PHYSICS AT THE PRECISION FRONTIER
THEN, NOW, AND TOMORROW

Harrison B. Prosper
Kirby W. Kemper Endowed Professor of Physics
Florida State University

RADCOR-LoopFest 2021
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - g-2
 - The LHC
- The Frontier Tomorrow
- Summary
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - $g-2$
 - The LHC
- The Frontier Tomorrow
- Summary
Kepler’s Battle With Mars

Tycho Brahe
1546 – 1601

“Tycho has the world’s finest observations, but he only lacks an architect to construct an edifice out of them.”

Johannes Kepler

Brahe’s data, obtained with the naked eye, were indeed accurate: to 1/30th the angular size of the Moon.
Kepler was hired by Brahe in 1600 and thought he would have access to all of Brahe’s data. However, his new boss gave Kepler the data on Mars only and told him to work out that planet’s orbit.
Kepler’s Battle With Mars

Tycho Brahe’s data were so precise, it quickly became clear that neither the Ptolemaic nor the Copernican systems fit the data well.

However, although the Copernican system was the less precise model, Kepler, accepted the heliocentric hypothesis.

He first used the observations of Mars to obtain the orbit of Earth.

Then, he mapped the Martian data from the geocentric frame to a heliocentric frame with the Sun displaced from the center of the orbit of Mars, which he took to be circular.
Kepler’s Battle With Mars

The model worked much better than both the Ptolemaic and Copernican systems, but discrepancies between data and the model remained. However, by examining how the speed of Mars changed in its orbit Kepler concluded that a different curve would work much better, and the rest, as they say, is history.

Owen Gingerich and James R. Voelkel
https://www.jstor.org/stable/40972003
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - g-2
 - The LHC
- The Frontier Tomorrow
- Summary
Norman Ramsey argued that the question: does a particle have an electric dipole moment (EDM) is one to be answered experimentally.

In 1951, he, Smith, and Purcell established that the neutron EDM (nEDM) $|d_n|$:

$$< (0.1 \pm 2.4) \times 10^{-20} \text{ ecm}$$

Experiments to measure the nEDM using the Ramsey method are sensitive to energy changes of 10^{-21} eV, but probe physics beyond the TeV scale.
By 1990, the limit had reduced to 12×10^{-26} ecm @ 90% CL.
The Neutron Electric Dipole Moment

Best limit to date

\[1.8 \times 10^{-26} \, \text{ecm} \]

Review of Particle Physics at PSI
The Neutron Electric Dipole Moment

A proposal by the nEDM* collaboration could reach 10^{-27} ecm (https://www.psi.ch/en/nedm)

Another proposal, made some time ago by Golub and Huffman (J. Res. Natl. Inst. Stand. Technol. 110, 169-172 (2005)), to create ultra cold neutrons in superfluid 4He potentially could reach 10^{-29} ecm. The dispersion curves of the neutrons and phonons form a 2-state system which makes it possible for cold neutrons to down scatter to ultra cold ones (UCN).
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - g-2
 - The LHC
- The Frontier Tomorrow
- Summary
“It is inconceivable, that inanimate brute matter should, without the mediation of something else, which is not material, operate upon, and affect other matter without mutual contact”

Isaac Newton
Gravitational Waves

Virgo, Italy

Livingston, USA

Hanford, USA
The Field Equations of Gravitation, Albert Einstein, November 25, 1915

First direct detection of gravitational waves September 14, 2015 5:51 a.m. EDT.

In order to detect these waves, a displacement of 10^{-4} fm over ~ 4 km must be measured.
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - $g-2$ of Muon
 - The LHC
- The Frontier Tomorrow
- Summary
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

The anomalous magnetic moment of the muon in the Standard Model

The prediction required computing more than 12,000 diagrams, the use of non-perturbative data-driven methods, and the use of lattice QCD.
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - $g-2$ of Muon
 - The LHC
- The Frontier Tomorrow
- Summary
The LHC

To date, more than 2700 peer-reviewed physics papers have been published by the seven running LHC experiments (ALICE, ATLAS, CMS, LHCb, LHCf, MoEDAL and TOTEM). Approximately 10% of these are related to the Higgs boson, and 30% to searches for BSM phenomena.

CERN Courier 9 March 2020
The LHC

Source: CMS/CERN Courier 2020

Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - g-2 of Muon
 - The LHC
- The Frontier Tomorrow
- Summary
The Frontier Tomorrow

Here are some points to ponder:

1. By **2038**, when the LHC era ends, the precision of measurements across many subfields of physics, not just collider physics, will have improved considerably.

2. Precision will be needed everywhere: QFT-based predictions, PDF and hadronization modeling, detector simulations.

3. Significant progress in physics may require the analysis of data across multiple sub-fields, which in turn will require the associated high-precision predictions.

4. The bright young theorists of **2038** are not yet in High School!

5. If you want to stay in the game, you won’t be able to avoid AI…
In December 2019, Guillaume Lample and François Charton* at Facebook AI Research, Paris, announced: “We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.”

Their key idea is to take the idea of mathematics as a *language* seriously. Then, solving a mathematical problem symbolically is analogous to translating from one language to another or rephrasing a sentence.

Consider the expression $2 + 3 \times (5 + 2)$. It is first written as a tree:

```
+  
 / 
2   x
   / 
  3   +
    / 
   5   2
```

Next, the tree is converted to a sequence:

$$[+2 \times 3 + 5 2].$$

Operators, functions, or variables are modeled with specific tokens.
The authors’ system simplifies, integrates functions, and solves 1st and 2nd order differential equations.

The training data are pairs \((x, t)\) of correctly formed, *randomly generated*, expressions \(x\) with associated solutions \(t\).

For example, for integration, at least two approaches are used:
1. Forward: \((x, t)\) where \(t = \int x\)
2. Backward: \((x, t)\) where \(x = Dt\)

The Facebook toolkit *seq2seq* is used to translate one mathematical sequence into another.

https://github.com/facebookresearch/fairseq
The Frontier: Symbolic Mathematics

…and here is why you won’t be able to avoid AI…

The authors trained their model using the subset of randomly generated functions that sympy can integrate, e.g.,

```python
import sympy as sm
z = sm.Symbol('z')
x = sm.exp(-z)*sm.cos(z)
t = sm.integrate(x, z)
x, t

\left( e^{-z} \cos(z), \frac{e^{-z} \sin(z)}{2} - \frac{e^{-z} \cos(z)}{2} \right)
```

…and found, amazingly, that the model was able to integrate functions that sympy could not!
Outline

- Precision at the Frontier: Examples
 - Kepler’s Battle With Mars
 - The Neutron Electric Dipole Moment
 - Gravitational Waves
 - $g-2$ of Muon
 - The LHC
- The Frontier Tomorrow
- Summary
Precise observation, experimentation, and calculation has been the hallmark of many important advances in physics.

We may get lucky before 2038 and find a spectacular, unexpected, bump in a distribution, or a single spectacular event that heralds an unambiguous discovery of new physics.

But by far the most important result from the LHC to date is the continuing extraordinary success of the Standard Model.

It is, therefore, likely that the only realistic way towards the New Standard Model is with precision as our guide.