Symmetry breaking in neural network training

Keegan Stoner Northeastern University

string_data 2020

NN-QFT Correspondence

Based on work with Jim Halverson and Anindita Maiti - arxiv:2008.08601

GP / asymptotic NN	Free QFT
inputs (x_1,\ldots,x_k)	external space or spacetime points
kernel $K(x_1, x_2)$	Feynman propagator
asymptotic NN $f(x)$	free field
log-likelihood	free action $S_{\rm GP}$

$$\sigma(x) = \frac{\exp\left(W \, x + b\right)}{\sqrt{\exp\left[2(\sigma_b^2 + \frac{\sigma_W^2}{d_{\rm in}} x^2)\right]}},$$

$$K_{\text{Gauss}}(x,x') = \sigma_b^2 + \sigma_W^2 \exp\left[-rac{\sigma_W^2 |x-x'|^2}{2d_{ ext{in}}}
ight],$$

Symmetries at initialization

When d_{out} > 1, output components are uncorrelated.

Initialized network outputs have rotational symmetry when parameters are sampled with **mean zero**.

As the parameter mean increases, the $SO(d_{out})$ symmetry is increasingly broken. μ controls the amount of symmetry breaking.

$SO(d_{out})$ variations

MNIST performance

MNIST training accuracy reflects real-life ability to learn. **Gauss-net can learn MNIST** to ~97% accuracy!

For MNIST, $d_{out} = 10$. Performed 20 experiments each with N = 10.

Idea: Networks with more symmetry at initialization train better.*

*Preliminary results from Gauss-net. How well this statement generalizes is the subject of active research.

Initialization Symmetry and Gauss-net Performance

Thank you!

