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(T, P, λi)

Q: what is the system’s phase structure?


Q: given a sample, can we determine the phase?


Q: what is the interpretation of differences between

 phases?

draw sample



More motivation

• Already in introductory physics courses students learn that 
solving problems is much easier once a “good” coordinate 
system is chosen. Alternatively, we can focus on features that 
reflect relevant symmetries, etc. 


• How can we automatically extract relevant features from data?



Topological Data Analysis
• Recognize the shape of data in a 

systematic way


• Generalize to high-dimensional 
data sets in abstract spaces


• Main tools: persistent homology, 
Mapper


• Used in cosmology, neuroscience, 
string theory, drug design, sensor 
networks, image analysis, virology, 
computer vision, materials science, 
sports analytics, computational 
biology, QCD, dynamical systems, … arXiv:1409.0177

[Biagetti, AC, Shiu]

[AC, Shiu;

Biagetti,AC,Shiu]

[AC, Shiu]



-filtrations (discrete spins)α
• For discrete spins, put a point at every lattice site agreeing 

with the majority.


• For this point cloud, perform an -filtration, probing multiscale 
topology of majority spins.

α



Example: Ising model

• 


• Spontaneous magnetization below 
, breaking  symmetry.

HIs = − ∑
⟨i,j⟩

sisj, si ∈ {−1,1}

Tc ≈ 2.27 ℤ2

T = 2.0

T = 3.5



Ising phase classification
• For each 

, 
generate 1000 samples (MCMC 
with Wolff cluster update).


• Train logistic regression using 25% of 
simulations at extreme temperatures.


• The trained LR estimates 
 (lattice effects)


• LR coefficients identify the 
magnetization (features at lattice 
scale) as order parameter.

T ∈ {1.00,1.05,…3.50}

Tc ≈ 2.37



TL;DR: a “smart” dimensional reduction allows simple and interpretable 
classification of physical states.


See Gary’s talk tomorrow for more details and other physics applications of 
TDA!



Fun topics in topology and ML
• NeurIPS 2020 workshop “TDA and Beyond” — https://tda-in-ml.github.io/. Some 

personal highlights:


• Filtered hierarchical clustering via multiparameter persistent homology (Bauer et 
al.)


• Topological loss function enhances image segmentation, generation. 
Topological regularization of decision boundaries to improve training with noisy 
labels (Chen et al.)


• Topology of learning (Carlsson et al.; Wang et al.)


• Probabilistic aspects of Mapper and persistent homology (Carrière et al.; 
Hiraoka et al.)


• Adventures in generalized graph laplacians (Ghrist et al.)

https://tda-in-ml.github.io/


General questions
• How can theoretical priors from string theory inform ML 

architectures? Duality, modularity, ….


• What are “good coordinates” on the space of 
compactifications? Can these be identified explicitly? cf. 
information geometry


• What (constrained) optimization techniques are appropriate for 
navigating the landscape? Do they teach us something about 
early universe dynamics or vice versa?


Advances in DL-assisted combinatorial optimization

Thanks!


