)
 - Topology of learning (Carlsson et al.; Wang et al.)
 - Probabilistic aspects of Mapper and persistent homology (Carrière et al.; Hiraoka et al.)
 - Adventures in generalized graph laplacians (Ghrist et al.)

General questions

- How can theoretical priors from string theory inform ML architectures? Duality, modularity,
- What are "good coordinates" on the space of compactifications? Can these be identified explicitly? cf. information geometry
- What (constrained) optimization techniques are appropriate for navigating the landscape? Do they teach us something about early universe dynamics or vice versa?
 - Advances in DL-assisted combinatorial optimization

