Vector-like spectra in F-theory 1

Martin Bies

University of Pennsylvania

December 14, 2020

With M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Rühle – 2007.00009

Martin Bies

• Classical problem of string pheno: find realization of (MS)SM in string landscape.

Martin Bies 2/5

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- F-theory: Largest set of (MS)SM constructions with exact chiral spectrum.

[Cvetič Halverson Lin Liu Tian '19]

Martin Bies

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- F-theory: Largest set of (MS)SM constructions with exact **chiral** spectrum.

 [Cvetič Halverson Lin Liu Tian '19]
- ⇒ Roughly 10¹⁰ more (MS)SM constructions than previously known!

Martin Bies

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- F-theory: Largest set of (MS)SM constructions with exact **chiral** spectrum.

 [Cvetič Halverson Lin Liu Tian '19]
- ⇒ Roughly 10¹⁰ more (MS)SM constructions than previously known!
 - Need (massless) vector-like pair(s) to accommodate the Higgs.

Martin Bies

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- F-theory: Largest set of (MS)SM constructions with exact **chiral** spectrum.

 [Cvetič Halverson Lin Liu Tian '19]
- ⇒ Roughly 10¹⁰ more (MS)SM constructions than previously known!
 - Need (massless) vector-like pair(s) to accommodate the Higgs.
 - Vector-like spectra in F-theory: non-topological.

Martin Bies

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- F-theory: Largest set of (MS)SM constructions with exact **chiral** spectrum.

 [Cvetič Halverson Lin Liu Tian '19]
- ⇒ Roughly 10¹⁰ more (MS)SM constructions than previously known!
 - Need (massless) vector-like pair(s) to accommodate the Higgs.
 - Vector-like spectra in F-theory: non-topological.
 - How can we control vector-like spectra in F-theory?

- Massless matter localizes on matter curves C_R.
- Line bundles L_R on C_R count vector-like spectra:

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

$$h^0(C_{\mathbf{R}}, L_{\mathbf{R}}) \leftrightarrow \text{ chiral matter}, \qquad h^1(C_{\mathbf{R}}, L_{\mathbf{R}}) \leftrightarrow \text{ anti-chiral matter}.$$

- Massless matter localizes on matter curves C_R.
- Line bundles L_R on C_R count vector-like spectra:

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

$$h^0(C_{\mathbf{R}}, L_{\mathbf{R}}) \leftrightarrow \text{ chiral matter}, \qquad h^1(C_{\mathbf{R}}, L_{\mathbf{R}}) \leftrightarrow \text{ anti-chiral matter}.$$

- Challenges in F-theory:
 - L_R **not** pullback from a (toric) ambient space.
 - In realistic setups, L_R has to satisfy subtle conditions (cf. talk by Muyang Liu).
 - Jumps from complex structure deformation $C_R \to \widetilde{C}_R$: $h^0(\widetilde{C}_R, L_R) = h^0(C_R, L_R) + 1$.

Martin Bies

- Massless matter localizes on matter curves C_R.
- Line bundles L_R on C_R count vector-like spectra:

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

$$h^0(C_{\mathbf{R}}, L_{\mathbf{R}}) \leftrightarrow \text{chiral matter}, \qquad h^1(C_{\mathbf{R}}, L_{\mathbf{R}}) \leftrightarrow \text{anti-chiral matter}.$$

- Challenges in F-theory:
 - L_R **not** pullback from a (toric) ambient space.
 - In realistic setups, L_R has to satisfy subtle conditions (cf. talk by Muyang Liu).
 - Jumps from complex structure deformation $C_R \to \widetilde{C}_R$: $h^0(\widetilde{C}_R, L_R) = h^0(C_R, L_R) + 1$.
- In 2007.00009 investigate jumps in simple setup:
 - Curves $C(P) = \{P = 0\} \subseteq dP_3$ and $L_R = \mathcal{O}_{dP_3}(d)|_{C(P)}$.
 - Identify $h'(C(P), \mathcal{O}_{dP_3}(d)|_{C(P)})$ for different **coefficients** of P and different d.
 - Compute with https://github.com/homalg-project/ToricVarieties_project

 Run on Plesken.mathematik.uni-siegen.de. Oxford Hydra cluster. Google cloud.

Martin Bies

- Massless matter localizes on matter curves C_R.
- Line bundles L_R on C_R count vector-like spectra:

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

$$h^0(\mathit{C}_{\mathsf{R}}, \mathit{L}_{\mathsf{R}}) \leftrightarrow \text{ chiral matter}\,, \qquad h^1(\mathit{C}_{\mathsf{R}}, \mathit{L}_{\mathsf{R}}) \leftrightarrow \text{ anti-chiral matter}\,.$$

- Challenges in F-theory:
 - L_R **not** pullback from a (toric) ambient space.
 - In realistic setups, L_R has to satisfy subtle conditions (cf. talk by Muyang Liu).
 - Jumps from complex structure deformation $C_R \to \widetilde{C}_R$: $h^0(\widetilde{C}_R, L_R) = h^0(C_R, L_R) + 1$.
- In 2007.00009 investigate jumps in **simple** setup:
 - Curves $C(P) = \{P = 0\} \subseteq dP_3$ and $L_{\mathbf{R}} = \mathcal{O}_{dP_3}(d)|_{C(P)}$.
 - Identify $h^i(C(P), \mathcal{O}_{dP_3}(d)|_{C(P)})$ for different **coefficients** of P and different d.
 - Compute with https://github.com/homalg-project/ToricVarieties_project

 Run on Plesken.mathematik.uni-siegen.de, Oxford Hydra cluster, Google cloud.
 - \Rightarrow 1.8 \times 10⁶ data sets: https://github.com/Learning-line-bundle-cohomology

Martin Bies 3/5

- We use decision trees, to analyse our data:
 - 1st origin of jumps: Curve factors, e.g. $C(P) o \mathbb{P}^1 \cup \widetilde{C}(P)$.
 - Example (factor-off combinations of \mathbb{P}^1 s):

$$h_{\text{generic}}^0 = 15 \quad \rightarrow \quad h_{\text{split}}^0 \in \{15, 17, 18, 19, 20, 21\}.$$

⇒ *H0Approximator* (https://github.com/homalg-project/ToricVarieties_project).

- We use decision trees, to analyse our data:
 - ullet 1st origin of jumps: Curve factors, e.g. $C(P) o \mathbb{P}^1 \cup \widetilde{C}(P)$.
 - Example (factor-off combinations of \mathbb{P}^1 s):

$$h_{\rm generic}^0 = 15 \quad \to \quad h_{\rm split}^0 \in \{15, 17, 18, 19, 20, 21\} \,.$$

- ⇒ *H0Approximator* (https://github.com/homalg-project/ToricVarieties_project).
- Deeper insights from algebraic geometry:
 - 2nd origin for jumps: Brill-Noether theory
 [1874 Brill, Noether] more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...
 - Curve remains generic, but line bundle becomes non-generic.
 - In above example, obtain $h^0 = 16$ from *Brill-Noether*-jump.

- We use decision trees, to analyse our data:
 - ullet 1st origin of jumps: Curve factors, e.g. $C(P) o \mathbb{P}^1 \cup \widetilde{C}(P)$.
 - Example (factor-off combinations of \mathbb{P}^1 s):

$$h_{\rm generic}^0 = 15 \quad \to \quad h_{\rm split}^0 \in \{15, 17, 18, 19, 20, 21\} \,.$$

- ⇒ *H0Approximator* (https://github.com/homalg-project/ToricVarieties_project).
- Deeper insights from algebraic geometry:
 - 2nd origin for jumps: Brill-Noether theory
 [1874 Brill, Noether] more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...
 - Curve remains generic, but line bundle becomes non-generic.
 - In above example, obtain $h^0 = 16$ from *Brill-Noether*-jump.
- ⇒ Next challenge: Extend to realistic F-theory (MS)SMs [Cvetič Halverson Lin Liu Tian '19].

- We use decision trees, to analyse our data:
 - ullet 1st origin of jumps: Curve factors, e.g. $C(P) o \mathbb{P}^1 \cup \widetilde{C}(P)$.
 - Example (factor-off combinations of \mathbb{P}^1 s):

$$h_{\mathrm{generic}}^0 = 15 \quad o \quad h_{\mathrm{split}}^0 \in \{15, 17, 18, 19, 20, 21\} \,.$$

- ⇒ *H0Approximator* (https://github.com/homalg-project/ToricVarieties_project).
- Deeper insights from algebraic geometry:
 - 2nd origin for jumps: Brill-Noether theory
 [1874 Brill, Noether] more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...
 - Curve remains generic, but line bundle becomes non-generic.
 - In above example, obtain $h^0 = 16$ from *Brill-Noether*-jump.
- ⇒ Next challenge: Extend to realistic F-theory (MS)SMs [Cvetič Halverson Lin Liu Tian '19].
 - Muyang Liu will tell you about our current work, now.

Thank you for your attention!

