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Motivation
Gauge invariant operators are important in QFT.

• Anomalous dimensions (~spectrum of hadrons, RG, OPE, …) 
• Correlation functions

Local operators also appear as vertices in EFT Lagrangian.  
For example: Higgs EFT obtained by integrating Top quark 
loop:

(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.
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2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0
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where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32
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Dimension-7 operators

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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Higgs plus jet production 

High-dimension operators become important.

Dimension-5 operator
O0 = Htr(FμνFμν)
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1 Introduction

O1 = Htr(F ⌫
µ F ⇢

⌫ F µ
⇢ ) , (1.1)

O2 = Htr(D⇢Fµ⌫D
⇢Fµ⌫) , (1.2)

O3 = Htr(D⇢F⇢µD�F
�µ) , (1.3)

O4 = Htr(Fµ⇢D
⇢D�F

�µ) . (1.4)
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structure of the paper as following graph:

QCD /

Higgs EFT
o↵-shell field

�����������!
on-shell spinor

Operator

basis

Unitarity
�������!

IBP

Loop

form factors
)

( Anomalous

dimensions

Remainders

2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides determining the

dimension of the basis, a central goal is to explain how to construct a convenient set of basis

operators that will facilitate the high loop computations. We will provide explicit basis for

length-3 operators up to dimension 16, and in later sections we will compute their anomalous

dimension and related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
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where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For the convenience of upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:
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corrections at loop level, and the correction is called the anomalous dimension �(O).
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• Length of an operator:

len(O) = (# of F ’s) . (2.5)

We will also call an F in an operator together with all the derivatives in front of it, i.e.

(D . . .DF ), as one block. Obviously, the number of blocks is equal to the length of the

operator.

• Descendants. If an operator can be written as a total derivative of lower dimensional

operator, it is called a descendant. Since we consider Lorentz invariant and gauge

invariant operators, the overall derivatives are just covariant derivatives and always

appear in pairs so a descendant must take the form like

O = @2(O0) = D2(O0) . (2.6)

Below we also summarize the color factors for length-2 to length-4 operators:

1. The length-2 case has a unique color factor:

c(a, b) = Tr(T aT b) = �ab . (2.7)

2. In length-3 case there are two inequivalent color factors:

c(a, b, c) = Tr(T aT bT c) and Tr(T aT cT b) . (2.8)

Equivalently, one can introduce two other color factors as

fabc = Tr(T aT bT c)� Tr(T aT cT b) , dabc = Tr(T aT bT c) + Tr(T aT cT b) , (2.9)
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Our goal is to find a set of independent operator basis, which requires no equivalent

relation holds among the basis we choose. Two operators are said to be equivalent if their

di↵erence is proportional to the equation of motion (EoM) or Bianchi identity (BI):

EoM : DµF
µ⌫ = 0 , (2.10)

BI : DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ = 0 . (2.11)

Below we will use two di↵erent ways to do this classification: (1) field theory method, and

(2) on-shell spinor helicity method.

For the convenience of notation, we will often use integer numbers to represent Lorentz

indices and abbreviate product DiDjDk.... to Dijk.... For example,

Fµ1µ2Dµ1Dµ5F
µ3µ4Dµ2D

µ5Fµ3µ4 ) F12D15F34D25F34 . (2.12)
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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Basis of operators (classical)

structure of the paper as following graph:

QCD /

Higgs EFT
o↵-shell field

�����������!
on-shell spinor

Operator

basis

Unitarity
�������!

IBP

Loop

form factors
)

( Anomalous

dimensions

Remainders

2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators
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where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the
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Equation of motion:

Bianchi identities:

𝒪 ∼

Operators are in general not independent:

DμFμν = 0

DμFνρ + DνFρμ + DρFμν = 0

One needs to remove such relations to find a set of independent 
basis operators.



Observable: form factors

F =

Z
d4x eiq·xh0|O(x)|p1 p2 · · · pni

= �4(
nX

i=1

pi � q)h0|O(q)|p1p2 · · · pni

form factors

Hybrids of on-shell states and off-shell operators:

Amplitudes Correlation functions



Minimal tree form factors

Dictionary:
Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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D-dim 4-dim

The map of D results from spinor representation of momentum p↵̇↵ = �̃↵̇
p�

↵
p . As for field

strength F , first one takes decomposition

Fµ⌫ ! F↵↵̇��̇ = ✏↵� f̄↵̇�̇ + ✏↵̇�̇f↵� (2.27)

to obtain self-dual and anti-self-dual components

f̄↵̇�̇ =
1

2
✏↵�F↵↵̇��̇ , f↵� =

1

2
✏↵̇�̇F↵↵̇��̇ . (2.28)

Then one makes use of LSZ reduction formula

h~p|Fµ⌫(0)|⌦i = (�i)["⌫pµ � "µp⌫ ] (2.29)

to get their final matrix elements

h~p|f↵�(0)|⌦i =

(
0, h = +

�
i

p
2
�↵�� , h = �

, h~p|f̄↵̇�̇(0)|⌦i =

(
i

p
2
�̃↵̇�̃�̇ , h = +

0, h = �
. (2.30)

Here, "µ denotes polarization vector of external gluon. We summarize the correspondence

between operators and on-shell spinors in Table 3, and the example on reconstructing op-

erators from spinor-helicity formalism will be given in upcoming context, see (2.41). The

correspondence listed in Table 3 is not limited within pure Yang-Mills theory, and the result

can be generalized when fermions enter in.

The above on-shell language has several advantages:

1. Equivalent relations between operators take much simpler forms. Equation of motion

holds automatically, and Bianchi identities are translated into Schouten identities:

DµF
µ⌫

! �[��]���̃
�̇ + h��i�̃�̇�

� = 0 ,

DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ ! ��̃↵̇�̃�̇�̃�̇(�↵✏�� + ��✏�↵ + ��✏↵�)

+ �↵����(�̃↵̇✏�̇�̇ + �̃�̇✏�̇↵̇ + �̃�̇✏↵̇�̇) = 0 .

2. Two operators that are equivalent up to higher length components have identical tree-

level minimal form factor, since F
(0)
OL

(1, .., n) = 0 when n < L. For example, following

three operators are equivalent at the level of length 2:

Tr(D⇢Fµ⌫D
⌫Fµ⇢),

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫),
1

4
@2Tr(Fµ⌫F

µ⌫) , (2.31)

and they have the same form factor for arbitrary helicity setting, like s12h12i2 for 1�2�

and 0 for 1�2+.

3. In the previous field theory classification we treat DF contraction and DD contraction

di↵erently. In on-shell language, DD contraction only contributes to scalar factor like

sij . For example:

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫) 2
⌅
Tr(Fµ⌫F

µ⌫)
⇧

) s212h12i
2
2
⌅
h12i2

⇧
.
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫
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properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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One can translate any local operator into “on-shell” kinematics:

3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The correspondence to the oscillator picture is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.12)

However, the interpretation changes significantly.

tr(F̄αβF
αβ) → λα1λ

β
1λ2αλ2β(η1)

4(η2)
4 = ⟨1 2⟩2(η1)4(η2)4 (3.13)

tr(F̄ β̇
α̇ F̄ γ̇

β̇
F̄ α̇
γ̇ ) → λ̃α̇1 λ̃1β̇λ̃

β̇
2 λ̃2γ̇ λ̃

γ̇
3 λ̃3α̇ = [1 2][2 3][3 1] (3.14)

tr(F̄α̇β̇F̄
α̇β̇) → λ̃α̇1 λ̃

β̇
1 λ̃2α̇λ̃2β̇ = [1 2]2 (3.15)

tr(F β
α F γ

β F α
γ ) → λα1λ1βλ

β
2λ2γλ

γ
3λ3α(η1)

4(η2)
4(η3)

4 = ⟨1 2⟩⟨2 3⟩⟨3 1⟩(η1)4(η2)4(η3)4

(3.16)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.17)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.18)
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Minimal tree form factors

Dictionary:
Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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D-dim 4-dim

The map of D results from spinor representation of momentum p↵̇↵ = �̃↵̇
p�

↵
p . As for field

strength F , first one takes decomposition

Fµ⌫ ! F↵↵̇��̇ = ✏↵� f̄↵̇�̇ + ✏↵̇�̇f↵� (2.27)

to obtain self-dual and anti-self-dual components

f̄↵̇�̇ =
1

2
✏↵�F↵↵̇��̇ , f↵� =

1

2
✏↵̇�̇F↵↵̇��̇ . (2.28)

Then one makes use of LSZ reduction formula

h~p|Fµ⌫(0)|⌦i = (�i)["⌫pµ � "µp⌫ ] (2.29)

to get their final matrix elements

h~p|f↵�(0)|⌦i =

(
0, h = +

�
i

p
2
�↵�� , h = �

, h~p|f̄↵̇�̇(0)|⌦i =

(
i

p
2
�̃↵̇�̃�̇ , h = +

0, h = �
. (2.30)

Here, "µ denotes polarization vector of external gluon. We summarize the correspondence

between operators and on-shell spinors in Table 3, and the example on reconstructing op-

erators from spinor-helicity formalism will be given in upcoming context, see (2.41). The

correspondence listed in Table 3 is not limited within pure Yang-Mills theory, and the result

can be generalized when fermions enter in.

The above on-shell language has several advantages:

1. Equivalent relations between operators take much simpler forms. Equation of motion

holds automatically, and Bianchi identities are translated into Schouten identities:

DµF
µ⌫

! �[��]���̃
�̇ + h��i�̃�̇�

� = 0 ,

DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ ! ��̃↵̇�̃�̇�̃�̇(�↵✏�� + ��✏�↵ + ��✏↵�)

+ �↵����(�̃↵̇✏�̇�̇ + �̃�̇✏�̇↵̇ + �̃�̇✏↵̇�̇) = 0 .

2. Two operators that are equivalent up to higher length components have identical tree-

level minimal form factor, since F
(0)
OL

(1, .., n) = 0 when n < L. For example, following

three operators are equivalent at the level of length 2:

Tr(D⇢Fµ⌫D
⌫Fµ⇢),

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫),
1

4
@2Tr(Fµ⌫F

µ⌫) , (2.31)

and they have the same form factor for arbitrary helicity setting, like s12h12i2 for 1�2�

and 0 for 1�2+.

3. In the previous field theory classification we treat DF contraction and DD contraction

di↵erently. In on-shell language, DD contraction only contributes to scalar factor like

sij . For example:

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫) 2
⌅
Tr(Fµ⌫F

µ⌫)
⇧

) s212h12i
2
2
⌅
h12i2

⇧
.
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2
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A good set of operators

For the convenience of the loop computation, it is also 
important to provide a set of “good” operators. 

Color sectors

Table 3. Tree-level minimal form factors of O00
8;1 and O

00
8;2.

helicity sector (�,�,+) (�,�,�)

Tr(D1F23D4F23F14) h12i3[13][23] s123h12ih13ih23i

Tr(D1F23D1F24F34) 0 s123h12ih13ih23i

Length 2

For length-2 operators, the tree-level minimal form factor involves two scattered gluons labeled

by 1 and 2. The only possible spinor bracket structures are h12i and [12], since forms like

h1|Pi|2] must vanish because Pi is a linear combination of p1 or p2.

For an operator with minimal dimension, the only possible expressions of the form factor

are h12i2 and [12]2, corresponding to projected operators tr(f↵�f↵�) and tr(f̄↵̇�̇ f̄
↵̇�̇). Their

sum is tr(F 2), and the di↵erence is ✏µ⌫⇢�tr(Fµ⌫F⇢�). In this paper we will not consider

operators with odd P -parity, so only the former is kept.

For an even operator with general dimension �, its minimal form factor is (s12)
��4
2 h12i2

for (�,�) and (s12)
��4
2 [12]2 for (+,+). Taking dimension 6 as an example, from s12h12i2 one

can read two holomorphic operators, which are self-dual components of the first two operators

in (2.31), and they are both equivalent to the descendant 1
4@

2tr(F 2), which is chosen as the

only independent length-2 operator at dimension 6:

s12h12i
2
!

(
tr(D��̇f↵�D��̇f�↵) ! tr(D⇢Fµ⌫D⌫Fµ⇢)

tr(D��̇f↵�D��̇f↵�) !
1
2tr(D⇢Fµ⌫D⇢Fµ⌫)

!
1

4
@2tr(Fµ⌫F

µ⌫). (2.32)

Length 3

As for the length-3 case, we introduce a new concept helicity sector to help the discussion.

The map from operator equivalent class to tree-level minimal form factor is not injective. For

example, for two inequivalent operators O00
8;1 and O

00
8;2 given in (B.2):

O
00

8;1 = Tr(D1F23D4F23F14) , O
00

8;2 = Tr(D1F23D1F24F34) . (2.33)

Their spinor structures for (�,�,�) and (�,�,+) are given in Table 3. One can see these

two operators are undistinguishable for helicity (�,�,�).

A natural solution is to create two new operators using O
00
8;1 and O

00
8;2 so that one has

nonzero tree-level minimal form factor only for (�,�,+) and its h.c., and the other is non-

zero only for (�,�,�) and its h.c. We say these two new operators belong to helicity sector

↵ and � respectively:

↵-sector : F
(0),min
O

6= 0 only for (�,�,+), (+,+,�),

�-sector : F
(0),min
O

6= 0 only for (�,�,�), (+,+,+).
(2.34)

In following context, we require each length-3 basis operator belongs to either ↵-sector or

�-sector.
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Helicity sectors

• Length of an operator:

len(O) = (# of F ’s) . (2.5)

We will also call an F in an operator together with all the derivatives in front of it, i.e.

(D . . .DF ), as one block. Obviously, the number of blocks is equal to the length of the

operator.

• Descendants. If an operator can be written as a total derivative of lower dimensional

operator, it is called a descendant. Since we consider Lorentz invariant and gauge

invariant operators, the overall derivatives are just covariant derivatives and always

appear in pairs so a descendant must take the form like

O = @2(O0) = D2(O0) . (2.6)

Below we also summarize the color factors for length-2 to length-4 operators:

1. The length-2 case has a unique color factor:

c(a, b) = Tr(T aT b) = �ab . (2.7)

2. In length-3 case there are two inequivalent color factors:

c(a, b, c) = Tr(T aT bT c) and Tr(T aT cT b) . (2.8)

Equivalently, one can introduce two other color factors as

fabc = Tr(T aT bT c)� Tr(T aT cT b) , dabc = Tr(T aT bT c) + Tr(T aT cT b) , (2.9)

which are fully anti-symmetric or symmetric in the color indices, respectively.

3. Length-4 is the first case where double traces appear. The color factors are:

Tr(T a1T a�(2)T a�(3)T a�(4)), Tr(T a1T a�̃(2))Tr(T a�̃(3)T a�̃(4)) , � 2 S3, �̃ 2 Z3 .

Our goal is to find a set of independent operator basis, which requires no equivalent

relation holds among the basis we choose. Two operators are said to be equivalent if their

di↵erence is proportional to the equation of motion (EoM) or Bianchi identity (BI):

EoM : DµF
µ⌫ = 0 , (2.10)

BI : DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ = 0 . (2.11)

Below we will use two di↵erent ways to do this classification: (1) field theory method, and

(2) on-shell spinor helicity method.

For the convenience of notation, we will often use integer numbers to represent Lorentz

indices and abbreviate product DiDjDk.... to Dijk.... For example,

Fµ1µ2Dµ1Dµ5F
µ3µ4Dµ2D

µ5Fµ3µ4 ) F12D15F34D25F34 . (2.12)

– 5 –



Examples

The nature of “helicity sector” for an operator is its holomorphic structure. Taking

decomposition (2.27) of a length-3 operator might create four possible components fff , f̄ f̄ f̄ ,

fff̄ , f̄ f̄f . For operator with even P -parity, conjugate components always appear in pairs so

there are only two inequivalent structures:

fff̄ + f̄ f̄f , fff + f̄ f̄ f̄ . (2.35)

We can see the former can only be detected by helicity (�,�,+) and (+,+,�), while the

latter only by helicity (�,�,�) and (+,+,+).

Let us redo the classification for the length-3 case. First we need to enumerate all

the possible spinor structures for 3-gluon form factors, which is an analogy to enumerating

primitive operators in the field theory method. There are two types of spinor structures

A1 = h12i3[13][23] , A2 = h12ih13ih23i , (2.36)

with their cyclic partners, consistent with primitive operator counting given in (2.17). To

establish the relation between A1, A2 and OP1,OP2 in (2.17), we need to take linear recom-

bination of OP1,OP2 to get new primitive basis that can be classified into helicity sectors:

↵-sector : OP1 �OP2 ! A1 = h12i3[13][23], (2.37)

�-sector : OP2 ! A2 = h12ih13ih23i. (2.38)

The second step is to add Mandelstam scalar factors to A1 and A2 until certain dimension

is reached, and this is analogous to insertingDD pairs to primitive operators in the field theory

method. Below we take dimension 10 case as an example to explain the details.

1. Let us enumerate scalar factors for spinor structures A1 and A2. For A1, dimension of

scalar factor is � � 8, so at � = 10 there are three choices: s12, s13, s23. Notice that

helicity setting (�,�,+) has broken the total bosonic symmetry, while the exchange

invariance between gluon 1 and 2 is still maintained. So 1,2-flipping property of kine-

matic part should be compatible with that of color factor. As a result, s12 and s13+ s23
correspond to f -sector while s13 � s23 corresponds to d-sector.

For A2, scalar factor has dimension � � 6 and must be cyclic symmetric as A2. At

� = 10 there are two choices: s212 + s223 + s213 and s12s23 + s12s13 + s23s13, which both

belong to f -sector.

In total, there are five possible expressions for the kinematic part of a 3-gluon form

factors:

f -sector : s12A1, (s13 + s23)A1, (s212 + s223 + s213)A2, (s12s23 + s12s13 + s23s13)A2,

d-sector : (s13 � s23)A1 . (2.39)

2. After obtaining above spinor-helicity forms, one can apply the dictionary in Table 2 to

read out the operators. Taking s12A1 as an example, we write the bracket form back
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An observation from (4.18) and (4.19) is that (Z(1)) j
i and (Z(2)) j

i representing mixing

from Oi to Oj can only be probed when F
(0)
Oj

does not vanish, i.e., the external helicity setting

matches the helicity sector of Oj . Since O8;0 belongs to both helicity sectors, the mixing from

other operators to it can be probed for both 1�2�3+ and 1�2�3�. This will provide another

consistency check of final results: di↵erent helicity settings must produce the same 3 ! 2

elements of renormalization matrix, namely (Z(2))
O8;0

O8;i
.

Let us show the mixing aspects of dimension-8 operators in detail by analyzing UV

divergence structure of their form factors. For the convenience of notation, we introduce the

scalar ratios

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

. (4.34)

First, for the case with helicity (�,�,+), the 2-loop UV divergences of O8;↵;f ;1 and O8;�;f ;1

at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3+)
���
1
✏ UV-div.

=F
(0)
O8;↵;f ;1

(1�, 2�, 3+)⇥
N2

c

✏

⇣
�

1

3vw
+

269

72

⌘
, (4.35)

F
(2),↵
O8;�;f ;1

(1�, 2�, 3+)
���
1
✏ UV-div.

=F
(0)
O8;↵;f ;1

(1�, 2�, 3+)⇥
N2

c

✏

⇣
�

1

vw

⌘
. (4.36)

Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;↵;f ;1

O8;↵;f ;1
=

269N2
c

72✏
, (Z(2))

O8;0

O8;�;f ;1
= �

N2
c

✏
. (4.37)

Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3�)
���
1
✏ UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

3uvw
+

5

2

⌘
, (4.38)

F
(2)
O8;�;f ;1

(1�, 2�, 3�)
���
1
✏ UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

uvw
+

25

12

⌘
. (4.39)

Here 1
uvw =

s3123
s12s23s13

is the ratio between tree form factors of O8;0 and O8;�;f ;1, and one reads

the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;�;f ;1

O8;↵;f ;1
=

5N2
c

2✏
,

(Z(2))
O8;0

O8;�;f ;1
= �

N2
c

✏
, (Z(2))

O8;�;f ;1

O8;�;f ;1
=

25N2
c

12✏
. (4.40)

As expected, (4.37) and (4.40) give the same 3 ! 2 elements (Z(2))
O8;0

O8;↵;f ;1
and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.
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Table 12. Final basis operators at dimension 8

Good basis operator F
(0)(�,�,+) F

(0)(�,�,�)
color

factor

O6;�;f ;1 = O
00
6;1 0 A2 fabc

O8;↵;f ;1 = O
00
8;1 �

1
2@

2
O6;�;f ;1 A1 0 fabc

O8;�;f ;1 =
1
2@

2
O6;�;f ;1 0 1

2s123 A2 fabc

O10;↵;f ;1 =
1
2@

2
O8;↵;f ;1

1
2s123A1 0 fabc

O10;↵;f ;2 = O
00
10;1 �O

00
10;5

1
2s123A1 u 0 fabc

O10;↵;d;1 = O
00
10;2 �O

00
10;3

1
2s123A1 (w � v) 0 dabc

O10;�;f ;1 =
1
4@

4
O6;�;f ;1 0 1

4s
2
123A2 fabc

O10;�;f ;2 = O
00
10;5 0 1

4s
2
123A2 (u2 + v2 + w2) fabc

The chosen basis operators are listed in following tables, labeled as O�0,↵/�,f/d,i, where

�0 is the dimension operator, ↵/� denotes helicity sector (introduced in (2.34) ), f/d de-

notes color factor fabc/dabc, and i denotes numbering. All the new basis operators are linear

combinations of old ones given in (B.1)-(??) labeled as O00

�0,i
.

In the following tables, we show the tree level minimal form factor of every basis operator

in spinor-helicity formalism. As for length-3 operators, spinor structure of minimal form factor

is universal within each given helicity sector. Concretely, ↵- and �-sectors, namely (�,�,+)-

and (�,�,�)-sectors, correspond to spinor factors:

↵ : A1 = h12i3[13][23], � : A2 = h12i3h13ih23i . (C.1)

Apart from that, each scalar factor is written as a power of s123 times a polynomial of ratio

variables u = s12
s123

, v = s23
s123

, w = s13
s123

.

For dimension 6, the only independent length-3 operator is

O6;�;f ;1 = O
00

6;1 (C.2)

with tree-level minimal form factor A2. Basis operators at dimension 8, 10, 12, 14, 16 are

given in Table 12, 13, 14, 15, 16.
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b.3) If there is no Ds acting on Fjk, it must take the form Tr
�
D4F12F23D1F34

�
. This

can be rewritten as follows:

Tr
�
D4F12F23D1F34

�
= �Tr

�
D1F24F23D1F34

�
+Tr

�
D2F14F23D1F34

�
.

The first term on the r.h.s is reduced to n̂d = 0 class [ Tr
�
F24F23F34

�
]. The second

term on the r.h.s belongs to the case b.1, since now F34 becomes the special Fjk and

there is a D1 acting on it. According to former discussion, this term eventually belongs

to case a.

For n̂d = 2 operators, we prefer configuration (Fij , Fkl, Fkl) instead of (Fij , Fjk, Fkl),

because the former one has a simpler expression under decomposition F↵↵̇��̇ = ✏↵� f̄↵̇�̇ +

✏↵̇�̇f↵� . The components from two Fkl’s must be both self-dual or both anti-self-dual because

contraction between f or f̄ and antisymmetric tensor gives zero. If we probe the minimal

form factor for configuration (�,�,+) or (+,+,�), the particle with the opposite helicity

must be emitted from Fij . That is why we choose the only independent n̂d = 2 primitive

operator from case a.

Above analysis shows there are only two independent primitive class as shown in (A.1).

Based on this, one can construct basis of length-3 operators for any given dimension �0

systematically by inserting pairs of identical Dis into the primitive ones until �0 is reached.

B Preliminary operator basis O
00

�0,i

In this appendix, we provide length-3 basis operators constructed by inserting DD pairs to

primary operators, as described in Section 2.2. The underlined number (n+m) represents

that there are n operators created from primitive operator OP1 = Tr(D1F23D4F23F14) and

m ones from the primitive operator OP2 = Tr(F12F13F23).

dim 6

O
00

6;1 =
1
3
Tr(F12F13F23) . (B.1)

dim 8

O
00

8;1 = Tr(D1F23D4F23F14); O
00

8;2 = Tr(D1F23D1F24F34) . (B.2)

dim 10

O
00

10;1 = Tr(D12F34D15F34F25), O
00

10;2 = Tr(D12F34D5F34D1F25), O
00

10;3 = Tr(D2F34D15F34D1F25);

O
00

10;4 = Tr(D12F34D1F35D2F45), O
00

10;5 = Tr(D12F34D12F35F45) . (B.3)

dim 12 (6 + 4)

O
00

12;1 = Tr(D123F45D126F45F36), O
00

12;2 = Tr(D123F45D16F45D2F36), O
00

12;3 = Tr(D13F45D126F45D2F36),

O
00

12;4 = Tr(D123F45D6F45D12F36), O
00

12;5 = Tr(D13F45D26F45D12F36), O
00

12;6 = Tr(D3F45D126F45D12F36);

O
00

12;7 = Tr(D12F45D13F46D23F56), O
00

12;8 = Tr(D12F45D123F46D3F56), O
00

12;9 = Tr(D123F45D12F46D3F56),

O
00

12;10 = Tr(D123F45D123F46F56) . (B.4)

dim 14 (10 + 5)
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Loop computation
On-shell unitarity



Unitarity cuts

Consider one-loop amplitudes:

What we really want



Unitarity cuts

Cutkosky cutting rule:

One can perform unitarity cuts: [Bern, Dixon, Dunbar, Kosower 1994]
[Britto, Cachazo, Feng 2004]

and from tree products, one derives the coefficients more directly.



Unitarity cuts
One can perform unitarity cuts:

and from tree products, one derives the coefficients more directly.

[Bern, Dixon, Dunbar, Kosower 1994]
[Britto, Cachazo, Feng 2004]

• Not trivial to reconstruct the full integrand and then reduce it, e.g. 
via IBP

• Need D-dimensional cuts (rational term issue)

Challenges at higher loops:



Unitarity-IBP strategy

We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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On-shell unitarity (cut) IBP reduction

Loop amplitudes = Sum (coefficient x IBP masters)

∑
i

ci Mi

what we want

symmetric property under label permutation. For example, kinematic part of single-trace

operators are invariant under Z4 cyclic permutation, and those of double trace operators are

invariant under 1 $ 2, 3 $ 4 permutation.

Form factors for one plus three minus or three plus one minus are not written in the table.

The results are all zero, because these eight operators do not have ffff̃ or f̃ f̃ f̃f components

under decomposition (2.27).

For length-2 and length-3 operators, the counting of operators in these two di↵erent

approaches agree with each other. However, this is not the case for higher length opera-

tors, where the evanescent operators appear. Such evanescent operators do not show up in

the 4-dim spinor approach, on the other hand the field theory approach is valid for generic

dimensions and can captures these operators. We leave the discussion to future work.

3 Two-loop form factor computation via unitarity

In this section, we compute the one and two-loop form factors of the high dimensional opera-

tors discussed in the last section. Our computation is based on the on-shell unitarity methods

[26–28], where the cut integrands are constructed by sewing tree-level components. Further-

more, we combine the unitary method together with the integration by parts (IBP) reduction

[29, 30]. This “unitarity-IBP” strategy not only makes the computation very e�cient, but

also provides important internal consistency checks for the results. Below we first outline the

main strategy of the computation and then apply it to the concrete form factor computations.

The work flow of our calculation can be illustrated as follows:

F
(l)
���
cut

=
Y

(tree blocks) = cut integrand

IBP with cuts
�����������!

X

cut permitted

ciIi
collect all cut channels
������������������!

X

complete

ciIi = F
(l) ,

where Ii are IBP master integrals. In the beginning, a particular cut channel (or cut configu-

ration) is chosen and one can calculate the cut integrand through tree-level data. In order to

avoid the issue of rational terms, here it is essential to use D-dimensional cut instead of four-

dimensional cut. The resulting cut integrand contains all the integrals whose topologies are

permitted by the chosen cut. As for the integral reduction, we use IBP method combined with

on-shell conditions for the cut propagators. Because terms proportional to cut inverse propa-

gators vanish under cut condition, the expressions of IBP relations can be sharply shortened

and therefore the computing e�ciency is improved. After the cut-constrained IBP reduction,

one obtains coe�cients ci of all the cut-permitted master integrals. Finally, by repeating the

process for di↵erent cut channels, coe�cients of all the master integrals are probed. See also

[31] for discussion.

In this paper we will mostly focus on the three-point form factors of length-three operators

up to two-loop level. In these cases only planar integrals appear (and therefore the planar cuts

are su�cient). This can be understood from a simple color analysis of Feynman diagrams that

– 18 –

Jin, GY 2018

Numerical unitarity:  Abreu, Cordero, Ita, Jaquier, Page, Zeng 2017

Boels, Jin, Luo 2018



Higgs plus three gluons

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The cuts needed in the 2-loop 3-point form factor calculation. For F (2)
O2

, only the first cuts
are needed.

p1

p2p3

(1)

q

q

p3 q

q

q

p3

p3

p3
p1

p2

p1 p1 p1

p2 p2 p2

(2) (2)′ (3) (3)′

Figure 5. Master integrals of F (2)
O2

captured by the s12 triple cut.

(4) (5) (6) (7)

Figure 6. Master integrals of F (2)
O2

that are not captured by the s12 triple cut.

for integral (5) and (6), since the permutation does not alter the diagram.

The cuts needed for the three-point two-loop form factors are given in Figure 4. These

cuts are all needed for the form factor of Tr(DFDF ), while for Tr(F 3) only the first four

cuts are needed. The form factor F (2)
O2

contains seven master integrals up to permutations of

external legs, as show in Figure 5 and Figure 6. Each cut fixes the coefficients of a subset

of these master integrals. For example, triple cut (b) of Figure 4 in s12 channel is given in

terms of five master integrals in Figure 5, and the coefficients of (2)′ (or (3)′) are related to

that of (2) (or (3)) by flipping symmetry p1 ↔ p2. If a master integral appears in the result

of several different cuts, its coefficient in these cuts must be the same.

The full two-loop 3-point form factor can be given as

F (2)
O2

(p1, p2, p3; q) =
1

2

( 7
∑

i=1

ciMi +
∑

i=2,5

ciMi

)

+ perms(p1, p2, p3) , (3.9)

where Mi correspond to the integrals with label (i) in Figure 5 and Figure 6.

4 Results

The method of last section computes the bare form factors. For the Higgs and three-gluon

amplitudes considered in this paper, all master integrals have been known explicitly in terms
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All cuts that are needed: H

4

l
p

FIG. 5. The master integrals of the 2-loop 3-point form factor.
The second double-box master has a numerator (l − p)2. A
propagator with a dot is a double propagator.

ter integrals have been obtained in terms of harmonic
polylogarithms [63, 64]. Thus we obtain the bare form
factors in explicit transcendental functions.

Divergence subtraction and checks.—The bare form fac-
tors contrain both ultraviolet (UV) and infrared (IR) di-
vergences. Our QCD results are regularized in the CDR
scheme, and we use MS renormalization scheme [65]. To
remove the UV divergences in the form factors, both the
gauge coupling and the operator require renormalization.
For the IR divergences, we apply the subtraction formula
by Catani [66].
At two-loop, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data,
which provides non-trivial consistency check of the re-
sults. From the 1/ϵ UV pole one can extract the two-loop
anomalous dimension of the operator, which is related to
the renormalization constant of the operator by

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the non-trivial two-loop QCD amplitudes of Higgs
plus three gluons with the operator O0 [24] (see also
[67]). For the latter, we match not only the divergences
but also the finite remainders exactly, which provides a
non-trivial check for our computation. The N = 4 com-
putations also reproduce those in [23] and [29].
As a further consistency check of the new results of

dimension-7 operators, we find the form factor results
satisfy exactly the linear relation (8). This is true already
for the expressions in terms of IBP master integrals.

Operator mixing at two loops.—At two-loop the operator
mixing appears. Let us first consider O2. Based on (8),
we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 . (15)

The new operator Õ2 has no mixing with others. The
anomalous dimension of Õ2 is identical to that of O0,

and the form factor of Õ2 is proportional to that of O0

as

FÕ2
= −

3

4
q2 FO0 . (16)

Below we only focus on the results for the operator O1.
The normalization constant − 3

4 is introduced such that

F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (17)

To study the operator mixing effect for O1, we
first consider the form factor with two external gluons

F (l)
O1

(1−, 2−). The tree and one-loop results are zero,
while at two-loop we obtain

F (2)
O1

(1−, 2−) =F (0)

Õ2
(1−, 2−)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ1) . (18)

This is completely an operator mixing effect between O1

and Õ2. Furthermore, for the three-point form factor

F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
(19)

= F (0)
O1

(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw

is precisely due to the operator mixing,
and its divergence is consistent with (18).
Similar to (15), we can define a new operator which

avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (20)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (21)

in which the two-loop anomalous dimensions is computed
using (14). We emphasize that it is an important consis-
tency check that the 1/ϵ2 term in the two-loop renormal-
ization constant cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and
subtracting the IR divergences, the two-loop finite re-

mainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of har-
monic polylogarithms, which can be simplified using the
symbology technique for transcendental functions [68].
The final expression takes a remarkable simple form. It
can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (22)

[Gehrmann, Remiddi 2001]

Master integrals are known in terms of 2d Harmonic polylogarithms.



Results and analysis

UV renormalization Finite remainder



Loop structure of form factors

General structure of (bare) amplitudes/form factors:

Loop correction = IR + UV + finite remainder + 𝒪(ϵ)

Mixed in dim-reg



Loop structure of form factors

IR structure is “universal”:

Anomalous dimension �(l) should be regular as ✏ ! 0, so it is expected that Z(1)
O

⇠ O(✏�1),

and the ✏�2 terms should cancel between Z(2)
O

and
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏ . Subtracting
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏

from Z(2)
O

, we get the intrinsic 2-loop divergence, which is proportional to the 2 loop anomalous

dimension and of order ⇠ O(✏�1).

The coupling taken by tree-level E-point form factor of length L operator O is gE�L. Per-

turbative expansion of form factors can be written either in bare quantities or in renormalized

quantities:

FO,R =

8
><

>:

ZOFO,B = ZO

⇣
↵0
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵0
4⇡F

(1)
O,B + (↵0

4⇡ )
2
F

(2)
O,B +O(↵3

0)
i

(in bare) ,
⇣
↵s
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵s
4⇡F

(1)
O,R + (↵s

4⇡ )
2
F

(2)
O,R +O(↵3

s)
i

(in renorm.) .

(4.6)

Relations between {F (l)
O,R} and {F (l)

O,B} can be obtained by comparing above two ex-

pressions order by order. Plugging in gauge coupling renormalization (4.1), one can get

renormalization of form factors up to two-loop level as:

F
(1)
O,R =F

(1)
O,B +

⇣
Z(1)
O

�
�

2

�0
✏

⌘
F

(0)
O

, (4.7)

F
(2)
O,R =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

⌘
F

(1)
O,B +

⇣
Z(2)
O

�
�

2

�0
✏
Z(1)
O

�
�

2

�1
2✏

+
�

2
(
�

2
+ 1)

�2
0

2✏2

⌘
F

(0)
O

.

(4.8)

Here � = E � L accounts for the di↵erence between number of external gluons and length of

the operator.

To determine the UV divergences, one needs to subtract the IR divergences. This can

be achieved thanks to the universality of the IR divergences, in the sense that they are

independent of the type of operators but only depend on the data of external particles. The

IR subtraction formula of renormalized E-gluon amplitudes up to 2-loop order is known

[63, 64] (see also [11]):

F
(1)
O,R = I(1)(✏)F (0)

O
+ F

(1)
O,fin +O(✏) , (4.9)

F
(2)
O,R = I(2)(✏)F (0)

O
+ I(1)(✏)F (1)

O,R + F
(2)
O,fin +O(✏) , (4.10)

where

I(1)(✏) = �
e�E✏

�(1� ✏)

⇣Nc

✏2
+

�0
2✏

⌘ EX

i=1

(�si,i+1)
�✏ , (4.11)

I(2)(✏) = �
1

2

�
I(1)(✏)

�2
�

�0
✏
I(1)(✏) +

e��E✏�(1� 2✏)

�(1� ✏)

⇣�0
✏

+
67

9
�

⇡2

3

⌘
I(1)(2✏)

+ E
e�E✏

✏�(1� ✏)

⇣⇣3
2

+
5

12
+

11⇡2

144

⌘
. (4.12)
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Anomalous dimension �(l) should be regular as ✏ ! 0, so it is expected that Z(1)
O

⇠ O(✏�1),

and the ✏�2 terms should cancel between Z(2)
O

and
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏ . Subtracting
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏

from Z(2)
O

, we get the intrinsic 2-loop divergence, which is proportional to the 2 loop anomalous

dimension and of order ⇠ O(✏�1).

The coupling taken by tree-level E-point form factor of length L operator O is gE�L. Per-

turbative expansion of form factors can be written either in bare quantities or in renormalized

quantities:

FO,R =

8
><

>:

ZOFO,B = ZO

⇣
↵0
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵0
4⇡F

(1)
O,B + (↵0

4⇡ )
2
F

(2)
O,B +O(↵3

0)
i

(in bare) ,
⇣
↵s
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵s
4⇡F

(1)
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Relations between {F (l)
O,R} and {F (l)

O,B} can be obtained by comparing above two ex-

pressions order by order. Plugging in gauge coupling renormalization (4.1), one can get

renormalization of form factors up to two-loop level as:
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(4.8)

Here � = E � L accounts for the di↵erence between number of external gluons and length of

the operator.

To determine the UV divergences, one needs to subtract the IR divergences. This can

be achieved thanks to the universality of the IR divergences, in the sense that they are

independent of the type of operators but only depend on the data of external particles. The

IR subtraction formula of renormalized E-gluon amplitudes up to 2-loop order is known

[63, 64] (see also [11]):

F
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Loop correction = IR + UV + finite remainder + 𝒪(ϵ)

[Catani 1998]

General structure of (bare) amplitudes/form factors:



UV renormalization: operator mixing

𝒪R,i = Z j
i 𝒪B,j

• From the renormalization matrix, one can 
obtain the dilatation operator: 𝒟 = −

d log Z
d log μ

• The anomalous dimensions are are given 
by the eigenvalues of dilatation operator:

𝒟 ⋅ 𝒪eigen = γ ⋅ 𝒪eigen

• Operators (of same classical dimension) 
can mix with each other at quantum level 
via renormalization: 

By subtracting the universal IR, one can obtain the UV 
renormalization matrix. 



Example

are associated with ↵3/2
s and contribute to D(3/2), while the diagonal elements are associated

with ↵2
s and contribute to D(2).

The dilation matrix is straightforward to obtain using (4.26), and it reads:
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ĝ
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where for the convenience of notation, we introduce newly normalized ‘t Hooft coupling �̂

and gauge coupling ĝ:

�̂ := Nc
↵s

4⇡
, ĝ :=

g

4⇡
. (4.32)

By diagonalizing the matrices, one obtains the anomalous dimensions (eigenvalues) as:

�̂(1)
O6

=

⇢
�
22

3
; 1

�
, �̂(2)

O6
=

⇢
�
136

3
;
25

3

�
. (4.33)

Dimension 8

There are two length-3 basis operators at dimension 8, which are given in Table 7. Together

with O8;0 =
1
2@

4
O4, they can be classified into two helicity sectors according to (2.34):

(f123;�,�,+) : O8;↵;f ;1, O8;0 ,

(f123;�,�,�) : O8;�;f ;1, O8;0 .
(4.34)

An observation from (4.19) and (4.20) is that (Z(1)) j
i and (Z(2)) j

i representing mixing

from Oi to Oj can only be probed when F
(0)
Oj

does not vanish, i.e., the external helicity setting

matches the helicity sector of Oj . Since O8;0 belongs to both helicity sectors, the mixing from

other operators to it can be probed for both 1�2�3+ and 1�2�3�. This will provide another

consistency check of final results: di↵erent helicity settings must produce the same 3 ! 2

elements of renormalization matrix, namely (Z(2))
O8;0

O8;i
.

Let us show the mixing aspects of dimension-8 operators in detail by analyzing UV

divergence structure of their form factors. For the convenience of notation, we introduce the

scalar ratios

u =
s12
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, v =
s23
s123

, w =
s13
s123

. (4.35)

First, for the case with helicity (�,�,+), the 2-loop UV divergences of O8;↵;f ;1 and O8;�;f ;1

at order O(✏�1) are
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Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:
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O8;↵;f ;1

O8;↵;f ;1
=

269N2
c

72✏
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✏
. (4.38)

Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are
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Here 1
uvw =

s3123
s12s23s13

is the ratio between tree form factors of O8;0 and O8;�;f ;1, and one reads

the renormalization matrix elements:
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As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
O8;0

O8;↵;f ;1
and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:
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=
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0 0 1
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At two-loop level, the Z(2) matrix is:
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Using (4.26), the dilation operator is given as
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one

obtains the anomalous dimensions up to O(�̂2):
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Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;↵;f ;1

O8;↵;f ;1
=

269N2
c

72✏
, (Z(2))

O8;0

O8;�;f ;1
= �

N2
c

✏
. (4.38)

Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3�)
���
1
✏
UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

3uvw
+

5

2

⌘
, (4.39)

F
(2)
O8;�;f ;1

(1�, 2�, 3�)
���
1
✏
UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

uvw
+

25

12

⌘
. (4.40)

Here 1
uvw =

s3123
s12s23s13

is the ratio between tree form factors of O8;0 and O8;�;f ;1, and one reads

the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;�;f ;1

O8;↵;f ;1
=

5N2
c

2✏
,

(Z(2))
O8;0

O8;�;f ;1
= �

N2
c

✏
, (Z(2))

O8;�;f ;1

O8;�;f ;1
=

25N2
c

12✏
. (4.41)

As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
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,

which is a non-trivial check of the result.

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,
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Z(2)
O8

���
1
✏
-part.

=
N2

c

✏

0

B@
�

34
3 0 0

�
1
3

269
72

5
2

�1 0 25
12

1

CA . (4.43)

Using (4.26), the dilation operator is given as

DO8 =

0

B@
�

22
3 �̂�

136
3 �̂2 0 0

�
�̂2

ĝ
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one

obtains the anomalous dimensions up to O(�̂2):
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Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:
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Here 1
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As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
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and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one

obtains the anomalous dimensions up to O(�̂2):
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Here 1
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is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these
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Here 1
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As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
O8;0

O8;↵;f ;1
and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,
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ĝ 0 �̂+ 25
3 �̂

2

1

CA . (4.44)

Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one
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Here 1
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Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are
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Here 1
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As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
O8;0
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,
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We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one

obtains the anomalous dimensions up to O(�̂2):
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Mixing matrix and spectrum

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:
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At two-loop level, the Z(2) matrix is:
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Using (4.25), the dilation operator is given as
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.29). Computing the eigenvalues of (4.42), one

obtains the anomalous dimensions up to O(�̂2):
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From now on we sort eigenvalues according to the lowest dimensions they emerge. For exam-

ple, O(�̂) anomalous dimension �
22
3 appears at dimension four, 1 appears at dimension six,

and 7
3 appears at dimension eight, so they are listed in the order of {�22

3 ; 1;
7
3}.

Dimension 10

There are five length-3 basis operators at dimension 10, as shown in Table 13. Together with

O10;0 =
1
4@

6
O4, they can be classified into three sectors:

(f123;�,�,+) : O10;0, O10;↵;f ;1, O10;↵;f ;2 ,

(f123;�,�,�) : O10;0, O10;�;f ;1, O10;�;f ;2 .

(d123;�,�,+) : O10;↵;d;1 .

(4.44)

Operators with di↵erent color factors will never mix with each other because of their opposite

C-parities, so renormalization matrices of fabc and dabc sectors can be written separately.

The computation of renormalization constant is the same as explained in the dimension-8

case and therefore not repeated here, see the discussion around (4.36) and (4.39). For the
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ĝ
7
3 �̂+ 269

18 �̂
2 10�̂2

�3 �̂2
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have
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Operators with di↵erent color factors will never mix with each other because of their opposite
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The computation of renormalization constant is the same as explained in the dimension-8

case and therefore not repeated here, see the discussion around (4.36) and (4.39). For the
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The dilation operator matrix can be obtained from (4.25), and for fabc sector it is

DO10,f =

0

BBBBBB@

�
22�̂
3 �
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3 �̂

2 0 0 0 0

�
�̂2

ĝ
7�̂
3 + 269

18 �̂
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�
209
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�̂2
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5579�̂2

4500
71�̂
15 + 2848
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Its eigenvalues give the anomalous dimensions:

�̂(1)
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Here eigenvalues emerging at di↵erent dimensions are divided by semicolons and those emerg-

ing at the same dimension are divided by commas.

For the singlet operator in dabc sector, one has:

�̂(1)
O10,d

=
13

3
, �̂(2)

O10,d
=

575

36
. (4.49)

Dimension 12

There are 10 length-3 basis operators at dimension 12, as shown in Table 14. Together

with O12;0 = 1
8@

8
O4, they can be classified into four sectors: (f123;�,�,+), (f123;�,�,�),

(d123;�,�,+), (d123;�,�,�).

We arrange the operators as {O12;0,O12;↵;f ;1, ...,O12;↵;f ;4,O12;�;f ;1, ...,O12;�;f ;3} for fabc-

sector, and {O12;↵;d;1,O12;↵;d;2,O12;�;d;1} for dabc-sector. Renormalization matrices of fabc

and dabc sectors at one-loop level are
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are
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ĝ �
6�̂
5 �

5579�̂2

4500
71�̂
15 + 2848

125 �̂
2 1493

300 �̂
2 5

9 �̂
2

�3 �̂2
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Dimension 12
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are
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We obtain new one- and two-loop results up to dimension16.

Results were known previously at one-loop up to dimension-8.
See e.g.: Gracey 2002; Dawson, Lewis, Zeng 2014



Mixing matrix and spectrum

Anomalous dimensions for length-3 operators up to dimension 16:
Table 8. Summary of anomalous dimensions for length-2 and length-3 operators. The lower dimension
operators will appear as descendants in the high dimension operators.

dim 4 6 8 10 12 14 16

�
(1)
f,↵ �
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3 /

7
3
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6576507756000

�
(1)
f,� �

22
3 1 /

17
3 9 43

5
67
6

�
(2)
f,� �

136
3

25
3 /

2195
72

79313
1800

443801
9000

63879443
1058400

�
(1)
d,↵ / / /

13
3

41
6

551±3
p

609
60

321±
p

1561
30

�
(2)
d,↵ / / /

575
36

46517
1440

5809305897±19635401
p
609

131544000
229162584707±225658792

p
1561

4130406000

�
(1)
d,� / / / / 9 /

67
6

�
(2)
d,� / / / /

150391
3600 /

174229
3150

Checks and analysis

Some consistency checks for our calculation have been mentioned above, and here we make a

summary:

1. The O(✏�2) poles of one-loop bare form factors and the O(✏�3),O(✏�4) poles of two-loop

bare form factors have infrared origin and therefore should be totally canceled after IR

subtraction procedure shown in (4.9), (4.10).

2. The O(✏�2) poles of two-loop UV divergences are totally determined by one-loop UV

divergences and �0, as shown in (4.24).

3. At a given dimension, mixing from descendent operators to non-descendent operators

never takes place, such as length-2 to higher length operators in (4.15).

4. As explained in the dimension eight case, mixing from general length-3 operators to

the unique length-2 operator can be probed by form factors with both (�,�,+) and

(�,�,�). So form factors under these two helicity settings should give the same length-

changing matrix elements Z(2)
3!2.

Our results satisfy all these requirements. Some further consistency checks will be also men-

tioned for the computation of finite remainder function in next section.

Let us make a few comments on the anomalous dimensions and dilatation matrix.

• In Table 8, the irrational number appears in the dimension 14 and 16 cases. As eigen-

values of dilatation operators, anomalous dimensions can be obtained straightforwardly

by solving characteristic equation. Alternatively, one can get their series expansions

in �̂ up to arbitrary finite order through perturbation method introduced in quantum

mechanics, which is equivalent to treat dilatation operator as a Hamiltonian of a finite

system, see e.g. [69]. From perturbative calculation, one can find that whether irrational

numbers appear in perturbative expansions is determined by characteristic equation of
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Finite remainder
The finite part of the form factor: 

Anomalous dimension �(l) should be regular as ✏ ! 0, so it is expected that Z(1)
O

⇠ O(✏�1),

and the ✏�2 terms should cancel between Z(2)
O

and
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏ . Subtracting
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏

from Z(2)
O

, we get the intrinsic 2-loop divergence, which is proportional to the 2 loop anomalous

dimension and of order ⇠ O(✏�1).

The coupling taken by tree-level E-point form factor of length L operator O is gE�L. Per-

turbative expansion of form factors can be written either in bare quantities or in renormalized

quantities:

FO,R =

8
><

>:

ZOFO,B = ZO

⇣
↵0
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵0
4⇡F

(1)
O,B + (↵0

4⇡ )
2
F

(2)
O,B +O(↵3

0)
i

(in bare) ,
⇣
↵s
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵s
4⇡F

(1)
O,R + (↵s

4⇡ )
2
F

(2)
O,R +O(↵3

s)
i

(in renorm.) .

(4.6)

Relations between {F (l)
O,R} and {F (l)

O,B} can be obtained by comparing above two ex-

pressions order by order. Plugging in gauge coupling renormalization (4.1), one can get

renormalization of form factors up to two-loop level as:

F
(1)
O,R =F

(1)
O,B +

⇣
Z(1)
O

�
�

2

�0
✏

⌘
F

(0)
O

, (4.7)

F
(2)
O,R =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

⌘
F

(1)
O,B +

⇣
Z(2)
O

�
�

2

�0
✏
Z(1)
O

�
�

2

�1
2✏

+
�

2
(
�

2
+ 1)

�2
0

2✏2

⌘
F

(0)
O

.

(4.8)

Here � = E � L accounts for the di↵erence between number of external gluons and length of

the operator.

To determine the UV divergences, one needs to subtract the IR divergences. This can

be achieved thanks to the universality of the IR divergences, in the sense that they are

independent of the type of operators but only depend on the data of external particles. The

IR subtraction formula of renormalized E-gluon amplitudes up to 2-loop order is known

[63, 64] (see also [11]):

F
(1)
O,R = I(1)(✏)F (0)

O
+ F

(1)
O,fin +O(✏) , (4.9)

F
(2)
O,R = I(2)(✏)F (0)

O
+ I(1)(✏)F (1)

O,R + F
(2)
O,fin +O(✏) , (4.10)

where

I(1)(✏) = �
e�E✏

�(1� ✏)

⇣Nc

✏2
+

�0
2✏

⌘ EX

i=1

(�si,i+1)
�✏ , (4.11)

I(2)(✏) = �
1

2

�
I(1)(✏)

�2
�

�0
✏
I(1)(✏) +

e��E✏�(1� 2✏)

�(1� ✏)

⇣�0
✏

+
67

9
�

⇡2

3

⌘
I(1)(2✏)

+ E
e�E✏

✏�(1� ✏)

⇣⇣3
2

+
5

12
+

11⇡2

144

⌘
. (4.12)

– 23 –

They provide two-loop H plus 3-gluon amplitudes for the top mass 
correction in the Higgs effective theory.

Table 11. Notation of form factors with three gluons, where ± indicates positive or negative helicity
gluons. f (0),±

O
are scalar factors that depend on the dimension of the operators.

external particles (1�, 2�, 3+) (1�, 2�, 3�)

form factors F
(l),+
O

F
(l),�
O

tree form factors h12i3[13][23]f (0),+
O

h12ih13ih23if (0),�
O

Conventions

Form factors have two independent helicity configurations: (�,�,+) and (�,�,�), and each

can be written as a Lorentz scalar function times h12i3[13][23] and h12ih13ih23i respectively.

For convenience, we will use upper subscript + and � to denote external helicity configuration

(�,�,+) and (�,�,�), see Table 11.

We have required each basis operator belongs to either ↵ or � helicity sector that are de-

fined in (2.34). An operator in ↵-sector has nonzero tree-level form factor of helicty (�,�,+)

and vanishing tree form factor of helicty (�,�,�), namely

F
(0),+
O↵-sector

6= 0 , F
(0),�
O↵-sector

= 0 . (5.1)

Thus we call (�,�,+) the matched helicity and (�,�,�) the unmatched helicity for ↵-sector.

Similarly, we call (�,�,�) the matched helicity and (�,�,+) the unmatched helicity for �-

sector. In the following context we discuss factors for matched and unmatched helicities

separately.

By subtracting the IR and UV divergences, the finite part of the form factor F
(`)
O,fin is

defined as in (4.9) - (4.10). We introduce the finite remainder function R
(2),±
O

as follows:

F
(2),+
O,fin = h12i3[13][23]⇥R

(2),+
O

⇥

(
f (0),+
O

↵-sector

f (0),+
OL=2

�-sector
, (5.2)

F
(2),�
O,fin = h12ih13ih23i ⇥R

(2),�
O

⇥

(
f (0),�
OL=2

↵-sector

f (0),�
O

�-sector
. (5.3)

Note that for the unmatched helicity cases, i.e. ↵-sector for (�,�,�) and �-sector for

(�,�,+), the tree form factors are zero, so we use the scalar factors of the length-2 op-

erator OL=2 to normalize the remainder function.

One can further decompose the two-loop remainder according to their trancendentality

degree as:

R
(2),±
O

=
4X

n=0

R
(2),±
O

���
deg-n

+R
(2),±
O

���
log2(�q2)

+R
(2),±
O

���
log(�q2)

. (5.4)

Here q2 = s123 = s12+s23+s13, and we separate the q2-dependent terms intoR(2)
O

��
log2(�q2)

and

R
(2)

��
log(�q2)

, so the rest terms R(2)
O

��
deg-n

only depend on ratio variables {u, v, w} introduced

in (4.35).
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An observation from (4.18) and (4.19) is that (Z(1)) j
i and (Z(2)) j

i representing mixing

from Oi to Oj can only be probed when F
(0)
Oj

does not vanish, i.e., the external helicity setting

matches the helicity sector of Oj . Since O8;0 belongs to both helicity sectors, the mixing from

other operators to it can be probed for both 1�2�3+ and 1�2�3�. This will provide another

consistency check of final results: di↵erent helicity settings must produce the same 3 ! 2

elements of renormalization matrix, namely (Z(2))
O8;0

O8;i
.

Let us show the mixing aspects of dimension-8 operators in detail by analyzing UV

divergence structure of their form factors. For the convenience of notation, we introduce the

scalar ratios

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

. (4.34)

First, for the case with helicity (�,�,+), the 2-loop UV divergences of O8;↵;f ;1 and O8;�;f ;1

at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3+)
���
1
✏ UV-div.

=F
(0)
O8;↵;f ;1

(1�, 2�, 3+)⇥
N2

c

✏

⇣
�

1

3vw
+

269

72

⌘
, (4.35)

F
(2),↵
O8;�;f ;1

(1�, 2�, 3+)
���
1
✏ UV-div.

=F
(0)
O8;↵;f ;1

(1�, 2�, 3+)⇥
N2

c

✏

⇣
�

1

vw

⌘
. (4.36)

Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;↵;f ;1

O8;↵;f ;1
=

269N2
c

72✏
, (Z(2))

O8;0

O8;�;f ;1
= �

N2
c

✏
. (4.37)

Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3�)
���
1
✏ UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

3uvw
+

5

2

⌘
, (4.38)

F
(2)
O8;�;f ;1

(1�, 2�, 3�)
���
1
✏ UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

uvw
+

25

12

⌘
. (4.39)

Here 1
uvw =

s3123
s12s23s13

is the ratio between tree form factors of O8;0 and O8;�;f ;1, and one reads

the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;�;f ;1

O8;↵;f ;1
=

5N2
c

2✏
,

(Z(2))
O8;0

O8;�;f ;1
= �

N2
c

✏
, (Z(2))

O8;�;f ;1

O8;�;f ;1
=

25N2
c

12✏
. (4.40)

As expected, (4.37) and (4.40) give the same 3 ! 2 elements (Z(2))
O8;0

O8;↵;f ;1
and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.
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Degree 4 part

The transcendentality degree-4 part is universal:

Table 10. Notation of form factors with three gluons, where ± indicates positive or negative helicity
gluons. f (0),±

O
are scalar factors that depend on the dimension of the operators.

external particles (1�, 2�, 3+) (1�, 2�, 3�)

form factors F
(l),+
O

F
(l),�
O

tree form factors h12i3[13][23]f (0),+
O

h12ih13ih23if (0),�
O

F
(2),�
O,fin = h12ih13ih23i ⇥R

(2),�
O

⇥

(
f (0),�
OL=2

↵-sector

f (0),�
O

�-sector
. (5.3)

Note that for the unmatched helicity cases, i.e. ↵-sector under (�,�,�) and �-sector under

(�,�,+), the tree form factors are zero, so we use the scalar factors of the length-2 operator

OL=2 to normalize the remainder function.

One can further decompose the two-loop remainder according to their trancendentality

degree as:

R
(2),±
O

=
4X

n=0

R
(2),±
O

���
deg-n

+R
(2),±
O

���
log2(�q2)

+R
(2),±
O

���
log(�q2)

. (5.4)

Here q2 = s123 = s12 + s23 + s13, and we separate the q2-dependent terms into R
(2)
O

��
log2(�q2)

and R
(2)

��
log(�q2)

, so the rest terms {R(2)
O

��
deg-n

} only depend on ratio variables:

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

. (5.5)

5.1 Transcendentality structure of remainder

In this subsection, we discuss the two-loop remainders according their transcendentality de-

grees. Explicit results of two-loop finite remainders are given in the ancillary file submitted

together with this paper. As an example, the result of O8;↵;f ;1 is explicitly given in Appendix

E.

Universal building blocks

For two-loop remainders under matched helicities, we find the transcendentality degree-4 part

of two-loop minimal form factors (under match helicity) always share a universal expression:

R
(2),±
O

���
deg-4

=�
3

2
Li4(u) +

3

4
Li4

⇣
�
uv

w

⌘
�

3

4
log(w)

h
Li3

⇣
�
u

v

⌘
+ Li3

⇣
�
v

u

⌘i

+
log2(u)

32

⇥
log2(u) + log2(v) + log2(w)� 4 log(v) log(w)

⇤

+
⇣2
8

⇥
5 log2(u)� 2 log(v) log(w)

⇤
�

1

4
⇣4 + perms(u, v, w) , (5.6)
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“Maximal transcendentality principle” [Kotikov, Lipatov, Onishchenko, Velizhanin 2004]

[Brandhuber, Kostacinska, Penante, Travaglini, Wen, Young 2014, 2016]

[Loebbert, Nandan, Sieg, Wilhelm, GY 2015, 2016]

It also appears as a universal function for length-3 operators in N=4 SYM



Lower degree parts

Degree-3 part and degree-2 part are consist of universal 
building blocks {T3, T2}, plus simple log functions:

which is expected and also appears in previous computations of lower dimension operators [12,

13, 31, 49, 51, 52].5 This implies the two-loop minimal form factor of a length-3 operator with

arbitrary dimension in pure Yang-Mills theory always obeys the maximal transcendentality

principle.

For two-loop remainders under unmatched helicities, there are no degree 4 or 3 parts,

in accord with the vanishing of ✏�4, ✏�3 poles in bare form factors. Finite remainders and

poles of the same degree originate from the same term in the master integral coe�cients, so

they usually vanish simultaneously. The absence of degree 4 and 3 poles at two-loop level

can be traced back to the absence of one-loop divergence. As mentioned in section 4.2, under

unmatched helicity the tree-level form factor is zero and the one-loop form factor only has

rational term, so divergence subtraction formula from (4.8) and (4.10) becomes

F
(2)
O,fin =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

� I(1)(✏)
⌘
F

(1)
O,B , (5.7)

which explicitly shows the leading singularity is of O(✏�2) from I(1)(✏)F (1)
B , and no term can

contribute to ✏�3, ✏�4.

Apart from maximal transcendental universality, degree-3 and degree-2 parts also signify

some universal structure, in the sense that complicated transcendental functions can always

be absorbed into a set of universal building blocks, and no other polylogarithm functions like

Li2,Li3 are left outside these basis functions.6

Building blocks of degree-3 part are six functions {T3[�(x),�(y),�(z)]|� 2 S3} together

with ⇡2 log and ⇣3, where T3(u, v, w) is given as

T3(u, v, w) :=
h
� Li3

⇣
�
u

w

⌘
+ log(u)Li2

✓
v

1� u

◆
�

1

2
log(u) log(1� u) log

✓
w2

1� u

◆

+
1

2
Li3

⇣
�
uv

w

⌘
+

1

2
log(u) log(v) log(w) +

1

12
log3(w) + (u $ v)

i

+ Li3(1� v)� Li3(u) +
1

2
log2(v) log

✓
1� v

u

◆
� ⇣2 log

⇣uv
w

⌘
. (5.8)

Similar function has appeared in the N = 4 form factors [45, 47, 49]. Building blocks of

degree-2 part are three functions {T2[�(x),�(y)]|� 2 Z3} together with log2 and ⇡2, where

T2(u, v) is given as (see also [13])

T2(u, v) :=Li2(1� u) + Li2(1� v) + log(u) log(v)� ⇣2 . (5.9)

When expanding the form factor remainders in these building blocks, the coe�cients in front

of them are just rational functions of u, v, w, see examples in Appendix E.

5The computation here in QCD using Catani IR subtraction scheme, and the expression is slightly di↵erent

(as purely a scheme change) from the N = 4 results which are based on the BDS subtraction scheme [70].
6When quark is added, T3, T2 no longer compose complete basis for polylogarithms, see [13].
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which is expected and also appears in previous computations of lower dimension operators [12,

13, 31, 49, 51, 52].5 This implies the two-loop minimal form factor of a length-3 operator with

arbitrary dimension in pure Yang-Mills theory always obeys the maximal transcendentality

principle.

For two-loop remainders under unmatched helicities, there are no degree 4 or 3 parts,

in accord with the vanishing of ✏�4, ✏�3 poles in bare form factors. Finite remainders and

poles of the same degree originate from the same term in the master integral coe�cients, so

they usually vanish simultaneously. The absence of degree 4 and 3 poles at two-loop level

can be traced back to the absence of one-loop divergence. As mentioned in section 4.2, under

unmatched helicity the tree-level form factor is zero and the one-loop form factor only has

rational term, so divergence subtraction formula from (4.8) and (4.10) becomes

F
(2)
O,fin =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

� I(1)(✏)
⌘
F

(1)
O,B , (5.7)

which explicitly shows the leading singularity is of O(✏�2) from I(1)(✏)F (1)
B , and no term can

contribute to ✏�3, ✏�4.

Apart from maximal transcendental universality, degree-3 and degree-2 parts also signify

some universal structure, in the sense that complicated transcendental functions can always

be absorbed into a set of universal building blocks, and no other polylogarithm functions like

Li2,Li3 are left outside these basis functions.6

Building blocks of degree-3 part are six functions {T3[�(x),�(y),�(z)]|� 2 S3} together

with ⇡2 log and ⇣3, where T3(u, v, w) is given as

T3(u, v, w) :=
h
� Li3

⇣
�
u

w

⌘
+ log(u)Li2

✓
v

1� u

◆
�

1

2
log(u) log(1� u) log

✓
w2

1� u

◆

+
1

2
Li3

⇣
�
uv

w

⌘
+

1

2
log(u) log(v) log(w) +

1

12
log3(w) + (u $ v)

i

+ Li3(1� v)� Li3(u) +
1

2
log2(v) log

✓
1� v

u

◆
� ⇣2 log

⇣uv
w

⌘
. (5.8)

Similar function has appeared in the N = 4 form factors [45, 47, 49]. Building blocks of

degree-2 part are three functions {T2[�(x),�(y)]|� 2 Z3} together with log2 and ⇡2, where

T2(u, v) is given as (see also [13])

T2(u, v) :=Li2(1� u) + Li2(1� v) + log(u) log(v)� ⇣2 . (5.9)

When expanding the form factor remainders in these building blocks, the coe�cients in front

of them are just rational functions of u, v, w, see examples in Appendix E.

5The computation here in QCD using Catani IR subtraction scheme, and the expression is slightly di↵erent

(as purely a scheme change) from the N = 4 results which are based on the BDS subtraction scheme [70].
6When quark is added, T3, T2 no longer compose complete basis for polylogarithms, see [13].
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The coefficients of {T3, T2} and log functions are non-trivial 
rational functions, which they contain spurious poles.



Example

which is to be cancelled by the degree one part.

1/um-pole

To analyze the 1
um -poles, one needs to consider the limit u ! 0. Polylogarithm functions can

be expanded in this limit, for example:

Li2(u+ v) = Li2(v)�
log(1� v)

v
u+O(u2) ,

T2(v, w) =
⇣
�

log v

1� v
�

log(1� v)

v

⌘
u+O(u2) .

(5.11)

From the expression in (E.2) , it seems that the degree-2 part of R(2),+
O8;↵;f ;1

has leading

pole at order O( 1
u6 ):

R
(2),+
O8;↵;f ;1

���
deg2

= T2(v, w)
⇣v2w2

2u4
�

5vw(v2 + w2)

3u4
+

11v2w2(v + w)

6u5
+

5v3w3

u6

⌘
+O(

1

u3
) . (5.12)

However, since T2(v, w) ⇠ O(u), it is actually O(u�5)

R
(2),+
O8;↵;f ;1

���
deg2

=
5v2(1� v)2

u5

⇣
�v log v � (1� v) log(1� v)

⌘
+O(u�4) . (5.13)

To cancel the O(u�5) term, one needs to consider the contribution from the degree-1 part.

Concretely, one can extract the residue for 1/u5 pole terms from various degree parts as:
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deg-1 : 5(v � 1)2v3 log(v)� 5(v � 1)3v2 log(1� v) ,

deg-2 : �5(v � 1)2v3 log(v) + 5(v � 1)3v2 log(1� v) ,

deg-3 : 0 .

(5.14)

One can check that after expanding the polylogarithm functions to appropriate orders in
u, all u�k poles vanish except for the physical 1/u pole. Explicitly, residues of sub-leading
poles contained by di↵erent transcendentality degree parts are:

1/u4-pole

deg-0 :
5
2
v
2(v � 1)2 ,

deg-1 : �5v2(v � 1)2 +
1
6
v
2(75v � 11)(v � 1) log(v)�

1
6
v(75v + 4)(v � 1)2 log(1� v) ,

deg-2 :
5
2
v
2(v � 1)2 �

1
6
v
2(75v � 11)(v � 1) log(v) +

1
6
v(75v + 4)(v � 1)2 log(1� v) ,

deg-3 : 0 ;

1/u3-pole

deg-0 :
1
12

(v � 1)v(60v � 1) ,

deg-1 : �
1
12

(v � 1)(86v2 + 41v � 11) log(1� v) +
1
12

v(86v2 � 9v � 20) log(v)�
2
3
(v � 1)v(15v + 1) ,

deg-2 :
1
12

(v � 1)(86v2 + 41v � 11) log(1� v)�
1
12

v(86v2 � 9v � 20) log(v) +
1
4
(v � 1)v(20v + 3) ,

deg-3 : 0 ;
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1/um-pole

To analyze the 1
um -poles, one needs to consider the limit u ! 0. Polylogarithm functions can

be expanded in this limit, for example:

Li2(u+ v) = Li2(v)�
log(1� v)

v
u+O(u2) ,

T2(v, w) =
⇣
�

log v

1� v
�

log(1� v)

v

⌘
u+O(u2) .

(5.11)
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has leading

pole at order O( 1
u6 ):

R
(2),+
O8;↵;f ;1

���
deg2

= T2(v, w)
⇣v2w2

2u4
�

5vw(v2 + w2)

3u4
+

11v2w2(v + w)

6u5
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5v3w3

u6

⌘
+O(

1

u3
) . (5.12)
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2
3
(v � 1)v(15v + 1) ,
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12
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Remark: to cancel spurious poles, one needs to combine 
functions of different transcendentality weights.

For dimension-8 operator, the apparent leading pole is        :1/u6



Example
For the         pole, there are non-trivial cancellation involving 
deg-0 to deg-3 parts:

1/u2-pole

deg-0 :
1
72

(93v2 + 81v � 52),

deg-1 :
1
12

(�31v2 � 37v + 11) +
(63v3 � 311v2 + 187v � 22)

36v
log(1� v)�

(63v3 � 302v2 + 246v � 29)
36(v � 1)

log(v),

deg-2 :
1
3
(1� 2v)Li2(v)�

1
6
v
2 log2(1� v) +

1
3
(v � 1)2 log(1� v) log(v)�

1
6
(v � 1)2 log2(v)�

1
18

⇡
2(v � 1)2

�
(63v3 � 347v2 + 223v � 34)

36v
log(1� v) +

63v3 � 338v2 + 282v � 41
36(v � 1)

log(v) +
1
72

(93v2 + 141v � 14),

deg-3 :
1
3
(2v � 1)Li2(v) +

1
6
v
2 log2(1� v)�

1
3
(v � 1)2 log(1� v) log(v) +

1
6
(v � 1)2 log2(v) +

1
18

⇡
2(v � 1)2

�
(3v2 � 3v + 1)

3v
log(1� v) +

3v2 � 3v + 1
3(v � 1)

log(v).

All these 1/um poles do not cancel within single transcendentality degree, but only after the

sum of di↵erent degree parts.

1/vm-pole

For 1/vm-poles the analysis is similar, one can take limit v ! 0 and expand polylogarithm
functions in v. After doing so, 1

v5 pole in degree-2 part vanishes. Residues of sub-leading
poles contained by four parts become:

1/v4-pole (5.15)

deg-0 : 0 ,

deg-1 : �3(u� 1)3u log(1� u) + 3(u� 1)2u2 log(u) ,

deg-2 : 3(u� 1)3u log(1� u)� 3(u� 1)2u2 log(u) ,

deg-3 : 0 ;

1/v3-pole (5.16)

deg-0 :
3
2
(u� 1)2u ,

deg-1 : �3u(u� 1)2 �
1
12

(17u+ 7)(u� 1)2 log(1� u) +
1
12

u(17u� 11)(u� 1) log(u) ,

deg-2 :
3
2
u(u� 1)2 +

1
12

(17u+ 7)(u� 1)2 log(1� u)�
1
12

u(17u� 11)(u� 1) log(u) ,

deg-3 : 0 ;

1/v2-pole (5.17)

deg-0 : �
1
24

(u� 1)2 ,

deg-1 :

�
133u2

� 98u+ 1
�
(u� 1) log(1� u)

72u
+

1
72

�
�133u2 + 137u� 40

�
log(u) +

1
12

(u� 7)(u� 1) ,

deg-2 : �

�
133u2

� 98u+ 1
�
(u� 1) log(1� u)

72u
+

1
72

�
133u2

� 137u+ 40
�
log(u)�

1
24

(u� 13)(u� 1) ,

deg-3 : 0 .

These 1
vm poles cancel after summing over degree 2,1,0 parts. Poles of 1

wm are related by

symmetry and are cancelled in the same way.
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1/u2



Summary and Outlook



Summary
• We preform explicit two-loop computation for a large class of high 

dimensional QCD operators and related Higgs+3-gluon amplitudes.

• On-shell methods (minimal form factor and unitarity-IBP strategy) 
are used.

On-shell 
Amplitudes

Off-shell 
Operators

Form Factors



Outlook

• Consider more generic operators: higher length (twist) operators, 
operators with Fermion or massive fields, non-local operators, etc.

• Explore hidden structure of renormalization matrices and finite 
remainders.

• Goal: provide a two-loop framework for general EFT renormalization 
and EFT amplitudes.



Outlook

• Consider more generic operators: higher length (twist) operators, 
operators with Fermion or massive fields, non-local operators, etc.

• Explore hidden structure of renormalization matrices and finite 
remainders.

Thank you!

• Goal: provide a two-loop framework for general EFT renormalization 
and EFT amplitudes.



Extra slides



Strategy of basis construction

Construct first “primitive operators” at a given length:

High dimension operators can be obtained by inserting pairs of     .Dμ

Can be generalized to high lengths. This strategy allows 
constructing basis operators of arbitrary high dimensions 
at a given length.

In preparation, Qingjun Jin, Ke Ren, GY, Rui Yu 

Length-2

Length-3

functions are also identified. Besides, we also provide a detail analysis for the cancellation of

spurious poles.

There are several straightforward generalizations based on this paper. In this paper, we

focus on the pure gluon sector of QCD. It is also important to consider the operators with

quark fields, similar to the dimension-6 operators considered to two-loop order in [13]. It

would be also interesting to consider general parity odd operators, such examples contain

the Weinberg’s operator [75], see e.g. [76] for a recent study. There have been many studies

of constructing operator basis in standard model EFT (see e.g. [77–85]) and consider their

renormalization using both conventional and on-shell formalism (see e.g. [86–94]). While the

state-of-the-art computation is mostly at one-loop order, it would be worth extending the

method developed in this paper to general two-loop renormalization in SMEFT (see also

[95]).
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A Primitive length-3 operators

In this appendix, we provide some details about the derivation of primitive length-3 operators

given in (2.17).

Recall that an operator is called primitive if it contains no DD contraction. Every non-

primitive operator belongs to a certain primitive class represented by the primitive operator

obtained from taking o↵ all its DD pairs. We denote the number of Ds in an primitive

operator as n̂d, so all these n̂d Ds are contracted with F s. For length-3 cases n̂d might take

values 0, 2, 4, 6. We will show there are only two independent primitive classes at length-3:

bOP1c = bTr
�
D1F23D4F23F14

�
c, bOP2c = bTr

�
F12F13F23

�
c . (A.1)

OP1 = Tr
�
F12F23F31

�
, OP2 = Tr

�
D1F23D4F23F14

�
. (A.2)

OP0 = Tr
�
F12F12

�
(A.3)

First, for n̂d = 6, the three field strengths must take forms like Fij , Fkl, Fmn. There is

at least one block contains nonzero covariant derivatives, so one can rewrite this block using

Bianchi identity. In this way one Lorentz index will be moved from a D to the F , which

means n̂d is reduced from 6 to 4. For example:

D35F12D16F34D24F56 = D35F12D16F34D25F46 �D35F12D16F34D26F45 .
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ExamplesO
00

14;11 = Tr(D123F56D124F57D34F67), O
00

14;12 = Tr(D1234F56D12F57D34F67), O
00

14;13 = Tr(D123F56D1234F57D4F67),

O
00

14;14 = Tr(D1234F56D123F57D4F67), O
00

14;15 = Tr(D1234F56D1234F57F67) . (B.5)

dim 16

O
00

16;1 = Tr(D12345F67D12348F67F58), O
00

16;2 = Tr(D12345F67D1238F67D4F58), O
00

16;3 = Tr(D1235F67D12348F67D4F58),

O
00

16;4 = Tr(D12345F67D128F67D34F58), O
00

16;5 = Tr(D1235F67D1248F67D34F58), O
00

16;6 = Tr(D125F67D12348F67D34F58)

O
00

16;7 = Tr(D12345F67D18F67D234F58), O
00

16;8 = Tr(D1235F67D148F67D234F58), O
00

16;9 = Tr(D125F67D1348F67D234F58),

O
00

16;10 = Tr(D15F67D12348F67D234F58), O
00

16;11 = Tr(D12345F67D8F67D1234F58), O
00

16;12 = Tr(D1235F67D48F67D1234F58),

O
00

16;13 = Tr(D125F67D348F67D1234F58), O
00

16;14 = Tr(D15F67D2348F67D1234F58), O
00

16;15 = Tr(D5F67D12348F67D1234F58);

O
00

16;16 = Tr(D1234F67D125F68D345F78), O
00

16;17 = Tr(D123F67D12345F68D45F78), O
00

16;18 = Tr(D1234F67D1235F68D45F78),

O
00

16;19 = Tr(D12345F67D123F68D45F78), O
00

16;20 = Tr(D1234F67D12345F68D5F78), O
00

16;21 = Tr(D12345F67D1234F68D5F78),

O
00

16;22 = Tr(D12345F67D12345F68F78) .

As discussed in Section 2, the above operators are not the final basis choice, we still need

to solve descendant relations as constraints and symmetrize the operators which do not have

symmetric properties. As shown in Appendix C, the final basis operators we choose are linear

combinations of these preliminary ones.

C Operator basis up to dimension 16

In Section 2.2 and 2.3 we’ve explained how to find length-3 basis operators from both field

theory method and on-shell method by showing an example at dimension 10, and these two

strategies apply for general operator dimensions.

As mentioned in (2.23) there is a freedom in choosing which non-descendant operators to

be replaced by the descendant ones. We require that the scalar factors f (0),±
O

(see Table 10,

here + for ↵-sector, � for �-sector) of the chosen operators should have the following forms:

1. fabc, (�,�,+): un(um + vm + wm) s(�0�8)/2
123 , (m 6= 1,m+ n 

�0�8
2 )

2. fabc, (�,�,�): um + vm + wm s(�0�6)/2
123 , (m 6= 1,m 

�0�6
2 )

3. dabc, (�,�,+): un(wm
� vm) s(�0�8)/2

123 , (m 6= 0,m+ n 
�0�8

2 )

4. dabc, (�,�,�): (u�w)(u� v)(v�w)(um + vm +wm) s(�0�6)/2
123 , (m 6= 1,m 

�0�12
2 )

Here u = s12
s123

, v = s23
s123

, w = s13
s123

, and �0 is the dimension of the operator.

Under this constraint we can reduce the number of candidate operators and do not violate

the completeness. However, there is still some choice freedom. For example, the number of

independent non-descendent operators for dimension-12 (dabc,��+)-sector is 1, but there are

two non-descendent scalar factors satisfying the stated forms: u(w � v)s2123 and w2
� v2s2123.

Here during computation we choose the former. Generally speaking, the choice freedom can

not be avoided, and the di↵erent operator choices correspond to di↵erent tree-level scalar

factor.
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Table 16. Final basis operators at dimension 16

Good basis operator F
(0)(�,�,+) F

(0)(�,�,�)
color

factor

O16;↵;f ;1 = 1
16@

8
O8;↵;f ;1

1
16s

4
123A1 0 fabc

O16;↵;f ;2 = 1
8@

6
O10;↵;f ;2

1
16s

4
123A1 u 0 fabc

O16;↵;f ;3 = 1
4@

4
O12;↵;f ;3

1
16s

4
123A1 u

2 0 fabc

O16;↵;f ;4 = 1
4@

4
O12;↵;f ;4

1
16s

4
123A1 (u2 + v

2 + w
2) 0 fabc

O16;↵;f ;5 = 1
2@

2
O14;↵;f ;5

1
16s

4
123A1 u

3 0 fabc

O16;↵;f ;6 = 1
2@

2
O14;↵;f ;6

1
16s

4
123A1 (u3 + v

3 + w
3) 0 fabc

O16;↵;f ;7 = O
00

16;1 �O
00

16;22
1
16s

4
123A1 u

4 0 fabc

O16;↵;f ;8 = O
00

16;1 +O
00

16;7 +O
00

16;10
1
16s

4
123A1 u(u3 + v

3 + w
3) 0 fabc

�O
00

16;17 �O
00

16;19 �O
00

16;22

O16;↵;f ;9 = O
00

16;1 +O
00

16;11 +O
00

16;15
1
16s

4
123A1 (u4 + v

4 + w
4) 0 fabc

�
1
2@

2
O14;�;f ;4

O16;↵;d;1 = 1
8@

6
O10;↵;d;1

1
16s

4
123A1 (w � v) 0 dabc

O16;↵;d;2 = 1
4@

4
O12;↵;d;2

1
16s

4
123A1 u(w � v) 0 dabc

O16;↵;d;3 = 1
2@

2
O14;↵;d;3

1
16s

4
123A1 u

2(w � v) 0 dabc

O16;↵;d;4 = 1
2@

2
O14;↵;d;4

1
16s

3
123A1 (w3

� v
3) 0 dabc

O16;↵;d;5 = O
00

16;7 �O
00

16;10 +O
00

16;20 �O
00

16;21
1
16s

4
123A1 u(w3

� v
3) 0 dabc

�
1
4@

4
O12;�;d;1

O16;↵;d;6 = O
00

16;11 �O
00

16;15 �O
00

16;20 +O
00

16;21
1
16s

3
123A1 (w4

� v
4) 0 dabc

O16;�;f ;1 = 1
32@

10
O6;�;f ;1 0 1

32s
5
123A2 fabc

O16;�;f ;2 = 1
8@

6
O10;�;f ;2 0 1

32s
5
123A2 (u2 + v

2 + w
2) fabc

O16;�;f ;3 = 1
4@

4
O12;�;f ;3 0 1

32s
5
123A2 (u3 + v

3 + w
3) fabc

O16;�;f ;4 = 1
2@

2
O14;�;f ;4 0 1

32s
5
123A2 (u4 + v

4 + w
4) fabc

O16;�;f ;5 = O
00

16;22 0 1
32s

5
123A2 (u5 + v

5 + w
5) fabc

O16;�;d;1 = 1
4@

4
O12;�;d;1 0 1

32s
5
123A2(u� v)(u� w)(v � w) dabc

O16;�;d;2 = O
00

16;17 �O
00

16;19 �O
00

16;20 +O
00

16;21 0 1
32s

5
123A2(u� v)(u� w)(v � w) dabc

⇥(u2 + v
2 + w

2)

blank for table

In our ancillary file which gives explicit expressions of two-loop finite remainders, the

operators are arranged in following orders: (f,↵)-sector, (f,�)-sector, (d,↵)-sector, (d,�)-

sector.

• dimension 8: 1+1+0+0

{O8;↵;f ;1,O8;�;f ;1}

• dimension 10: 2+2+1+0

{O10;↵;f ;1,O10;↵;f ;2,O10;�;f ;1,O10;�;f ;2,O10;↵;d;1}
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Example of cut

→ +c1 c2F
(0)
3 A

(0)
5

q
p1

p2

q qp1

p1

p2

p2

Figure 1. The triple cut for a two-loop form factor of tr(F 2) with two gluons.

(a) (b) (c) (d) (e)

Figure 2. The cuts needed in the 2-loop 2-point form factor calculation.

(1) (2) (3) (4) (5) (6)

Figure 3. The master integrals of the 2-loop 2-point form factor.

where the {i, j, k} in Ai are cyclic permutations of {1, 2, 3}. For form factors with only two

gluons, there is only one gauge basis B0 = C12.

After projection, the polarization vectors are contained in the basis Bα, and Fα
n contain

only scalar product of loop and external momenta, which can be reduced directly by IBP.

As a concrete example, we consider the triple cut for a two-loop form factor of tr(DFDF )

with two gluons as shown in Figure 1. Starting from the three-point tree form factor and five-

point tree amplitudes, one apply the polarization vector contraction rule (3.2), then project

to the gauge invariant basis B0, and finally apply IBP reduction. This cut allows us to fix

the coefficients of two masters integrals, the sunrise and the cross-ladder integrals, as shown

in Figure 1. To determine the coefficients of all master integrals, there are four other cuts to

consider, as shown in Figure 2.

There is an important new feature of form factor comparing to amplitudes computation.

Since the operator (or the Higgs particle) is color singlet, the leg carrying momentum q can

appear in the internal of the graph. Therefore one needs to consider the cuts (c) and (e) in

Figure 2. These two cuts can determine the coefficients of master integrals (3) and (5) in

Figure 3. Although these two master are the same integrals as (2) and (4) of Figure 3, their

have different physical origin of the planar diagrams, and their contribution must be sum

together. The full form factor F (2)
O1

can be given as

F (2)
O1

(p1, p2; q) =

( 4
∑

i=1

ciMi +
1

2

∑

i=5,6

ciMi

)

+ perms(p1, p2, p3) , (3.8)

where Mi correspond to the integrals with label (i) in Figure 3. Note the factor 1
2 is necessary
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FIG. 2. Cuts needed for the 2-point form factors.

After expansion, all polarization vectors are contained in
the basis Bα, and fα

n contain only scalar product of loop
and external momenta, which can be reduced directly by
IBP, using, e.g., public codes [61–64]. More details are
given in the Supplemental Material [65].

As an example, consider the triple cut of F (2)
O2

(p1, p2)

in Fig 1. Starting from the tree products F (0)
3 ·A(0)

5 and
using the procedure described above, this cut allows us
to fix the coefficients of the sunrise and the cross-ladder
integrals. To determine the coefficients of all master in-
tegrals, there are four other cuts to consider, as shown in
Fig 2.
Let us explain an important new feature of form factors

compared to amplitudes computation. Since the opera-
tor (i.e., Higgs particle) is a color singlet, the Higgs leg
can appear in the “internal” part of the graph, even for
the color-planar contribution. This explains the appear-
ance of the nonplanar cuts (c) and (e) in Fig. 2, which
determine the coefficients of master integrals (3) and (5),
respectively, in Fig. 3. Although integrals (3) [and (5)]
are mathematically equivalent to integrals (2) [and (4)],
they have different physical origin and should be consid-

ered separately. The full form factor F (2)
O2

is given as

F (2)
O2

(p1, p2) =

( 4
∑

i=1

ciMi +
∑

i=5,6

ci
2
Mi

)

+ perms(p1, p2),

(13)
where Mi correspond to the integrals with label (i), i =
1, . . . , 6, in Fig 3. Note the factor 1

2 is necessary for
integrals (5) and (6), since the permutation does not alter
the diagram.
For the three-point two-loop form factors, all the cuts

needed are given in Fig 4. The master integrals are shown
in Fig 5. While all cuts are needed for the form factor
of length-2 operator O0 and O2, only the first four cuts
contribute toO1, since the tree form factors ofO1 contain
at least three gluons. Accordingly, only the first seven
master integrals in Fig 5 appear in the form factor of O1.
The full form factor is obtained by adding all the master
integrals and taking into account the symmetry factors
properly, similar to the two-point case in (13).
We compute all two-loop form factors of Oi, i = 0, 1, 2

with two and three external gluons. We would like to

(1) (2) (3) (4) (5) (6)

FIG. 3. Master integrals of the 2-loop 2-point form factor.

FIG. 4. Cuts needed for the three-point form factors.

emphasize that the computation of the form factor for
O2 is more involved than the known result of O0 due to
extra derivatives in the operator.
The above strategy can be also applied to N = 4 SYM.

One can use four-dimensional helicity tree amplitudes
and form factors in the cuts, which corresponds to the
use of the four-dimensional helicity (FDH) scheme. With
this strategy we obtain the N = 4 form factors of the su-
per extension of O0 and O1 previously computed in [23]
and [30].
We provide explicit IBP coefficients of the form factor

of O1 and its N = 4 counterpart in the Supplemental
Material [65].

Divergence subtraction and checks.—The bare form fac-
tors contain both ultraviolet (UV) and infrared (IR) di-
vergences. The ϵ expansion of the bare form factors can
be obtained using [66, 67], where all master integrals were
computed. Our QCD results are regularized in the CDR
scheme, and we use the modified minimal subtraction
renormalization scheme [68]. To remove the UV diver-
gences, both the gauge coupling and the operator require
renormalization. For the IR divergences, we apply the
subtraction formula by Catani [69].
At two loops, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data.
The 1/ϵ UV poles contain the information of two-loop
anomalous dimensions, which are related to the renor-
malization constants of the operators as

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the nontrivial two-loop QCD amplitudes of Higgs plus
three gluons with the operator O0 [24] (see also [70]). We
match not only the divergences but also the finite remain-
ders exactly. Our N = 4 computations also reproduce
the results in [23] and [30].
As a further consistency check of the new results of

dimension-7 operators, we find they satisfy exactly the
linear relation (8). This is true already for the expressions
in terms of IBP master integrals.
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contribute toO1, since the tree form factors ofO1 contain
at least three gluons. Accordingly, only the first seven
master integrals in Fig 5 appear in the form factor of O1.
The full form factor is obtained by adding all the master
integrals and taking into account the symmetry factors
properly, similar to the two-point case in (13).
We compute all two-loop form factors of Oi, i = 0, 1, 2

with two and three external gluons. We would like to
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emphasize that the computation of the form factor for
O2 is more involved than the known result of O0 due to
extra derivatives in the operator.
The above strategy can be also applied to N = 4 SYM.

One can use four-dimensional helicity tree amplitudes
and form factors in the cuts, which corresponds to the
use of the four-dimensional helicity (FDH) scheme. With
this strategy we obtain the N = 4 form factors of the su-
per extension of O0 and O1 previously computed in [23]
and [30].
We provide explicit IBP coefficients of the form factor

of O1 and its N = 4 counterpart in the Supplemental
Material [65].

Divergence subtraction and checks.—The bare form fac-
tors contain both ultraviolet (UV) and infrared (IR) di-
vergences. The ϵ expansion of the bare form factors can
be obtained using [66, 67], where all master integrals were
computed. Our QCD results are regularized in the CDR
scheme, and we use the modified minimal subtraction
renormalization scheme [68]. To remove the UV diver-
gences, both the gauge coupling and the operator require
renormalization. For the IR divergences, we apply the
subtraction formula by Catani [69].
At two loops, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data.
The 1/ϵ UV poles contain the information of two-loop
anomalous dimensions, which are related to the renor-
malization constants of the operators as

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the nontrivial two-loop QCD amplitudes of Higgs plus
three gluons with the operator O0 [24] (see also [70]). We
match not only the divergences but also the finite remain-
ders exactly. Our N = 4 computations also reproduce
the results in [23] and [30].
As a further consistency check of the new results of

dimension-7 operators, we find they satisfy exactly the
linear relation (8). This is true already for the expressions
in terms of IBP master integrals.

There are masters that do not contain this triple cut, such as:

need different cuts

Tree product sum internal 
helicities

project to gauge 
invariant basis

IBP for the cut 
integrand

We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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UV renormalization: operator mixing

Form factor renormalization:

1. For length L = 2, there is only one independent operator at dimension 2�, i.e. the

descendant @��2trF 2. Since the length-2 operator is an eigenstate of anomalous di-

mension matrix, the length-2 operator will not mix into higher length operators along

RG flow, therefore,

Z2!L0 = 0 , L0
� 3 . (4.15)

2. On the other hand, a high length operator can mix into length-2 ones, which starts

from two-loop order (since Z(1)
L!2 = 0 for L > 2). The nonzero 2-loop mixing matrix

elements Z(2)
3!2 can be probed by two-gluon form factors of length-3 operators.

3. Similarly, operators of high length L > 3 begin to mix into length-3 ones at L� 2 loop

order, since Z(`<L�2)
L!3 = 0 (which can be seen from a Feynman diagram analysis). So

up to 2-loop order, the only higher length operators contributing to Z(2)
L!3 are length-4

ones. Length changing elements Z(2)
4!3 can be probed by 3-gluon form factors of length-4

operators.

For form factors with operator mixing, the previous renormalization formulae (4.7)-(4.8)

are generalized to

F
(1)
Oi;R

= F
(1)
Oi;B

+
X

j

(Z(1)) j
i F

(0)
Oj ;B

�
�i
2

�0
✏
F

(0)
Oi;B

, (4.16)

F
(2)
Oi;R

= F
(2)
Oi;B

+
X

j

(Z(1)) j
i F

(1)
Oj ;B

�
�
1 +

�i
2

��0
✏
F

(1)
Oi;B

(4.17)

+
X

j

h
(Z(2)) j

i �
�j
2

�0
✏
(Z(1)) j

i

i
F

(0)
Oj ;B

+
h
�

�i
2

�1
2✏

+ (1 +
�i
2
)
�i
2

�2
0

2✏2

i
F

(0)
Oi;B

,

where �k = E �Lk with Lk the length of Ok. In the case of minimal form factors of length-3

operators (with E = Li = 3), they reduce to

F
(1)
Oi,R

= F
(1)
Oi,B

+
X

j

(Z(1)
3!3)

j
i F

(0)
Oj

, (4.18)

F
(2)
Oi,R

= F
(2)
Oi,B

+
X

j

(Z(1)
3!3)

j
i F

(1)
Oj ,B

�
�0
✏
F

(1)
Oi,B

+
X

j

(Z(2)
3!3)

j
i F

(0)
Oj

+ (Z(2)
3!2)

0
i F

(0)
O0

. (4.19)

Here we label the only length-2 operator as O0.

In the operator mixing case, we generalize the anomalous dimension (4.4) by introducing

the dilation operator as

D = �
d logZ

d logµ
, (4.20)

and the eigenvalues of the dilatation operator are anomalous dimensions. The expansion of

dilatation operator may contain terms with odd power of coupling g ⇠ ↵1/2
s :

D =
1X

n=1

⇣↵s

4⇡

⌘n
D(n) +

⇣↵s

4⇡

⌘n+ 1
2
D(n+ 1

2 )

�
. (4.21)
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The upper bound of k in L ! (L� k) cases is based on the fact that the length of terminal

operator L � k should be no shorter than 2, and the loop order of a L ! (L � k) process is

no less than k + 1.

Let us give a few general remarks regarding (4.15).

1. For length L = 2, there is only one independent operator at dimension 2�, i.e. the

descendant @��2trF 2. Since the length-2 operator is an eigenstate of anomalous di-

mension matrix, the length-2 operator will not mix into higher length operators along

RG flow, therefore,

Z2!L0 = 0 , L0
� 3 . (4.16)

2. On the other hand, a high length operator can mix into length-2 ones, which starts

from two-loop order (since Z(1)
L!2 = 0 for L > 2). The nonzero 2-loop mixing matrix

elements Z(2)
3!2 can be probed by two-gluon form factors of length-3 operators.

3. Similarly, operators of high length L > 3 begin to mix into length-3 ones at L� 2 loop

order, since Z(`<L�2)
L!3 = 0 (which can be seen from a Feynman diagram analysis). So

up to 2-loop order, the only higher length operators contributing to Z(2)
L!3 are length-4

ones. Length changing elements Z(2)
4!3 can be probed by 3-gluon form factors of length-4

operators.

For form factors with operator mixing, the previous renormalization formulae (4.7)-(4.8)

are generalized to

F
(1)
Oi;R

= F
(1)
Oi;B

+
X

j

(Z(1)) j
i F

(0)
Oj ;B
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2
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F

(0)
Oi;B
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F
(2)
Oi;R

= F
(2)
Oi;B

+
X

j

(Z(1)) j
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(1)
Oj ;B

+
X

j

h
(Z(2)) j
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�j
2

�0
✏
(Z(1)) j

i

i
F

(0)
Oj ;B
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�
�
1 +

�i
2

��0
✏
F

(1)
Oi;B

+
h
�

�i
2

�1
2✏

+ (1 +
�i
2
)
�i
2

�2
0

2✏2

i
F

(0)
Oi;B

.

where �k = E �Lk with Lk the length of Ok. In the case of minimal form factors of length-3

operators (with E = Li = 3), they reduce to

F
(1)
Oi,R

= F
(1)
Oi,B

+
X

j

(Z(1)
3!3)

j
i F

(0)
Oj

, (4.19)

F
(2)
Oi,R

= F
(2)
Oi,B

+
X

j

(Z(1)
3!3)

j
i F

(1)
Oj ,B

�
�0
✏
F

(1)
Oi,B

+
X

j

(Z(2)
3!3)

j
i F

(0)
Oj

+ (Z(2)
3!2)

0
i F

(0)
O0

. (4.20)

Here we label the only length-2 operator as O0.

In the operator mixing case, we generalize the anomalous dimension (4.4) by introducing

the dilation operator as

D = �
d logZ

d logµ
, (4.21)
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As we consider operators only up to length-3, the dilatation operator (4.24) in this section

is defined as a truncated version as:

D(1) = 2✏
⇣
Z(1)
2!2 + Z(1)

3!3

⌘
,

D( 32 ) = 3✏
⇣
Z(1)
2!3 + Z(2)

3!2

⌘
= 3✏Z(2)

3!2, (4.26)

D(2) = 4✏
⇣
Z(2)
2!2

��
1
✏
�part

+ Z(2)
3!3

��
1
✏
�part

⌘
.

Note that Z(1)
2!3 inD

( 32 ) vanishes as mentioned in (4.16). Correction with high length operators

will be discussed in Section 4.3 and Appendix D.

Dimension 4

At dimension 4 there is only one independent operator O4 = Tr(F 2). Here we briefly review

the result and also help to clarify the notations. The renormalization constants up to two

loops are:5

Z(1)
O4

= �
11Nc

3✏
= �

�0
✏
, Z(2)

O4
=

121N2
c

9✏2
�

34N2
c

3✏
=

�2
0

✏2
�

�1
✏
. (4.27)

The double pole term of Z(2) is determined by the one-loop result as expected. According

to (4.5) the anomalous dimension at 1-loop and 2-loop level can be read out:

�(1)
O4

= �2�0 = �
22

3
Nc , �(2)

O4
= �4�1 = �

136

3
Nc . (4.28)

Dimension 6

At dimension 6 there is one length-2 descendent operator @2tr(F 2) and one length-3 operator

tr(F 3) belonging to �-helicity sector according to (2.34):

O6;0 = @2
O4 = @2Tr(F 2) , O6;�;f ;1 =

1

3
Tr(F 3) . (4.29)

Two-loop minimal form factor of tr(F 3) was calculated in [12]. The renormalization matrix

at one and two-loop level are:

Z(1)
O6

=
Nc

✏

 
�

11
3 0

0 1
2

!
, Z(2)

O6

��
1
✏
-part.

=
N2

c

✏

 
�

34
3 0

�1 25
12

!
. (4.30)

At one-loop level there is no mixing, and as expected Z(2)
2!3 = 0. As defined in the perturbative

expansion (4.23)-(4.24), the o↵-diagonal elements of the first column belong to Z(2)
3!2 so they

5In fact, O4 is just the Lagrangian of Yang-Mills theory, so an insertion of O4 is equivalent to adding a

vertex in Feynman diagrams. The scaling behavior of renormalizable Yang-Mills Lagrangian is completely

determined by the running of gauge coupling, and therefore one cannot read any additional information from
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For bare form factors, O(✏�2) poles of 1-loop results and O(✏�4),O(✏�3) poles of 2-loop results

come exactly from the infrared divergence and therefore they should be canceled according to

the subtraction given in (4.9)and (4.10), which provides a consistency check of computation.

Operator mixing structure

Next we consider the more general cases where di↵erent operators can mix with each other

through loop corrections. In such case, a multi-operator generalization of renormalization

multiplier ZO is needed. The main picture of the above discussion still applies, except that

the renormalization constant should be taken as a matrix :

OR,i = Z j
i OB,j . (4.13)

Operator mixing can (and only can) take place among operators with the same canonical
dimension. Also, operators with di↵erent lengths but same dimension can mix with each
other. To put the discussion in a general context, we will use O

L
i to denotes a length-L

operator labeled by i. We denote the mixing of length-L operator into length-L0 operator

at `-loop level as Z(`)
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3Here we suppose the definition of (classical) operators (as in (2.3)) contains no gauge coupling. One may

absorb certain powers of coupling g
m in operators in the way such that OL
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holds for di↵erent lengths L
0. This may be understood as a change of the definition of renormalization

constants. More discussion on this will be given in Section 4.3 and Appendix D.
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and the eigenvalues of the dilatation operator are anomalous dimensions. The expansion of

dilatation operator may contain terms with odd power of coupling g ⇠ ↵1/2
s :

D =
1X
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⌘n
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2
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�
. (4.22)

Up to O(↵2
s) order, D

(1),D( 32 ),D(2) can be read out from (4.1) and (4.15):

D(1) = 2✏Z(1)
L!L, D( 32 ) = 3✏

⇣
Z(1)
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⌘
, (4.23)
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⌘
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The requirement that D(`) is regular as ✏ ! 0 predicts several analytical structures of

renormalization matrices:

1. Two-loop order length-changed mixing Z(2)
L!(L�1) has no ✏�2 pole.

2. The ✏�2 pole of Z(2)
L!L is totally determined by the 1-loop data:

Z(2)
L!L

��
1
✏2

�part
�

1

2
(Z(1)

L!L)
2 +

�0
2✏

Z(1)
L!L = 0 . (4.25)

These provide useful consistency checks of the calculation.

4.2 Anomalous dimension matrices and eigenvalues

Now we apply the above strategy to compute the results of dilation operators of length-3 oper-

ators up to canonical dimension 16 and up to 2 loop order. Their eigenvalues, i.e. anomalous

dimensions, are also computed up to O(↵2
s). The renormalization of the dimension-four oper-

ator is well known, see e.g. [11], and one-loop renormalization for dimension 6 and 8 operators

were considered in [65–69].4 The two-loop renormalization for dimension-6 operators (also

with quark operators) were obtained recently in [12, 13]. Other results for operators with di-

mension 8-16 are given for the first time to our knowledge. These results have passed various

non-trivial consistency checks, which are listed in the end of this subsection.

The basis operators we choose are given in Appendix C, labeled as O�,↵/�,f/d,i which

means it has dimension �, color factor fabc/dabc, numbering i and belongs to helicity sector

↵/� as introduced in (2.34).

4Operator renormalization has also been considered in higher dimensional (6D and 8D) gauge theories in

[70, 71]. Techniques of using six dimensional spinor helicity formalism have been developed to compute form

factors in pure YM theory in [72].
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of fabc and dabc sector at one-loop level are
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
, (4.66)
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are
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Dim-16 at 1-loop:



Mixing matrix and spectrum

Dim-16 at 2-loop:
where two block matrices M , N are
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and
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1
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(4.68)

The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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where two block matrices M , N are

M =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
34
3 0 0 0 0 0 0 0 0 0

�
1
3

269
72 0 0 0 0 0 0 0 0

�
209
900 �

5579
18000

712
125 0 0 0 0 0 0 0

�
31
180

53
3600 �

36227
28800

3575983
432000

9793
21600 0 0 0 0 0

�
181
900 �

60979
36000

78487
72000 �
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704167
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�
523
3920 �
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29635200

605939
1975680 �

64128769
24696000
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29635200
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�
809
5600 �

12166789
21168000
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7056000 �

73487
36750 �

9182209
7056000

37249
156800

26302879
2116800 0 0 0

�
269
2520

125599
10584000

50369
1323000 �

98317
1176000

73489
392000 �

8625329
3528000 �

97913
756000

90760559
7408800

25354501
21168000

40519
56448

�
19717
176400

3374557
7408800 �

102465523
74088000

5260289
1764000 �

6201763
4939200 �

115070197
24696000

10687837
9261000

6498287
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1025255701
74088000 �

25511
493920

�
19717
176400 �

2733089
9261000

88146899
74088000 �

5678651
3528000 �

1966229
12348000

17842339
18522000 �

6878309
4630500 �

58976629
37044000

8569667
9261000

179275483
12348000

�1 0 0 0 0 0 0 0 0 0

�
19
36

139
2400

499
800 0 0 0 0 0 0 0

�
1
3

4
15

121
400

637
800 �

211
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�
209
900

6299
21168

6767
35280

71063
88200 �

34723
176400

25841
58800 �

36091
264600 0 0 0

�
31
180

13843
105840

8317
15120 �

797
35280

5477
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2417
3528

611
105840

13975
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5377
10584 �

3581
10080

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0
5
2 0 0 0 0

1493
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5
36 0 0 0

13
16

16877
14400 �

7319
14400 0 0

1229
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115501
43200 �

9803
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37547
78400

75071
39200 �

497
576

103
1440 0
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3360

17401
6720
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225

1187
2880 0

184259
1058400

65297
23520 �

420373
211680

248791
235200 �

2747
9408

347437
1764000
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302400 �

230747
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�
143
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120 �

15643
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79313
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21600 �
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151200
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15120
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216 �

3661627
1411200

63879443
4233600

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Z(2)
O16,d

���
1
✏�part.

=
N2

c

✏

0

BBBBBBBBBBB@

575
144 0 0 0 0 0 0 0

�
23347
14400

46517
5760 0 0 0 0 487

1800 0
3883
4032 �

171823
37800

36597791
3024000 �

29581
16800 0 0 �

1789
4800 0

�
9271
11200 �

35239
50400

74209
168000

188599
18900 0 0 2101

4800 0
3287
84000 �

2048479
1176000

422283
392000 �

2501309
1764000

49211483
3528000

293221
392000

2764807
2116800 �

61
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1555357
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16831
29400 �

239641
75600 �

381527
2116800

5839021
423360 �

5807
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7200 �

2591
2400 0 0 0 0 150391

14400 0
�

45083
44100

16564
11025
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117600

380791
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1063
29400 �

545189
352800

1176541
1058400

174229
12600

1

CCCCCCCCCCCA

.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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of fabc and dabc sector at one-loop level are

Z(1)
O16,f

=
Nc

✏

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
11
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 7
6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
3
5

71
30 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �
5
4

221
60 �

1
6 0 0 0 0 0 0 0 0 0 0

0 �1 1
10 �

19
30

37
10 0 0 0 0 0 0 0 0 0 0

0 17
84 �

17
28 �

47
70 �

17
28

337
84

5
14 0 0 0 0 0 0 0 0

0 �
3
20

9
20 �1 �

31
20 �

1
4

31
6 0 0 0 0 0 0 0 0

0 13
30 �

13
15

13
10 �

13
10 �

5
2

13
15

961
210

8
15 0 0 0 0 0 0

0 71
105 �

212
105

141
35 �

71
35 �

141
35

79
105 �

38
35

223
35

5
14 0 0 0 0 0

0 17
70

19
105 �

19
70 �

121
70 �

11
42

16
105 �

6
5

127
210

559
105 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �1 17
6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 �2 9
2 0 0

0 0 0 0 0 0 0 0 0 0 1
3 �2 1

3
43
10 0

0 0 0 0 0 0 0 0 0 0 1
2 �

5
2

5
2 �

11
4

67
12

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(4.64)

Z(1)
O16,d

=
Nc

✏

0

BBBBBBBBBBBB@

13
6 0 0 0 0 0 0 0

�
1
2

41
12 0 0 0 0 0 0

1
2 �2 301

60 �
2
3 0 0 0 0

�1 1 �
3
10

25
6 0 0 0 0

�
2
5

1
5 0 �

1
5

307
60

7
20 0 0

1
3 �1 1

2 �
7
3

13
12

67
12 0 0

0 0 0 0 0 0 9
2 0

0 0 0 0 0 0 7
12

67
12

1

CCCCCCCCCCCCA

. (4.65)

The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
, (4.66)
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Orders of spurious poles

Table 11. Powers of leading spurious poles contained by individual degree parts. �0 denotes the
canonical dimension of the operator.

operator external u v, w u+ v, u+ w

O�0,↵,f
(�,�,+) �0

2 + 2 �0
2 + 1 2

(�,�,�) �0
2 + 1 �0

2 + 1 0

O�0,�,f
(�,�,+) �0

2 + 1 �0
2 2

(�,�,�) �0
2

�0
2 0

O�0,↵,d
(�,�,+) �0

2 + 1 �0
2 1

(�,�,�) �0
2 � 1 �0

2 � 1 0

O�0,�,d
(�,�,+) �0

2
�0
2 � 1 1

(�,�,�) �0
2 � 2 �0

2 � 2 0

which cancel only after the contributions from di↵erent transcendentality degrees are added

together.

Spurious poles exist at transcendentality degree 3,2,1,0. They contain high order poles

of un, vn, wn with n > 1, as well as linear combination poles u+ v and u+w. In Table 11 we

summarize the leading spurious poles in the form factor remainders.

A non-trivial feature is that the cancellation of these spurious poles takes place across

di↵erent transcendentality degrees. As a concrete non-trivial example, we consider the re-

mainder function of O8;↵;f ;1 for matched helicity (�,�,+). Explicit expressions of two-loop

remainder of O8;↵;f ;1 (with degree 3,2,1,0 parts) can be found in Appendix E. We first sum-

marize the property of pole structures:

1. Leading poles of 1
um , 1

vm , 1
wm , with powers 6, 5, 5 respectively, appear only in coe�cients

of T2 functions in degree-2 part.

2. The degree-3 part contains only one spurious pole 1
u3 .

3. Spurious poles 1
(u+v)m and 1

(u+w)m appear in degree 1 and 0 parts, with powers up to 2.

4. Due to the symmetry of remainder under v $ w, residues of poles 1
vn and 1

(u+v)m are

identical to residues of poles 1
wn and 1

(u+w)m .

In the following we discuss these spurious poles separately and show that they explicitly

cancel in the full remainder.
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The coefficients of {T3, T2} and log functions are non-trivial 
rational functions, which they contain spurious poles.



Operator in full QCD
Two-loop Higgs amplitudes with dim-7 operators

H

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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1

m2
t

4
∑

i=1
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where O0 = Htr(F 2) is the leading term, and the subleading terms contain dimension-7

operators [1–5]

O1 = Htr(F ν
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2 Setup

2.1 Effective Lagrangian

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.1)

where O0 = Htr(F 2) is the leading term, and the subleading terms contain dimension-7

operators [1–5]

O1 = Htr(F ν
µ F ρ

ν F µ
ρ ) , (2.2)

O2 = Htr(DρFµνD
ρFµν) , (2.3)

O3 = Htr(DρFρµDσF
σµ) , (2.4)

O4 = Htr(FµρD
ρDσF

σµ) . (2.5)

The last two operators have zero contribution in the pure gluon sector and contribute when

there are internal quark lines. In this paper we consider the full results including complete

quarks contributions.
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O1 = tr(F ν
µ F ρ

ν F µ
ρ ) , (2.6)

O2 = tr(DρFµνD
ρFµν) , (2.7)

O3 = tr(DρFρµDσF
σµ) , (2.8)

O4 = tr(FµρD
ρDσF

σµ) . (2.9)

Using E.O.M:

DρF
ρµ,A = −g

nf
∑

i=1

ψ̄iγ
µTAψi (2.10)

O3 → O′
3 = g2

nf
∑

i,j=1

(ψ̄iγ
µψi)(ψ̄jγµψj) (2.11)

O4 → O′
4 = gFµνD

µ

nf
∑

i,j=1

(ψ̄iγ
νTAψi) (2.12)

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.13)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [2])

O2 =
1

2
∂2O0 − 4 gYM O1 + 2O4 . (2.14)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO2 =
1

2
q2FO0 − 4 gYM FO1 + 2FO4 , (2.15)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This relation should serve as a self-consistency check for the result.

In the following, we will replace O2 by a new operator

Ô2 = O2 + 4 gYM O1 − 2O4 =
1

2
∂2O0 . (2.16)

2.2 Divergence structure

Form factors contrain UV and IR divergences, for which we apply dimensional regularization

(D = 4− 2ϵ) and use the MS scheme.
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The last two operators have zero contribution in the pure gluon sector and contribute when

there are internal quark lines. In this paper we consider the full results including complete

quarks contributions.
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ρFµν) , (2.8)

O3 = tr(DρFρµDσF
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O4 = tr(FµρD
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Using E.O.M:

DρF
ρµ = −g

nf
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nf
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(ψ̄iγ
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(ψ̄iγ
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An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫
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where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [2])

O2 =
1

2
∂2O0 − 4 gYM O1 + 2O4 . (2.15)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO2 =
1

2
q2FO0 − 4 gYM FO1 + 2FO4 , (2.16)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This relation should serve as a self-consistency check for the result.

In the following, we will replace O2 by a new operator

Ô2 = O2 + 4 gYM O1 − 2O4 =
1

2
∂2O0 . (2.17)
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Two-loop Higgs amplitudes with dim-7 operators

H

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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O1 = tr(F ν
µ F ρ

ν F µ
ρ ) , (2.6)

O2 = tr(DρFµνD
ρFµν) , (2.7)

O3 = tr(DρFρµDσF
σµ) , (2.8)

O4 = tr(FµρD
ρDσF

σµ) . (2.9)

Using E.O.M:

DρF
ρµ,A = −g

nf
∑

i=1

ψ̄iγ
µTAψi (2.10)

O3 → O′
3 = g2

nf
∑

i,j=1

(ψ̄iγ
µψi)(ψ̄jγµψj) (2.11)

O4 → O′
4 = gFµνD

µ

nf
∑

i,j=1

(ψ̄iγ
νTAψi) (2.12)

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.13)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [2])

O2 =
1

2
∂2O0 − 4 gYM O1 + 2O4 . (2.14)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO2 =
1

2
q2FO0 − 4 gYM FO1 + 2FO4 , (2.15)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This relation should serve as a self-consistency check for the result.

In the following, we will replace O2 by a new operator

Ô2 = O2 + 4 gYM O1 − 2O4 =
1

2
∂2O0 . (2.16)

2.2 Divergence structure

Form factors contrain UV and IR divergences, for which we apply dimensional regularization

(D = 4− 2ϵ) and use the MS scheme.
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