Two-Loop renormalization of QCD operators and Higgs EFT amplitudes

Gang Yang

Institute of Theoretical Physics, Chinese Academy of Sciences

Based on: • arXiv:1910.09384 (JHEP) Qingjun Jin, GY

- arXiv:2011.02494 (JHEP) Qingjun Jin, Ke Ren, GY
- In progress, Qingjun Jin, Ke Ren, GY, Rui Yu

Motivation

Gauge invariant operators are important in QFT.

- Anomalous dimensions (~spectrum of hadrons, RG, OPE, ...)
- Correlation functions

Local operators also appear as vertices in EFT Lagrangian. For example: Higgs EFT obtained by integrating Top quark loop:

$$
\xrightarrow{m_{t} \rightarrow \infty}
$$

$\mathcal{L}_{\text {eff }}=\hat{C}_{0} H \mathcal{O}_{4 ; 0}+\sum_{k=1}^{\infty} \frac{1}{m_{\mathrm{t}}^{2 k}} \sum_{i} \hat{C}_{i} H \mathcal{O}_{4+2 k ; i}$

Wilczek, 1977; Shifman et.al., 1979; Dawson, 1991;
Djouadi et.al. 1991,

Motivation

Higgs plus jet production

Boughezal, Caola, Melnikov, Petriello, Schulze 2013; Chen, Gehrmann, Glover, Jaquier 2014; Boughezal, Focke, Giele, Liu, Petriello 2015; Harlander, Liebler, Mantler 2016; Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger 2016; Lindert, Kudashkin, Melnikov, Wever 2018; Jones, Kerner, Luisoni 2018; Neumann 2018; ...

$p_{T} \sim 2 m_{t} \rightarrow$ High-dimension operators become important.

$$
\mathcal{L}_{\mathrm{eff}}=C_{0} O_{0}+\frac{1}{m_{\mathrm{t}}^{2}} \sum_{i=1}^{4} C_{i} O_{i}+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{4}}\right)
$$

Dimension-5 operator

$$
O_{0}=H \operatorname{tr}\left(F_{\mu \nu} F^{\mu \nu}\right)
$$

Gehrmann, Jaquier, Glover, Koukoutsakis 2011

Related S-matrix computations

Dimension-7 operators

$$
\begin{aligned}
& O_{1}=H \operatorname{tr}\left(F_{\mu}{ }^{\nu} F_{\nu}{ }^{\rho} F_{\rho}{ }^{\mu}\right), \\
& O_{2}=H \operatorname{tr}\left(D_{\rho} F_{\mu \nu} D^{\rho} F^{\mu \nu}\right), \\
& O_{3}=H \operatorname{tr}\left(D^{\rho} F_{\rho \mu} D_{\sigma} F^{\sigma \mu}\right), \\
& O_{4}=H \operatorname{tr}\left(F_{\mu \rho} D^{\rho} D_{\sigma} F^{\sigma \mu}\right) .
\end{aligned}
$$

Dawson, Lewis, Zeng 2014
Jin, GY 2019

Setup of the problem

Operators:

$$
\begin{gathered}
\mathcal{O} \sim c\left(a_{1}, \ldots, a_{n}\right)\left(D_{\mu_{1} 1} \ldots D_{\mu_{1 m_{1}}} F_{\nu_{1} \rho_{1}}\right)^{a_{1}} \cdots\left(D_{\mu_{n 1}} \cdots D_{\mu_{n m_{n}}} F_{\nu_{n} \rho_{n}}\right)^{a_{n}} X(\eta, \epsilon) \\
D_{\mu} \star=\partial_{\mu}+i g\left[A_{\mu}, *\right], \quad\left[D_{\mu}, D_{\nu}\right] \star=i g\left[F_{\left.\mu_{\mu}, \star\right]} \quad F_{\mu_{\mu}}=F_{\mu \mu}^{a} T^{a}, \quad\left[T^{a}, T^{T}\right]=i f^{a b_{c} T^{c}}\right.
\end{gathered}
$$

Classical dimension $\quad \operatorname{dim}(\mathcal{O})=\Delta_{0}(\mathcal{O})=(\#$ of D 's $)+2 \times(\#$ of F 's $)$

Length of operator $\operatorname{len}(\mathcal{O})=(\#$ of F 's $)$

Lorentz indices $\quad F^{\mu_{1} \mu_{2}} D_{\mu_{1}} D_{\mu_{5}} F^{\mu_{3} \mu_{4}} D_{\mu_{2}} D^{\mu_{5}} F_{\mu_{3} \mu_{4}} \Rightarrow F_{12} D_{15} F_{34} D_{25} F_{34}$

Setup of the problem

Operators:

$$
\begin{aligned}
& \mathcal{O} \sim c\left(a_{1}, \ldots, a_{n}\right)\left(D_{\mu_{11}} \ldots D_{\mu_{1 m_{1}}} F_{\nu_{1} \rho_{1}}\right)^{a_{1}} \cdots\left(D_{\mu_{n 1}} \ldots D_{\mu_{n m_{n}}} F_{\nu_{n} \rho_{n}}\right)^{a_{n}} X(\eta, \epsilon) \\
& D_{\mu} \star=\partial_{\mu}+i g\left[A_{\mu}, *\right], \quad\left[D_{\mu}, D_{\nu}\right] \star=i g\left[F_{\mu \mu}, *\right] \quad F_{\mu \mu}=F_{\mu \mu}^{a} T^{a}, \quad\left[T^{a}, T^{b}\right]=i f^{f b^{b} T_{c}^{c}}
\end{aligned}
$$

Problems to address in this talk:

- Independent operator basis (classical)
- Renormalization of operators (quantum UV)
- Higgs amplitudes (finite remainder)

Content

Motivation and Setup
Operator basis
Unitarity-IBP
Results and analysis
Outlook

Operator basis

Basis of operators (classical)

Operators are in general not independent:

$$
\mathcal{O} \sim c\left(a_{1}, \ldots, a_{n}\right)\left(D_{\mu_{11} \ldots D_{\mu_{1 m_{1}}}} F_{\nu_{1} \rho_{1}}\right)^{a_{1}} \cdots\left(D_{\mu_{n 1}} \ldots D_{\mu_{n m}} F_{\nu_{n} \rho_{n}}\right)^{a_{n}} X(\eta, \epsilon)
$$

Equation of motion: $\quad D_{\mu} F^{\mu \nu}=0$
Bianchi identities: $\quad D_{\mu} F_{\nu \rho}+D_{\nu} F_{\rho \mu}+D_{\rho} F_{\mu \nu}=0$

One needs to remove such relations to find a set of independent basis operators.

Observable: form factors

Hybrids of on-shell states and off-shell operators:

$$
\begin{aligned}
F & =\int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{O}(x)\left|p_{1} p_{2} \cdots p_{n}\right\rangle \\
& =\delta^{4}\left(\sum_{i=1}^{n} p_{i}-q\right)\langle 0| \mathcal{O}(q)\left|p_{1} p_{2} \cdots p_{n}\right\rangle
\end{aligned}
$$

$$
q=\sum_{i} p_{i}, \quad q^{2} \neq 0
$$

$\left\langle 0 \mid p_{1} p_{2} \cdots p_{n}\right\rangle$
Amplitudes

form factors

Minimal tree form factors

Dictionary:

operator	D_{μ}	$F_{\mu \nu}$
kinematics	p_{μ}	$p_{\mu} \varepsilon_{\nu}-p_{\nu} \varepsilon_{\mu}$
D-dim		

operator	$D_{\dot{\alpha} \alpha}$	$f_{\alpha \beta}$	$\bar{f}_{\dot{\alpha} \dot{\beta}}$		
spinor	$\tilde{\lambda}_{\dot{\alpha}} \lambda_{\alpha}$	$\lambda_{\alpha} \lambda_{\beta}$	$-\tilde{\lambda}_{\dot{\alpha}} \tilde{\lambda}_{\dot{\beta}}$		4-dim
:---:	$F_{\mu \nu} \rightarrow F_{\alpha \dot{\alpha} \beta \dot{\beta}}=\epsilon_{\alpha \beta} \bar{f}_{\dot{\alpha} \dot{\beta}}+\epsilon_{\dot{\alpha} \dot{\beta} f_{\alpha \beta}}$				

One can translate any local operator into "on-shell" kinematics:

$$
\operatorname{tr}\left(\bar{F}_{\dot{\alpha}}^{\dot{\beta}} \bar{F}_{\dot{\beta}}^{\dot{\gamma}} \bar{F}_{\dot{\gamma}}^{\dot{\alpha}}\right) \rightarrow \tilde{\lambda}_{1}^{\dot{\alpha}} \tilde{\lambda}_{1 \dot{\beta}} \tilde{\lambda}_{2}^{\dot{\beta}} \tilde{\lambda}_{2 \dot{\gamma}} \tilde{\lambda}_{3}^{\dot{\gamma}} \tilde{\lambda}_{3 \dot{\alpha}}=[12][23][31]
$$

Minimal tree form factors

Dictionary:

operator	$D_{\dot{\alpha} \alpha}$	$f_{\alpha \beta}$	$\bar{f}_{\dot{\alpha} \dot{\beta}}$
spinor	$\tilde{\lambda}_{\dot{\alpha}} \lambda_{\alpha}$	$\lambda_{\alpha} \lambda_{\beta}$	$-\tilde{\lambda}_{\dot{\alpha}} \tilde{\lambda}_{\dot{\beta}}$
4-dim	$F_{\mu \nu} \rightarrow F_{\alpha \dot{\alpha} \beta \dot{\beta}}=\epsilon_{\alpha \beta} \bar{f}_{\dot{\alpha} \dot{\beta}}+\epsilon_{\dot{\alpha} \dot{\beta}} f_{\alpha \beta}$		

Important for capturing Evanescent operators

In preparation, Qingjun Jin, Ke Ren, GY, Rui Yu

A good set of operators

For the convenience of the loop computation, it is also important to provide a set of "good" operators.

Color sectors

$$
f^{a b c}=\operatorname{Tr}\left(T^{a} T^{b} T^{c}\right)-\operatorname{Tr}\left(T^{a} T^{c} T^{b}\right), \quad d^{a b c}=\operatorname{Tr}\left(T^{a} T^{b} T^{c}\right)+\operatorname{Tr}\left(T^{a} T^{c} T^{b}\right)
$$

Helicity sectors

$$
\begin{array}{ll}
\alpha \text {-sector : } & \mathcal{F}_{\mathcal{O}}^{(0), \min } \neq 0 \text { only for }(-,-,+),(+,+,-), \\
\beta \text {-sector : } & \mathcal{F}_{\mathcal{O}}^{(0), \min } \neq 0 \text { only for }(-,-,-),(+,+,+)
\end{array}
$$

Examples

$\underline{\operatorname{dim} 6}$
$\mathcal{O}_{6 ; 1}^{\prime \prime}=\frac{1}{3} \operatorname{Tr}\left(F_{12} F_{13} F_{23}\right)$.
$\underline{\operatorname{dim} 8}$
$\mathcal{O}_{8 ; 1}^{\prime \prime}=\operatorname{Tr}\left(D_{1} F_{23} D_{4} F_{23} F_{14}\right) ; \mathcal{O}_{8 ; 2}^{\prime \prime}=\operatorname{Tr}\left(D_{1} F_{23} D_{1} F_{24} F_{34}\right)$.
$\underline{\operatorname{dim} 10}$
$\mathcal{O}_{10 ; 1}^{\prime \prime}=\operatorname{Tr}\left(D_{12} F_{34} D_{15} F_{34} F_{25}\right), \mathcal{O}_{10 ; 2}^{\prime \prime}=\operatorname{Tr}\left(D_{12} F_{34} D_{5} F_{34} D_{1} F_{25}\right), \mathcal{O}_{10 ; 3}^{\prime \prime}=\operatorname{Tr}\left(D_{2} F_{34} D_{15} F_{34} D_{1} F_{25}\right)$;
$\mathcal{O}_{10 ; 4}^{\prime \prime}=\operatorname{Tr}\left(D_{12} F_{34} D_{1} F_{35} D_{2} F_{45}\right), \mathcal{O}_{10 ; 5}^{\prime \prime}=\operatorname{Tr}\left(D_{12} F_{34} D_{12} F_{35} F_{45}\right)$.

Good basis operator	$\mathcal{F}^{(0)}(-,-,+)$	$\mathcal{F}^{(0)}(-,-,-)$	color factor
$\mathcal{O}_{6 ; \beta ; f ; 1}=\mathcal{O}_{6 ; 1}^{\prime \prime}$	0	A_{2}	$f^{a b c}$
$\mathcal{O}_{8 ; \alpha ; f ; 1}=\mathcal{O}_{8 ; 1}^{\prime \prime}-\frac{1}{2} \partial^{2} \mathcal{O}_{6 ; \beta ; ; ; 1}$	A_{1}	0	$f^{a b c}$
$\mathcal{O}_{8 ; \beta ; f ; 1}=\frac{1}{2} \partial^{2} \mathcal{O}_{6 ; \beta ; f ; 1}$	0	$\frac{1}{2} s_{123} A_{2}$	$f^{a b c}$
$\mathcal{O}_{10 ; \alpha ; f ; 1}=\frac{1}{2} \partial^{2} \mathcal{O}_{8 ; \alpha ; f ; 1}$	$\frac{1}{2} s_{123} A_{1}$	0	$f^{a b c}$
$\mathcal{O}_{10 ; \alpha ; ; ; 2}=\mathcal{O}_{10 ; 1}^{\prime \prime}-\mathcal{O}_{10 ; 5}^{\prime \prime}$	$\frac{1}{2} s_{123} A_{1} u$	0	$f^{a b c}$
$\mathcal{O}_{10 ; \alpha ; ; ; 1}=\mathcal{O}_{1 ; 2}^{\prime \prime}-\mathcal{O}_{10 ; 3}^{\prime \prime}$	$\frac{1}{2} s_{123} A_{1}(w-v)$	0	$d^{a b c}$
$\mathcal{O}_{10 ; \beta ; f ; 1}=\frac{1}{4} \partial^{4} \mathcal{O}_{6 ; \beta ; f ; 1}$	0	$\frac{1}{4} s_{123}^{2} A_{2}$	$f^{a b c}$
$\mathcal{O}_{10 ; \beta ; ; ; 2}=\mathcal{O}_{10 ; 5}^{\prime \prime}$	0	$\frac{1}{4} s_{123}^{2} A_{2}\left(u^{2}+v^{2}+w^{2}\right)$	$f^{a b c}$

$$
A_{1}=\langle 12\rangle^{3}[13][23], \quad A_{2}=\langle 12\rangle\langle 13\rangle\langle 23\rangle \quad u=\frac{s_{12}}{s_{123}}, \quad v=\frac{s_{23}}{s_{123}}, \quad w=\frac{s_{13}}{s_{123}}
$$

Loop computation

On-shell unitarity

Unitarity cuts

Consider one-loop amplitudes:

What we really want

Unitarity cuts

One can perform unitarity cuts:
[Bern, Dixon, Dunbar, Kosower 1994]
[Britto, Cachazo, Feng 2004]

and from tree products, one derives the coefficients more directly.

Cutkosky cutting rule:

$$
\frac{1}{p^{2}}=\cdots \Rightarrow \quad, \quad=2 \pi i \delta^{+}\left(p^{2}\right)
$$

Unitarity cuts

One can perform unitarity cuts:

and from tree products, one derives the coefficients more directly.

Challenges at higher loops:

- Need D-dimensional cuts (rational term issue)
- Not trivial to reconstruct the full integrand and then reduce it, e.g. via IBP

Unitarity-IBP strategy

Loop amplitudes = Sum (coefficient \times IBP masters)

what we want

Jin, GY 2018 Boels, Jin, Luo 2018
Numerical unitarity: Abreu, Cordero, Ita, Jaquier, Page, Zeng 2017

Higgs plus three gluons

All cuts that are needed:

Master integrals are known in terms of 2d Harmonic polylogarithms.

[Gehrmann, Remiddi 2001]

Results and analysis

UV renormalization

Finite remainder

Loop structure of form factors

General structure of (bare) amplitudes/form factors:
Loop correction $=\mathrm{IR}+\mathrm{UV}+$ finite remainder $+\mathcal{O}(\epsilon)$

Mixed in dim-reg

Loop structure of form factors

General structure of (bare) amplitudes/form factors:
Loop correction $=\mathrm{IR}+\mathrm{UV}+$ finite remainder $+\mathcal{O}(\epsilon)$

IR structure is "universal":
[Catani 1998]

$$
\begin{aligned}
\mathcal{F}_{\mathcal{O}, R}^{(1)}= & I^{(1)}(\epsilon) \mathcal{F}_{\mathcal{O}}^{(0)}+\mathcal{F}_{\mathcal{O}, \text { fin }}^{(1)}+\mathcal{O}(\epsilon) \\
\mathcal{F}_{\mathcal{O}, R}^{(2)}= & I^{(2)}(\epsilon) \mathcal{F}_{\mathcal{O}}^{(0)}+I^{(1)}(\epsilon) \mathcal{F}_{\mathcal{O}, R}^{(1)}+\mathcal{F}_{\mathcal{O}, \text { fin }}^{(2)}+\mathcal{O}(\epsilon) \\
I^{(1)}(\epsilon)= & -\frac{e^{\gamma_{E} \epsilon}}{\Gamma(1-\epsilon)}\left(\frac{N_{c}}{\epsilon^{2}}+\frac{\beta_{0}}{2 \epsilon}\right) \sum_{i=1}^{E}\left(-s_{i, i+1}\right)^{-\epsilon}, \\
I^{(2)}(\epsilon)= & -\frac{1}{2}\left(I^{(1)}(\epsilon)\right)^{2}-\frac{\beta_{0}}{\epsilon} I^{(1)}(\epsilon)+\frac{e^{-\gamma_{E} \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(\frac{\beta_{0}}{\epsilon}+\frac{67}{9}-\frac{\pi^{2}}{3}\right) I^{(1)}(2 \epsilon) \\
& +E \frac{e^{\gamma_{E} \epsilon}}{\epsilon \Gamma(1-\epsilon)}\left(\frac{\zeta_{3}}{2}+\frac{5}{12}+\frac{11 \pi^{2}}{144}\right) .
\end{aligned}
$$

UV renormalization: operator mixing

By subtracting the universal IR, one can obtain the UV renormalization matrix.

- Operators (of same classical dimension) can mix with each other at quantum level via renormalization:
- From the renormalization matrix, one can obtain the dilatation operator:

$$
\mathscr{D}=-\frac{d \log Z}{d \log \mu}
$$

- The anomalous dimensions are are given

$$
\mathscr{D} \cdot \mathcal{O}_{\text {eigen }}=\gamma \cdot \mathcal{O}_{\text {eigen }}
$$ by the eigenvalues of dilatation operator:

$$
\mathcal{O}_{R, i}=Z_{i}^{j} \mathcal{O}_{B, j}
$$

Example

$$
\mathbb{D}_{\mathcal{O}_{8}}=\left(\begin{array}{ccc}
-\frac{22}{3} \hat{\lambda}-\frac{136}{} \hat{\lambda}^{2} & 0 & 0 \\
-\frac{\hat{\lambda}^{2}}{3} & \frac{7}{3} \hat{\lambda}+\frac{269}{18} \hat{\lambda}^{2} & 10 \hat{\lambda}^{2} \\
-3 \frac{\lambda^{2}}{\hat{g}} & 0 & \hat{\lambda}+\frac{25}{3} \hat{\lambda}^{2}
\end{array}\right) \quad \rightarrow \quad \hat{\gamma}_{\mathcal{O}_{8}}^{(1)}=\left\{-\frac{22}{3} ; 1 ; \frac{7}{3}\right\}, \quad \hat{\gamma}_{\mathcal{O}_{8}}^{(2)}=\left\{-\frac{136}{3} ; \frac{25}{3} ; \frac{269}{18}\right\}
$$

$$
\begin{aligned}
& \left.\mathcal{F}_{\mathcal{O}_{8 ; \alpha ; ; ; 1}}^{(2)}\left(1^{-}, 2^{-}, 3^{+}\right)\right|_{\frac{1}{\epsilon} \mathrm{UV} \text {-div. }}=\mathcal{F}_{\mathcal{O}_{8 ; \alpha ; ; ; 1}}^{(0)}\left(1^{-}, 2^{-}, 3^{+}\right) \times \frac{N_{c}^{2}}{\epsilon}\left(-\frac{1}{3 v w}+\frac{269}{72}\right), \\
& \left.\mathcal{F}_{\mathcal{O}_{8 ; \beta ; ; ; 1}}^{(2), \alpha}\left(1^{-}, 2^{-}, 3^{+}\right)\right|_{\frac{1}{\epsilon} \mathrm{UV} \text {-div. }}=\mathcal{F}_{\mathcal{O}_{8 ; \alpha ; ; ; ; 1}}^{(0)}\left(1^{-}, 2^{-}, 3^{+}\right) \times \frac{N_{c}^{2}}{\epsilon}\left(-\frac{1}{v w}\right) . \\
& \rightarrow\left(Z^{(2)}\right)_{\mathcal{O}_{8 ; \alpha ; ; ; 1}}{ }^{\mathcal{O}_{8 ; 0}}=-\frac{N_{c}^{2}}{3 \epsilon}, \quad\left(Z^{(2)}\right)_{\mathcal{O}_{8 ; \alpha ; ; ; ; 1}}^{\mathcal{O}_{8 ; \alpha ;, 1}}=\frac{269 N_{c}^{2}}{72 \epsilon}, \quad\left(Z^{(2)}\right)_{\mathcal{O}_{8 ; \beta ; ; ; 1}}{ }_{\mathcal{O}_{8 ; 0}}=-\frac{N_{c}^{2}}{\epsilon} . \\
& \left.\mathcal{F}_{\mathcal{O}_{8 ; ; ; ; ; ; 1}}^{(2)}\left(1^{-}, 2^{-}, 3^{-}\right)\right|_{\frac{1}{\epsilon} \mathrm{UV}-\mathrm{div} .}=\mathcal{F}_{\mathcal{O}_{8 ; \beta ; ; ; 1}}^{(0)}\left(1^{-}, 2^{-}, 3^{-}\right) \times \frac{N_{c}^{2}}{\epsilon}\left(-\frac{1}{3 u v w}+\frac{5}{2}\right), \\
& \left.\mathcal{F}_{\mathcal{O}_{8 ; \beta ; ; ; 1}}^{(2)}\left(1^{-}, 2^{-}, 3^{-}\right)\right|_{\frac{1}{\epsilon} \mathrm{UV} \text {-div. }}=\mathcal{F}_{\mathcal{O}_{8 ; \beta ; ; ; 1}}^{(0)}\left(1^{-}, 2^{-}, 3^{-}\right) \times \frac{N_{c}^{2}}{\epsilon}\left(-\frac{1}{u v w}+\frac{25}{12}\right) . \\
& \rightarrow \quad\left(Z^{(2)}\right)_{\mathcal{O}_{8 ; \alpha ; ; ; 1}}{ }_{\substack{\mathcal{O}_{8 ; 0}}}=-\frac{N_{c}^{2}}{3 \epsilon}, \quad\left(Z^{(2)}\right)_{\mathcal{O}_{8 ; \alpha ; ; ; 1}}^{\mathcal{O}_{8 ; \beta ; f, 1}}=\frac{5 N_{c}^{2}}{2 \epsilon}, \\
& \left(Z^{(2)}\right){ }_{\mathcal{O}_{8 ; \beta ; ; ; 1}}^{\mathcal{O}_{8 ; 0}}=-\frac{N_{c}^{2}}{\epsilon}, \quad\left(Z^{(2)}\right)_{\mathcal{O}_{8 ; \beta ; ; ; 1}}^{\mathcal{O}_{8 ; \beta ; ;}}=\frac{25 N_{c}^{2}}{12 \epsilon} . \\
& \begin{array}{l}
\\
\left\{\mathcal{O}_{8 ; 0}, \mathcal{O}_{8 ; \alpha ; ; ; 1}, \mathcal{O}_{8 ; \beta ; ; ; 1}\right\}
\end{array} \\
& \left.Z_{\mathcal{O}_{8}}^{(2)}\right|_{\frac{1}{\epsilon}} \text {-part. }=\frac{N_{c}^{2}}{\epsilon}\left(\begin{array}{ccc}
-\frac{34}{3} & 0 & 0 \\
-\frac{269}{3} & \frac{5}{72} & \frac{5}{2} \\
-1 & 0 & \frac{25}{12}
\end{array}\right)
\end{aligned}
$$

Mixing matrix and spectrum

Results were known previously at one-loop up to dimension-8.
See e.g.: Gracey 2002; Dawson, Lewis, Zeng 2014

We obtain new one- and two-loop results up to dimension16.

$$
\begin{aligned}
& \mathrm{D}_{\mathcal{O}_{8}}=\left(\begin{array}{ccc}
-\frac{22}{3} \hat{\lambda}-\frac{136}{3} \hat{\lambda}^{2} & 0 & 0 \\
-\frac{\hat{\lambda}^{2}}{\hat{g}} & \frac{7}{3} \hat{\lambda}+\frac{269}{18} \hat{\lambda}^{2} & 10 \hat{\lambda}^{2} \\
-3 \frac{\lambda^{2}}{\hat{g}} & 0 & \hat{\lambda}+\frac{25}{3} \hat{\lambda}^{2}
\end{array}\right) \quad \hat{\gamma}_{\mathcal{O}_{8}}^{(1)}=\left\{-\frac{22}{3} ; 1 ; \frac{7}{3}\right\}, \quad \hat{\gamma}_{\mathcal{O}_{8}}^{(2)}=\left\{-\frac{136}{3} ; \frac{25}{3} ; \frac{269}{18}\right\} \\
& \mathrm{D}_{\mathcal{O}_{10, f}}=\left(\begin{array}{ccccc}
-\frac{22 \hat{\lambda}}{3}-\frac{136}{} \hat{\lambda}^{2} & 0 & 0 & 0 & 0 \\
-\frac{\hat{\lambda}^{2}}{9} & \frac{7 \lambda}{3}+\frac{269}{18} \hat{\lambda}^{2} & 0 & 10 \hat{\lambda}^{2} & 0 \\
-\frac{209}{300} \hat{\lambda}^{2} & -\frac{6 \lambda}{5}-\frac{5579 \hat{\lambda}^{2}}{4500} & \frac{71 \hat{\lambda}}{15}+\frac{2848}{125} \hat{\lambda}^{2} & \frac{1493}{300} \hat{\lambda}^{2} & \frac{5}{9} \hat{\lambda}^{2} \\
-3 \frac{\lambda^{2}}{\hat{2}} & 0 & 0 & \hat{\lambda}+\frac{25}{3} \hat{\lambda}^{2} & 0 \\
-\frac{19}{12} \frac{\lambda^{2}}{\hat{g}} & \frac{139}{600} \hat{\lambda}^{2} & \frac{499}{200} \hat{\lambda}^{2} & -2 \hat{\lambda}-\frac{143}{72} \hat{\lambda}^{2} \frac{17 \hat{\lambda}}{3}+\frac{2195}{72} \hat{\lambda}^{2}
\end{array}\right) \\
& \hat{\gamma}_{\mathcal{O}_{10, f}}^{(1)}=\left\{-\frac{22}{3} ; 1 ; \frac{7}{3} ; \frac{71}{15}, \frac{17}{3}\right\}, \quad \hat{\gamma}_{\mathcal{O}_{10, f}}^{(2)}=\left\{-\frac{136}{3} ; \frac{25}{3} ; \frac{269}{18} ; \frac{2848}{125}, \frac{2195}{72}\right\}
\end{aligned}
$$

Mixing matrix and spectrum

Anomalous dimensions for length-3 operators up to dimension 16:

dim	4	6	8	10	12	14	$\frac{16}{}$
$\gamma_{f, \alpha}^{(1)}$	$-\frac{22}{3}$	$/$	$\frac{7}{3}$	$\frac{71}{15}$	$\frac{241}{30}, \frac{101}{15}$	$\frac{61}{6}, \frac{172}{21}$	$\frac{331}{35}, \frac{1212 \pm \sqrt{3865}}{105}$
$\gamma_{f, \alpha}^{(2)}$	$-\frac{136}{3}$	$/$	$\frac{269}{18}$	$\frac{2848}{125}$	$\frac{49901119}{140400}, \frac{8585281}{234000}$	$\frac{4392073141}{87847200}, \frac{685262197}{15373260}$	$\frac{355106171452034 \pm 95588158951 \sqrt{3865}}{4253888949}$,
$\gamma_{f, \beta}^{(1)}$	$-\frac{22}{3}$	1	$/$	$\frac{17}{3}$	9	$\frac{43}{5}$	$\frac{6576507756000}{6}$
$\gamma_{f, \beta}^{(2)}$	$-\frac{136}{3}$	$\frac{25}{3}$	$/$	$\frac{2195}{72}$	$\frac{79313}{1800}$	$\frac{443801}{9000}$	
$\gamma_{d, \alpha}^{(1)}$	$/$	$/$	$/$	$\frac{13}{3}$	$\frac{41}{6}$	$\frac{551 \pm 3 \sqrt{609}}{60}$	$\frac{63879443}{1058400}$
$\gamma_{d, \alpha}^{(2)}$	$/$	$/$	$/$	$\frac{575}{36}$	$\frac{46517}{1440}$	$\frac{5809305897 \pm 19635401 \sqrt{609}}{131544000}$	$\frac{229162584707 \pm 225658792 \sqrt{1561}}{4130406000}$
$\gamma_{d, \beta}^{(1)}$	$/$	$/$	$/$	$/$	9	$/$	$\frac{67}{6}$
$\gamma_{d, \beta}^{(2)}$	$/$	$/$	$/$	$/$	$\frac{150391}{3600}$	$\frac{174229}{3150}$	

Finite remainder

Finite remainder

The finite part of the form factor:

$$
\mathcal{F}_{\mathcal{O}, R}^{(2)}=I^{(2)}(\epsilon) \mathcal{F}_{\mathcal{O}}^{(0)}+I^{(1)}(\epsilon) \mathcal{F}_{\mathcal{O}, R}^{(1)}+\mathcal{F}_{\mathcal{O}, \mathrm{fin}}^{(2)}+\mathcal{O}(\epsilon)
$$

They provide two-loop H plus 3-gluon amplitudes for the top mass correction in the Higgs effective theory.

$$
\begin{gathered}
\mathcal{R}_{\mathcal{O}}^{(2), \pm}=\left.\sum_{n=0}^{4} \mathcal{R}_{\mathcal{O}}^{(2), \pm}\right|_{\operatorname{deg}-n}+\left.\mathcal{R}_{\mathcal{O}}^{(2), \pm}\right|_{\log ^{2}\left(-q^{2}\right)}+\left.\mathcal{R}_{\mathcal{O}}^{(2), \pm}\right|_{\log \left(-q^{2}\right)} \\
u=\frac{s_{12}}{s_{123}}, \quad v=\frac{s_{23}}{s_{123}}, \quad w=\frac{s_{13}}{s_{123}}
\end{gathered}
$$

Degree 4 part

The transcendentality degree-4 part is universal:

$$
\begin{aligned}
& -\frac{3}{2} \operatorname{Li}_{4}(u)+\frac{3}{4} \operatorname{Li}_{4}\left(-\frac{u v}{w}\right)-\frac{3}{4} \log (w)\left[\operatorname{Li}_{3}\left(-\frac{u}{v}\right)+\operatorname{Li}_{3}\left(-\frac{v}{u}\right)\right] \\
& +\frac{\log ^{2}(u)}{32}\left[\log ^{2}(u)+\log ^{2}(v)+\log ^{2}(w)-4 \log (v) \log (w)\right] \\
& +\frac{\zeta_{2}}{8}\left[5 \log ^{2}(u)-2 \log (v) \log (w)\right]-\frac{1}{4} \zeta_{4}+\operatorname{perms}(u, v, w),
\end{aligned}
$$

It also appears as a universal function for length-3 operators in $\mathrm{N}=4 \mathrm{SYM}$
[Brandhuber, Kostacinska, Penante, Travaglini, Wen, Young 2014, 2016]
[Loebbert, Nandan, Sieg, Wilhelm, GY 2015, 2016]

Lower degree parts

Degree-3 part and degree-2 part are consist of universal building blocks $\left\{T_{3}, T_{2}\right\}$, plus simple log functions:

$$
\begin{aligned}
T_{3}(u, v, w):= & {\left[-\operatorname{Li}_{3}\left(-\frac{u}{w}\right)+\log (u) \operatorname{Li}_{2}\left(\frac{v}{1-u}\right)-\frac{1}{2} \log (u) \log (1-u) \log \left(\frac{w^{2}}{1-u}\right)\right.} \\
& \left.+\frac{1}{2} \operatorname{Li}_{3}\left(-\frac{u v}{w}\right)+\frac{1}{2} \log (u) \log (v) \log (w)+\frac{1}{12} \log ^{3}(w)+(u \leftrightarrow v)\right] \\
& +\mathrm{Li}_{3}(1-v)-\mathrm{Li}_{3}(u)+\frac{1}{2} \log ^{2}(v) \log \left(\frac{1-v}{u}\right)-\zeta_{2} \log \left(\frac{u v}{w}\right) .
\end{aligned}
$$

$$
T_{2}(u, v):=\operatorname{Li}_{2}(1-u)+\operatorname{Li}_{2}(1-v)+\log (u) \log (v)-\zeta_{2} .
$$

The coefficients of $\left\{T_{3}, T_{2}\right\}$ and log functions are non-trivial rational functions, which they contain spurious poles.

Example

For dimension-8 operator, the apparent leading pole is $1 / u^{6}$:

$$
\begin{gathered}
\left.\mathcal{R}_{\mathcal{O}_{8 ; \alpha ;, f ;}, 1}^{(2),+}\right|_{\operatorname{deg} 2}=T_{2}(v, w)\left(\frac{v^{2} w^{2}}{2 u^{4}}-\frac{5 v w\left(v^{2}+w^{2}\right)}{3 u^{4}}+\frac{11 v^{2} w^{2}(v+w)}{6 u^{5}}+\frac{5 v^{3} w^{3}}{u^{6}}\right)+\mathcal{O}\left(\frac{1}{u^{3}}\right) \\
T_{2}(v, w)=\left(-\frac{\log v}{1-v}-\frac{\log (1-v)}{v}\right) u+\mathcal{O}\left(u^{2}\right) \\
\left.\mathcal{R}_{\mathcal{O}_{8 ; \alpha ; ;, 1}}^{(2),+}\right|_{\operatorname{deg} 2}=\frac{5 v^{2}(1-v)^{2}}{u^{5}}(-v \log v-(1-v) \log (1-v))+\mathcal{O}\left(u^{-4}\right) \\
\text { which is to be cancelled by the degree one part. }
\end{gathered}
$$

Remark: to cancel spurious poles, one needs to combine functions of different transcendentality weights.

Example

For the $1 / u^{2}$ pole, there are non-trivial cancellation involving deg-0 to deg-3 parts:

$$
\begin{aligned}
& \frac{1 / u^{2} \text {-pole }}{\text { deg-0 }: \frac{1}{72}\left(93 v^{2}+81 v-52\right),} \\
& \text { deg-1 }: \frac{1}{12}\left(-31 v^{2}-37 v+11\right)+\frac{\left(63 v^{3}-311 v^{2}+187 v-22\right)}{36 v} \log (1-v)-\frac{\left(63 v^{3}-302 v^{2}+246 v-29\right)}{36(v-1)} \log (v), \\
& \operatorname{deg}-2: \frac{1}{3}(1-2 v) \operatorname{Li}_{2}(v)-\frac{1}{6} v^{2} \log ^{2}(1-v)+\frac{1}{3}(v-1)^{2} \log (1-v) \log (v)-\frac{1}{6}(v-1)^{2} \log ^{2}(v)-\frac{1}{18} \pi^{2}(v-1)^{2} \\
& \quad-\frac{\left(63 v^{3}-347 v^{2}+223 v-34\right)}{36 v} \log (1-v)+\frac{63 v^{3}-338 v^{2}+282 v-41}{36(v-1)} \log (v)+\frac{1}{72}\left(93 v^{2}+141 v-14\right), \\
& \operatorname{deg}-3: \frac{1}{3}(2 v-1) \operatorname{Li}_{2}(v)+\frac{1}{6} v^{2} \log ^{2}(1-v)-\frac{1}{3}(v-1)^{2} \log (1-v) \log (v)+\frac{1}{6}(v-1)^{2} \log ^{2}(v)+\frac{1}{18} \pi^{2}(v-1)^{2} \\
& \quad-\frac{\left(3 v^{2}-3 v+1\right)}{3 v} \log (1-v)+\frac{3 v^{2}-3 v+1}{3(v-1)} \log (v)
\end{aligned}
$$

Summary and Outlook

Summary

- We preform explicit two-loop computation for a large class of high dimensional QCD operators and related Higgs+3-gluon amplitudes.
- On-shell methods (minimal form factor and unitarity-IBP strategy) are used.

Outlook

- Consider more generic operators: higher length (twist) operators, operators with Fermion or massive fields, non-local operators, etc.
- Explore hidden structure of renormalization matrices and finite remainders.
- Goal: provide a two-loop framework for general EFT renormalization and EFT amplitudes.

Outlook

- Consider more generic operators: higher length (twist) operators, operators with Fermion or massive fields, non-local operators, etc.
- Explore hidden structure of renormalization matrices and finite remainders.
- Goal: provide a two-loop framework for general EFT renormalization and EFT amplitudes.

Thank you!

Extra slides

Strategy of basis construction

Construct first "primitive operators" at a given length:

$$
\begin{array}{ll}
\text { Length-2 } & \mathcal{O}_{\mathrm{P} 0}=\operatorname{Tr}\left(F_{12} F_{12}\right) \\
\text { Length-3 } & \mathcal{O}_{\mathrm{P} 1}=\operatorname{Tr}\left(F_{12} F_{23} F_{31}\right), \quad \mathcal{O}_{\mathrm{P} 2}=\operatorname{Tr}\left(D_{1} F_{23} D_{4} F_{23} F_{14}\right)
\end{array}
$$

High dimension operators can be obtained by inserting pairs of D_{μ}.

Can be generalized to high lengths. This strategy allows constructing basis operators of arbitrary high dimensions at a given length.

Examples

$\underline{\operatorname{dim} 16}$
$\mathcal{O}_{16 ; 1}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{12348} F_{67} F_{58}\right), \mathcal{O}_{16 ; 2}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{1238} F_{67} D_{4} F_{58}\right), \mathcal{O}_{16 ; 3}^{\prime \prime}=\operatorname{Tr}\left(D_{1235} F_{67} D_{12348} F_{67} D_{4} F_{58}\right)$,
$\mathcal{O}_{16 ; 4}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{128} F_{67} D_{34} F_{58}\right), \mathcal{O}_{16 ; 5}^{\prime \prime}=\operatorname{Tr}\left(D_{1235} F_{67} D_{1248} F_{67} D_{34} F_{58}\right), \mathcal{O}_{16 ; 6}^{\prime \prime}=\operatorname{Tr}\left(D_{125} F_{67} D_{12348} F_{67} D_{34} F_{58}\right)$
$\mathcal{O}_{16 ; 7}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{18} F_{67} D_{234} F_{58}\right), \mathcal{O}_{16 ; 8}^{\prime \prime}=\operatorname{Tr}\left(D_{1235} F_{67} D_{148} F_{67} D_{234} F_{58}\right), \mathcal{O}_{16 ; 9}^{\prime \prime}=\operatorname{Tr}\left(D_{125} F_{67} D_{1348} F_{67} D_{234} F_{58}\right)$,
$\mathcal{O}_{16 ; 10}^{\prime \prime}=\operatorname{Tr}\left(D_{15} F_{67} D_{12348} F_{67} D_{234} F_{58}\right), \mathcal{O}_{16 ; 11}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{8} F_{67} D_{1234} F_{58}\right), \mathcal{O}_{16 ; 12}^{\prime \prime}=\operatorname{Tr}\left(D_{1235} F_{67} D_{48} F_{67} D_{1234} F_{58}\right)$,
$\mathcal{O}_{16 ; 13}^{\prime \prime}=\operatorname{Tr}\left(D_{125} F_{67} D_{348} F_{67} D_{1234} F_{58}\right), \mathcal{O}_{16 ; 14}^{\prime \prime}=\operatorname{Tr}\left(D_{15} F_{67} D_{2348} F_{67} D_{1234} F_{58}\right), \mathcal{O}_{16 ; 15}^{\prime \prime}=\operatorname{Tr}\left(D_{5} F_{67} D_{12348} F_{67} D_{1234} F_{58}\right) ;$
$\mathcal{O}_{16 ; 16}^{\prime \prime}=\operatorname{Tr}\left(D_{1234} F_{67} D_{125} F_{68} D_{345} F_{78}\right), \mathcal{O}_{16 ; 17}^{\prime \prime}=\operatorname{Tr}\left(D_{123} F_{67} D_{12345} F_{68} D_{45} F_{78}\right), \mathcal{O}_{16 ; 18}^{\prime \prime}=\operatorname{Tr}\left(D_{1234} F_{67} D_{1235} F_{68} D_{45} F_{78}\right)$,
$\mathcal{O}_{16 ; 19}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{123} F_{68} D_{45} F_{78}\right), \mathcal{O}_{16 ; 20}^{\prime \prime}=\operatorname{Tr}\left(D_{1234} F_{67} D_{12345} F_{68} D_{5} F_{78}\right), \mathcal{O}_{16 ; 21}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{1234} F_{68} D_{5} F_{78}\right)$,
$\mathcal{O}_{16 ; 22}^{\prime \prime}=\operatorname{Tr}\left(D_{12345} F_{67} D_{12345} F_{68} F_{78}\right)$.

Good basis operator	$\mathcal{F}^{(0)}(-,-,+)$	$\mathcal{F}^{(0)}(-,-,-)$	color factor
$\mathcal{O}_{16 ; \alpha ; f ; 1}=\frac{1}{16} \partial^{8} \mathcal{O}_{8 ; \alpha ; f ; 1}$	$\frac{1}{16} s_{123}^{4} A_{1}$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; f ; 2}=\frac{1}{8} \partial^{6} \mathcal{O}_{10 ; \alpha ; j ; 2}$	$\frac{1}{16} s_{123}^{4} A_{1} u$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; ; ; 3}=\frac{1}{4} \partial^{4} \mathcal{O}_{12 ; \alpha ; j ; 3}$	$\frac{1}{16} s_{123}^{4} A_{1} u^{2}$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; ; ; 4}=\frac{1}{4} \partial^{4} \mathcal{O}_{12 ; \alpha ; j ; 4}$	$\frac{1}{16} s_{123}^{4} A_{1}\left(u^{2}+v^{2}+w^{2}\right)$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; f ; 5}=\frac{1}{2} \partial^{2} \mathcal{O}_{14 ; \alpha ; f ; 5}$	$\frac{1}{16} S_{123}^{4} A_{1} u^{3}$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; f ; 6}=\frac{1}{2} \partial^{2} \mathcal{O}_{14 ; \alpha ; ; ; 6}$	$\frac{1}{16} s_{123}^{4} A_{1}\left(u^{3}+v^{3}+w^{3}\right)$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; ; ; 7}=\mathcal{O}_{16 ; 1}^{\prime \prime}-\mathcal{O}_{16 ; 22}^{\prime \prime}$	$\frac{1}{16} s_{123}^{4} A_{1} u^{4}$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \times ; ; 8}=\mathcal{O}_{16 ; 1}^{\prime \prime}+\mathcal{O}_{16 ; 7}^{\prime \prime}+\mathcal{O}_{16 ; 10}^{\prime \prime}$	$\frac{1}{16} s_{123}^{4} A_{1} u\left(u^{3}+v^{3}+w^{3}\right)$	0	$f^{a b c}$
$\begin{gathered} -\mathcal{O}_{16 ; 17}^{\prime \prime}-\mathcal{O}_{16 ; 19}^{\prime \prime}-\mathcal{O}_{16 ; 22}^{\prime \prime} \\ \mathcal{O}_{16 ; ; ; ; ; 9}=\mathcal{O}_{16 ; 1}^{\prime \prime}+\mathcal{O}_{16 ; 11}^{\prime \prime}+\mathcal{O}_{16 ; 15}^{\prime \prime} \\ -\frac{1}{2} \partial^{2} \mathcal{O}_{14 ; ; ; ; ; ; 4} \end{gathered}$	$\frac{1}{16} s_{123}^{4} A_{1}\left(u^{4}+v^{4}+w^{4}\right)$	0	$f^{a b c}$
$\mathcal{O}_{16 ; \alpha ; d ; 1}=\frac{1}{8} \partial^{6} \mathcal{O}_{10 ; \alpha ; d ; 1}$	$\frac{1}{16} s_{123}^{4} A_{1}(w-v)$	0	$d^{a b c}$
$\mathcal{O}_{16 ; \alpha ; d ; 2}=\frac{1}{4} \partial^{4} \mathcal{O}_{12 ; ; ; ; d ;}$	$\frac{1}{16} s_{123}^{4} A_{1} u(w-v)$	0	$d^{a b c}$
$\mathcal{O}_{16 ; \alpha ; d ; 3}=\frac{1}{2} \partial^{2} \mathcal{O}_{14 ; \alpha ; d ; 3}$	$\frac{1}{16} s_{123}^{4} A_{1} u^{2}(w-v)$	0	$d^{a b c}$
$\mathcal{O}_{16 ; \alpha ; d ; 4}=\frac{1}{2} \partial^{2} \mathcal{O}_{14 ; ; ; j ; 4}$	$\frac{1}{16} s_{123}^{3} A_{1}\left(w^{3}-v^{3}\right)$	0	$d^{a b c}$
$\mathcal{O}_{16 ; \alpha ;, 5}=\mathcal{O}_{16 ; 7}^{\prime \prime}-\mathcal{O}_{16 ; 10}^{\prime \prime}+\mathcal{O}_{16 ; 20}^{\prime \prime}-\mathcal{O}_{16 ; 21}^{\prime \prime}$	$\frac{1}{16} s_{123}^{4} A_{1} u\left(w^{3}-v^{3}\right)$	0	$d^{a b c}$
$\mathcal{O}_{16 ; ; ; ; ; 6}=\mathcal{O}_{16 ; 11}^{\prime \prime}-\mathcal{O}_{16 ; 15}^{\prime \prime}-\frac{1}{4} \boldsymbol{A}^{4} \mathcal{O}_{12 ; \beta ;, d ; 1}$	$\frac{1}{16} s_{123}^{3} A_{1}\left(w^{4}-v^{4}\right)$	0	$d^{a b c}$
$\mathcal{O}_{16 ; \beta ; f ; 1}=\frac{1}{32} \partial^{10} \mathcal{O}_{6 ; \beta ; ; ; 1}$	0	$\frac{1}{32} s_{123}^{5} A_{2}$	$f^{a b c}$
$\mathcal{O}_{16 ; \beta ; ; ; 2}=\frac{1}{8} \partial^{6} \mathcal{O}_{10 ; \beta ; ; ; 2}$	0	$\frac{1}{32} s_{123} A_{2}\left(u^{2}+v^{2}+w^{2}\right)$	$f^{a b c}$
$\mathcal{O}_{16 ; \beta ; f ; 3}=\frac{1}{4} \partial^{4} \mathcal{O}_{12 ; \beta ; ; ; 3}$	0	$\frac{1}{32} 5_{123}^{5} A_{2}\left(u^{3}+v^{3}+w^{3}\right)$	$f^{a b c}$
$\mathcal{O}_{16 ; \beta ; ; ; 4}=\frac{1}{2} \partial^{2} \mathcal{O}_{14 ; \beta ; ; ; 4}$	0	$\frac{1}{32} 5_{123} A_{2}\left(u^{4}+v^{4}+w^{4}\right)$	$f^{a b c}$
$\mathcal{O}_{16 ; \beta ; ; ; 5}=\mathcal{O}_{16 ; 22}^{\prime \prime}$	0	$\frac{1}{32} 5_{123}^{5} A_{2}\left(u^{5}+v^{5}+w^{5}\right)$	$f^{a b c}$
$\mathcal{O}_{16 ; \beta ; d ; 1}=\frac{1}{4} \partial^{4} \mathcal{O}_{12 ; \beta ; ; ; 1}$	0	$\frac{1}{32} s_{123}^{5} A_{2}(u-v)(u-w)(v-w)$	$d^{a b c}$
$\mathcal{O}_{16 ; \beta ; d ; 2}=\mathcal{O}_{16 ; 17}^{\prime \prime}-\mathcal{O}_{16 ; 19}^{\prime \prime}-\mathcal{O}_{16 ; 20}^{\prime \prime}+\mathcal{O}_{16 ; 21}^{\prime \prime}$	0	$\begin{gathered} \frac{1}{32} s_{123}^{5} A_{2}(u-v)(u-w)(v-w) \\ \times\left(u^{2}+v^{2}+w^{2}\right) \end{gathered}$	$d^{a b c}$

Example of cut

There are masters that do not contain this triple cut, such as:

\rightarrow need different cuts

UV renormalization: operator mixing

Form factor renormalization:

$$
\begin{gathered}
O_{R, i}^{L}=\mathcal{O}_{B, i}^{L}+\sum_{\ell=1}^{\infty}\left[\left(\frac{\alpha_{s}}{4 \pi}\right)^{\ell} \sum_{j}\left(Z_{L \rightarrow L}^{(\ell)}\right)_{i}^{j} \mathcal{O}_{B, j}^{L}+\sum_{k}\left(\frac{\alpha_{s}}{4 \pi}\right)^{\ell-\frac{k}{2}} \sum_{j}\left(Z_{L \rightarrow(L-k)}^{(\ell)}\right)_{i}^{j} \mathcal{O}_{B, j}^{L-k}+\sum_{k}\left(\frac{\alpha_{s}}{4 \pi}\right)^{\ell+\frac{k}{2}} \sum_{j}\left(Z_{L \rightarrow(L+k)}^{(\ell)}\right)_{i}^{j} \mathcal{O}_{B, j}^{L+k}\right] \\
\mathcal{F}_{\mathcal{O}_{i, R}}^{(1)}=\mathcal{F}_{\mathcal{O}_{i}, B}^{(1)}+\sum_{j}\left(Z_{3 \rightarrow 3}^{(1)}\right)_{i}{ }^{j} \mathcal{F}_{\mathcal{O}_{j}}^{(0)}, \\
\mathcal{F}_{\mathcal{O}_{i}, R}^{(2)}=\mathcal{F}_{\mathcal{O}_{i}, B}^{(2)}+\sum_{j}\left(Z_{3 \rightarrow 3}^{(1)}\right)_{i}^{j} \mathcal{F}_{\mathcal{O}_{j}, B}^{(1)}-\frac{\beta_{0}}{\epsilon} \mathcal{F}_{\mathcal{O}_{i}, B}^{(1)}+\sum_{j}\left(Z_{3 \rightarrow 3}^{(2)}\right)_{i}^{j} \mathcal{F}_{\mathcal{O}_{j}}^{(0)}+\left(Z_{3 \rightarrow 2}^{(2)}\right)_{i}{ }^{0} \mathcal{F}_{\mathcal{O}_{0}}^{(0)} . \\
\mathrm{D}=-\frac{d \log Z}{d \log \mu} \longrightarrow \mathrm{D}^{(1)}=2 \epsilon\left(Z_{2 \rightarrow 2}^{(1)}+Z_{3 \rightarrow 3}^{(1)}\right), \\
\mathbb{D}^{\left(\frac{3}{2}\right)}=3 \epsilon\left(Z_{2 \rightarrow 3}^{(1)}+Z_{3 \rightarrow 2}^{(2)}\right)=3 \epsilon Z_{3 \rightarrow 2}^{(2)}, \\
\mathrm{D}^{(2)}=4 \epsilon\left(\left.Z_{2 \rightarrow 2}^{(2)}\right|_{\frac{1}{\epsilon}-\operatorname{part}}+\left.Z_{3 \rightarrow 3}^{(2)}\right|_{\frac{1}{\epsilon}-\mathrm{part}}\right) \\
\left.Z_{L \rightarrow L}^{(2)}\right|_{\frac{1}{\epsilon^{2}}-\mathrm{part}}-\frac{1}{2}\left(Z_{L \rightarrow L}^{(1)}\right)^{2}+\frac{\beta_{0}}{2 \epsilon} Z_{L \rightarrow L}^{(1)}=0
\end{gathered}
$$

Mixing matrix and spectrum

Dim-16 at 1-loop:

$$
Z_{\mathcal{O}_{16, d}}^{(1)}=\frac{N_{c}}{\epsilon}\left(\begin{array}{cccccc|cc}
\frac{13}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & \frac{41}{12} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & -2 & \frac{301}{60} & -\frac{2}{3} & 0 & 0 & 0 & 0 \\
-1 & 1 & -\frac{3}{10} & \frac{25}{6} & 0 & 0 & 0 & 0 \\
-\frac{2}{5} & \frac{1}{5} & 0 & -\frac{1}{5} & \frac{307}{60} & \frac{7}{20} & 0 & 0 \\
\frac{1}{3} & -1 & \frac{1}{2} & -\frac{7}{3} & \frac{13}{12} & \frac{67}{12} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & \frac{9}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{7}{12} & \frac{67}{12}
\end{array}\right)
$$

Mixing matrix and spectrum

Dim-16 at 2-loop:

$$
\begin{aligned}
& \left.Z_{\mathcal{O}_{16, d}}^{(2)}\right|_{\frac{1}{\epsilon}-\text { part. }}=\frac{N_{c}^{2}}{\epsilon}\left(\begin{array}{cccccccc}
\frac{575}{144} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{23347}{14400} & \frac{46517}{5760} & 0 & 0 & 0 & 0 & \frac{487}{1800} & 0 \\
\frac{3883}{4032} & -\frac{171823}{37800} & \frac{36597791}{3024000} & -\frac{29581}{16800} & 0 & 0 & -\frac{1789}{4800} & 0 \\
-\frac{9271}{1200} & -\frac{35239}{50400} & \frac{74209}{16800} & \frac{188599}{18900} & 0 & 0 & \frac{2101}{4800} & 0 \\
\frac{3287}{82000} & -\frac{2048479}{1176000} & \frac{422283}{39200} & -\frac{2501309}{1764000} & \frac{49211483}{3528000} & \frac{293221}{392000} & \frac{2764807}{2116800} & -\frac{61}{20160} \\
\frac{947587}{1058400} & -\frac{1555357}{755600} & \frac{16831}{29400} & -\frac{239641}{75600} & -\frac{381527}{2116800} & \frac{5839021}{423360} & -\frac{5807}{201600} & \frac{118933}{1411200} \\
\frac{3349}{7200} & -\frac{2591}{2400} & 0 & 0 & 0 & 0 & \frac{150391}{14400} & 0 \\
-\frac{45083}{44100} & \frac{16564}{11025} & \frac{5447}{117600} & \frac{380791}{176400} & \frac{1063}{29400} & -\frac{545189}{352800} & \frac{1176541}{1058400} & \frac{174229}{12600}
\end{array}\right)
\end{aligned}
$$

Orders of spurious poles

The coefficients of $\left\{T_{3}, T_{2}\right\}$ and log functions are non-trivial rational functions, which they contain spurious poles.

operator	external	u	v, w	$u+v, u+w$
$\mathcal{O}_{\Delta_{0}, \alpha, f}$	$(-,-,+)$	$\frac{\Delta_{0}}{2}+2$	$\frac{\Delta_{0}}{2}+1$	2
	$(-,-,-)$	$\frac{\Delta_{0}}{2}+1$	$\frac{\Delta_{0}}{2}+1$	0
$\mathcal{O}_{\Delta_{0}, \beta, f}$	$(-,-,+)$	$\frac{\Delta_{0}}{2}+1$	$\frac{\Delta_{0}}{2}$	2
	$(-,-,-)$	$\frac{\Delta_{0}}{2}$	$\frac{\Delta_{0}}{2}$	0
$\mathcal{O}_{\Delta_{0}, \alpha, d}$	$(-,-,+)$	$\frac{\Delta_{0}}{2}+1$	$\frac{\Delta_{0}}{2}$	1
	$(-,-,-)$	$\frac{\Delta_{0}}{2}-1$	$\frac{\Delta_{0}}{2}-1$	0
$\mathcal{O}_{\Delta_{0}, \beta, d}$	$(-,-,+)$	$\frac{\Delta_{0}}{2}$	$\frac{\Delta_{0}}{2}-1$	1
	$(-,-,-)$	$\frac{\Delta_{0}}{2}-2$	$\frac{\Delta_{0}}{2}-2$	0

Soeratorinfullon

Two-loop Higgs amplitudes with dim-7 operators

$$
\mathcal{L}_{\mathrm{eff}}=C_{0} O_{0}+\frac{1}{m_{\mathrm{t}}^{2}} \sum_{i=1}^{4} C_{i} O_{i}+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{4}}\right)
$$

$$
O_{0}=H \operatorname{tr}\left(F^{2}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
O_{1}=H \operatorname{tr}\left(F_{\mu}{ }^{\nu} F_{\nu}{ }^{\rho} F_{\rho}{ }^{\mu}\right), \\
O_{2}=H \operatorname{tr}\left(D_{\rho} F_{\mu \nu} D^{\rho} F^{\mu \nu}\right), \\
O_{3}=H \operatorname{tr}\left(D^{\rho} F_{\rho \mu} D_{\sigma} F^{\sigma \mu}\right), \\
O_{4}=H \operatorname{tr}\left(F_{\mu \rho} D^{\rho} D_{\sigma} F^{\sigma \mu}\right) .
\end{array} \text { for pure YM } .
\end{aligned}
$$

$$
D_{\rho} F^{\rho \mu}=-g \sum_{i=1}^{n_{f}} \bar{\psi}_{i} \gamma^{\mu} \psi_{i} \quad \rightarrow \quad \mathcal{O}_{3} \rightarrow \mathcal{O}_{3}^{\prime}=g^{2} \sum_{i, j=1}^{n_{f}}\left(\bar{\psi}_{i} \gamma^{\mu} \psi_{i}\right)\left(\bar{\psi}_{j} \gamma_{\mu} \psi_{j}\right)
$$

$$
\mathcal{O}_{4} \rightarrow \mathcal{O}_{4}^{\prime}=g F_{\mu \nu} D^{\mu} \sum_{i, j=1}^{n_{f}}\left(\bar{\psi}_{i} \gamma^{\nu} T^{A} \psi_{i}\right)
$$

Operator in full QCD

Qingjun Jin, GY, 2019
Two-loop Higgs amplitudes with dim-7 operators

$$
\begin{aligned}
D_{\rho} F^{\rho \mu}=-g \sum_{i=1}^{n_{f}} \bar{\psi}_{i} \gamma^{\mu} \psi_{i} \rightarrow \mathcal{O}_{3} & \rightarrow \mathcal{O}_{3}^{\prime}=g^{2} \sum_{i, j=1}^{n_{f}}\left(\bar{\psi}_{i} \gamma^{\mu} \psi_{i}\right)\left(\bar{\psi}_{j} \gamma_{\mu} \psi_{j}\right) \\
\mathcal{O}_{4} & \rightarrow \mathcal{O}_{4}^{\prime}=g F_{\mu \nu} D^{\mu} \sum_{i, j=1}^{n_{f}}\left(\bar{\psi}_{i} \gamma^{\nu} T^{A} \psi_{i}\right)
\end{aligned}
$$

