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Introduction & Motivation

• QCD is the theory of strong interactions and has quarks and gluons as
fundamental particles. Being non perturbative at low energies it forms colorless
bound states at low energies (hadrons), among which, mesons and baryons are of
primary interest.

• Computing such resonances is relatively involved. Many phenomenological models
were developed for that purpose with relative success, e.g. the quark model, the
soliton Skyrme model, la�ice QCD.

• Early observations lead to the fact that in the large N limit, mesons become free
and non interacting while baryon resonances bahave as solitonic objects. In that
limit mesonic data should su�ice to know the baryon spectrum.

’t Hoo�’74, Wi�en’79;...

• N = 3 is large enough! Mesons are mainly qq̄ states and can be distinguished form
tretraquark states, etc. Also AdS/CFT has been used to describe certain features of
the quark gluon plasma.

• Our aim is to use the information on the meson spectrum of QCD to be able to
predict baryonic data. We make use of two techniques: Artificial Neural Networks
and Gaussian Processes.
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ANN Approach

We want to train on the mesonic data from the PDG (composition, isospin,
angular momentum, parity) to get the meson mass as an output. A�er trying
on various architectures, we find a single layer ANN that is well suited for our
problem. We train with 80% and 100% of the mesonic data. Implementation
on Mathematica 12.
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GP Approach

For the Gaussian process we first specify a positive definite kernel

Kij := k(xi, xj) ,

where i = 1, . . . ,M runs over the set of training data (mesons). The covariance
function defines the prior on noisy observations:

cov(xi, xj) = k(xi, xj) + Ni,j , where Ni,j = σ2
nδi,j .

For our problem we take the kernel to be rational quadratic

kRQ(xi, xj) = σ2
f

(
1 +

1
2α

(xi − xj)TΛ−1 (xi − xj)
)−α

,

where Λ = diag(λ2i ), (i = 1, ..,D). Model selection in GP is done by
maximizing the log marginal likelihood with respect to a training set
{xi → yi}Mi=1. Implemented with GPML 4.2 in Matlab R2019b

log p(y|X) := −1
2
yT (K + N )−1y − 1

2
log |K + N | − M

2
log(2π) ,
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Fi�ing the mesonic data

Training with 100% of the mesonic data we obtain the following predictions
for the mesonic masses. For the compostion of mesons we took the Monte
Carlo numbering of PDG. ANN le�, GP right.
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Errors in the meson sector: ANN 18.5% , GP 13.3%, CQM 39.3%.
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Predictions for baryons

Training with 100% of the mesonic data we obtain the following predictions
for the mesonic masses. ANN le�, GP right.
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Errors in the meson sector: ANN 9.7%, GP 3.4%. CQM 8.6%. Consistent with
expectation for errors of order 1/N 2 ∼ 10%.
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Predictions for baryons

Probabilities for di�erent baryons to be the lightest particles in the spectrum
according to the ANN predictions.

p n Λ0 Σ+ Σ0 Σ− ∆++

#1 79.0 2.0 0.0 4.6 0.0 2.5 5.3
#2 13.9 26.7 0.0 12.5 1.2 5.5 22.5
#3 4.5 21.7 0.3 15.9 2.2 8.6 14.7
#4 1.9 14.7 0.6 17.3 5.7 8.5 13.6
#5 0.6 11.1 2.3 15.6 6.2 11.8 9.2
#6 0.1 9.1 3.9 9.6 8.0 10.7 5.8
#7 0.0 4.8 6.7 7.9 11.0 9.8 5.6

Predictions:

ANN: mp = 1068± 183 MeV , mn = 1205± 206 MeV

GP: mp = 893± 194 MeV , mn = 892± 193MeV

mp = 938.28MeV mn = 939.57MeV
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Predictions for pentaquarks

• The Θ(1540)+ with composition uudds̄, was predicted by many
phenomenological models, its most likely quantum numbers are
I(JP) = 0( 1

2
+

). The mass predicted by the NN is

mΘ(1540)+ = 1564± 62 MeV ,

• For the molecular pentaquarks Pc(4380)+ and Pc(4450)+ with composition
uudcc̄ recently discovered at LHCb, we obtain the NN prediction

I (JP) ANN prediction (MeV) GP prediction (MeV)

Pc(4380)+ 1
2 ( 3

2
−

) (4.1± 1.1) · 103 3253± 846

Pc(4450)+ 1
2 ( 5

2
+

) (4.5± 1.1) · 103 3581± 932
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Summary and Prospects

• We would like to find a simple equation for baryon and proton masses (in
the spirit of the Gell-Mann Okubo formula). GPs give a closed but
complicated expression with 17 adjusted parameters. For the ANN it is
crucial to identify the relevant components. Techniques such as Principal
Component Analysis could be helpful to determine the relevant
contributions from the various inputs.

• We have not trained the ANN and GP to distinguish ma�er from
antima�er. Predictions for antibaryons di�er by at most 6% from their
baryon counterparts.

• Our algorithms use only quark information. It would be appealing if we
could add additional gluon information. This could help to make
predictions on exotic states such as glueballs.
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Thanks!
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