#### Vector-like Spectra in F-theory 2

Muyang Liu

University of Pennsylvania

December 14, 2020

With M.Bies, M.Cvetič, R.Donagi, M.Ong - ongoing project

• One quadrillion threefold bases in F-theory compactifications classfied by  $\overline{K}_{B_3}^3$  value. [Cvetič Halverson Lin Liu Tian '19]

- One quadrillion threefold bases in F-theory compactifications classfied by  $\overline{K}_{B_3}^3$  value. [Cvetič Halverson Lin Liu Tian '19]
- Find line bundles to realize MSSM vector-like spectra:

| Qi    | $\bar{u}_i$ | $\bar{d}_i$ | Li    | ē <sub>i</sub> | $H_u$ , $H_d$ |
|-------|-------------|-------------|-------|----------------|---------------|
| (3,0) | (3,0)       | (3,0)       | (3,0) | (3,0)          | (1, 1)        |

- One quadrillion threefold bases in F-theory compactifications classfied by  $\overline{K}_{B_3}^3$  value. [Cvetič Halverson Lin Liu Tian '19]
- Find line bundles to realize MSSM vector-like spectra:

| Qi    | ūi    | $\bar{d}_i$ | Li    | ē <sub>i</sub> | $H_u, H_d$ |
|-------|-------|-------------|-------|----------------|------------|
| (3,0) | (3,0) | (3,0)       | (3,0) | (3,0)          | (1, 1)     |

 $\Rightarrow$  This requires line bundles are subjected to conditions:

$$L^{\otimes n} = \overline{K}_{B_3}|_C^{\otimes m}$$
, Quark-doublet curve:  $L^{\otimes 3} = \overline{K}_{B_3}|_C^{\otimes 2}$ .

- One quadrillion threefold bases in F-theory compactifications classfied by  $\overline{K}_{B_3}^3$  value. [Cvetič Halverson Lin Liu Tian '19]
- Find line bundles to realize MSSM vector-like spectra:

| Qi    | ūi    | $\bar{d}_i$ | Li    | ē <sub>i</sub> | $H_u, H_d$ |
|-------|-------|-------------|-------|----------------|------------|
| (3,0) | (3,0) | (3,0)       | (3,0) | (3,0)          | (1, 1)     |

 $\Rightarrow$  This requires line bundles are subjected to conditions:

$$L^{\otimes n} = \overline{K}_{B_3}|_C^{\otimes m}, \quad \text{Quark-doublet curve:} \quad L^{\otimes 3} = \overline{K}_{B_3}|_C^{\otimes 2}.$$

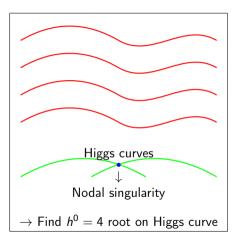
• On a genus g curve, there are  $n^{2g}$  possible n-th roots.

| $\overline{K}_{B_3}^3$ | particles | genus | root type | degree of line bundle | root bundles counting |
|------------------------|-----------|-------|-----------|-----------------------|-----------------------|
| 10                     | Qi        | 6     | 5-th root | 8                     | 5 <sup>12</sup>       |
| 18                     | Qi        | 10    | 3rd root  | 12                    | 3 <sup>20</sup>       |
| 30                     | Qi        | 16    | 5-th root | 18                    | 5 <sup>32</sup>       |

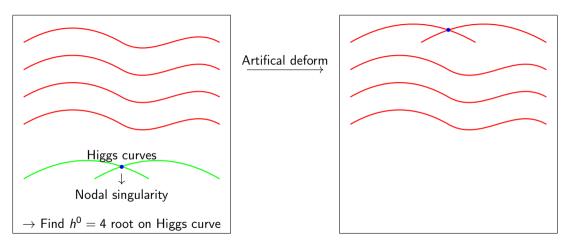
- One quadrillion threefold bases in F-theory compactifications classfied by  $\overline{K}_{B_3}^3$  value. [Cvetič Halverson Lin Liu Tian '19]
- Find line bundles to realize MSSM vector-like spectra:

| Qi    | ū,    | $\bar{d}_i$ | Li    | ē,    | $H_u, H_d$ |
|-------|-------|-------------|-------|-------|------------|
| (3,0) | (3,0) | (3,0)       | (3,0) | (3,0) | (1, 1)     |

 $\Rightarrow$  This requires line bundles are subjected to conditions:


$$L^{\otimes n} = \overline{K}_{B_3}|_C^{\otimes m}, \quad \text{Quark-doublet curve:} \quad L^{\otimes 3} = \overline{K}_{B_3}|_C^{\otimes 2}.$$

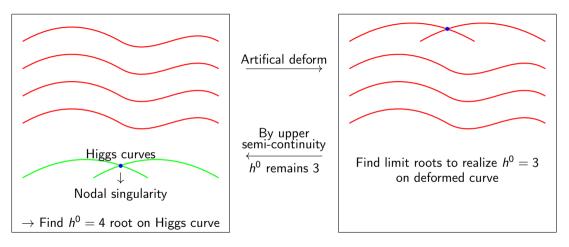
• On a genus g curve, there are  $n^{2g}$  possible n-th roots.


| $\overline{K}_{B_3}^3$ | particles | genus | root type | degree of line bundle | root bundles counting |
|------------------------|-----------|-------|-----------|-----------------------|-----------------------|
| 10                     | Qi        | 6     | 5-th root | 8                     | 5 <sup>12</sup>       |
| 18                     | Qi        | 10    | 3rd root  | 12                    | 3 <sup>20</sup>       |
| 30                     | $Q_i$     | 16    | 5-th root | 18                    | 5 <sup>32</sup>       |

• On nodal curves: Root bundle constructions known. [Caporaso Casagrande Cornalba '04]

Good physics geometry X<sub>nodal</sub>




Good physics geometry Xnodal



Good physics geometry Xnodal



Good physics geometry  $X_{nodal}$ 



• Anticipate complete MSSM vector-like spectra in good geometry Xnodal

- In the near future:
  - Look for physics geometries X<sub>nodal</sub>.
  - Extend F-theory MSSM constructions to include vector-like spectra.

- In the near future:
  - Look for physics geometries X<sub>nodal</sub>.
  - Extend F-theory MSSM constructions to include vector-like spectra.
  - Anticipate huge database from root bundle constructions as extension of https://github.com/Learning-line-bundle-cohomology/Database.

- In the near future:
  - Look for physics geometries X<sub>nodal</sub>.
  - Extend F-theory MSSM constructions to include vector-like spectra.
  - Anticipate huge database from root bundle constructions as extension of https://github.com/Learning-line-bundle-cohomology/Database.
- Explore database:
  - Statistics of MSSM vacua with exact vector-like spectra.
  - Learn construction strategies (reinforcement learning).

- In the near future:
  - Look for physics geometries X<sub>nodal</sub>.
  - Extend F-theory MSSM constructions to include vector-like spectra.
  - Anticipate huge database from root bundle constructions as extension of https://github.com/Learning-line-bundle-cohomology/Database.
- Explore database:
  - Statistics of MSSM vacua with exact vector-like spectra.
  - Learn construction strategies (reinforcement learning).
  - Long run: Yukawa interaction, particle masses, hierarchy structures ...
  - $\rightarrow\,$  as extension of past WOrk [Cvetič Lin Liu Zhang Zoccarato '19]

- In the near future:
  - Look for physics geometries X<sub>nodal</sub>.
  - Extend F-theory MSSM constructions to include vector-like spectra.
  - Anticipate huge database from root bundle constructions as extension of https://github.com/Learning-line-bundle-cohomology/Database.
- Explore database:
  - Statistics of MSSM vacua with exact vector-like spectra.
  - Learn construction strategies (reinforcement learning).
  - Long run: Yukawa interaction, particle masses, hierarchy structures ...
  - $\rightarrow\,$  as extension of past work [Cvetič Lin Liu Zhang Zoccarato '19]
- Conceptual question:

intermediate Jacobian  $\leftrightarrow$  root/spin bundles.

Thank you for your attention!