Multiscale pentagon integrals to all orders

Nikolaos Syrrakos ${ }^{1,2}$
based on work in collaboration with D. Canko and C. Papadopoulos

$$
\begin{gathered}
\text { arXiv:2009.13917 [hep-ph] (JHEP) } \\
\text { arXiv:2010.06947 [hep-ph] (JHEP) } \\
\text { arXiv:2012.10635 [hep-ph] }
\end{gathered}
$$

${ }^{1}$ Institue of Nuclear and Particle Physics, NCSR Demokritos
${ }^{2}$ School of Applied Mathematics and Physical Sciences, NTUA
Florida State University 17-21 May, 2021 (Virtual)

Table of Contents

(1) Motivation
(2) Computational framework
(3) Pentagons to all orders

- One-mass pentagon
- Two-mass pentagon
- Three-mass pentagon
- GPLS
(4) Conclusions

5 Backup slides

Table of Contents

(1) Motivation
(2) Computational framework
3) Pentagons to all orders

- One-mass pentagon
- Two-mass pentagon
- Three-mass pentagon
- GPLS

4. Conclusions

Motivation

- Indications for the need of physics Beyond the Standard Model mostly from Cosmology (e.g. is dark matter a new particle/ particles?).
- Absence of a clear signal for BSM physics from the LHC \rightarrow Collider Physics at the Precision Frontier ${ }^{1}$.
- Measured cross sections are being compared to improved theoretical predictions looking for deviations from the SM \rightarrow constraints on BSM physics.
- LHC Run 3 and HL-LHC Run will require at least NNLO corrections.
- $2 \rightarrow 3$ current precision frontier at NNLO.
- Numerical approaches not efficient (physical kinematics) \rightarrow need for analytical results.
${ }^{\text {rymios }}$ G. Heinrich, arXiv:2009.00516 [hep-ph]

Motivation

State-of-the-art for $2 \rightarrow 3$ NNLO calculations (focus on Master Integrals):

- All Master Integrals involving massless particles are known.
- All planar Master Integrals with up to one off-shell leg are known.
- Recent progress in non-planar two-loop Master Integrals with one off-shell leg (see talks from C. Papadopoulos and B. Page).

Motivation

State-of-the-art for $2 \rightarrow 3$ NNLO calculations (focus on Master Integrals):

- All Master Integrals involving massless particles are known.
- All planar Master Integrals with up to one off-shell leg are known.
- Recent progress in non-planar two-loop Master Integrals with one off-shell leg (see talks from C. Papadopoulos and B. Page).
Looking ahead:
- At some point we will have to go beyond processes with one massive external particle and with internal masses.
- Starting point: one-loop five-point Master Integrals with $n \geq 1$ off-shell legs and $m \geq 1$ internal masses.
This talk: Pentagons with up to three off-shell legs.

Table of Contents

(1) Motivation

(2) Computational framework
(3) Pentagons to all orders

- One-mass pentagon
- Two-mass pentagon
- Three-mass pentagon
- GPLS

4. Conclusions

Computing Master Integrals analytically

- IBP reduction identifies a minimal set of Master Integrals, called basis of MI G .
- Use DE to compute them.

$$
\begin{equation*}
\frac{\partial}{\partial s_{i j}} \mathbf{G}=\mathbf{A}\left(\left\{s_{i j}\right\}, \epsilon\right) \mathbf{G} \tag{1}
\end{equation*}
$$

- In general the matrix \mathbf{A} can be very complicated.
- Canonical revolution ${ }^{2}$: instead of \mathbf{G} use a special basis $\mathbf{g}=\mathbf{T G}$ for which

$$
\begin{equation*}
\mathrm{dg}=\epsilon \sum_{a} \mathrm{~d} \log \left(W_{a}\right) \tilde{\mathbf{M}}_{a} \mathbf{g} \tag{2}
\end{equation*}
$$

J. M. Henn, Phys. Rev. Lett. 110 (2013), 251601

Computing Master Integrals analytically

- When W_{a} are rational functions of the differential variables, solved with recursive iterations in terms of Goncharov PolyLogarithms (GPLs)

$$
\begin{align*}
\mathcal{G}\left(a_{1}, a_{2}, \ldots, a_{n} ; x\right) & =\int_{0}^{x} \frac{\mathrm{dt}}{t-a_{1}} \mathcal{G}\left(a_{2}, \ldots, a_{n} ; t\right) \tag{3}\\
\mathcal{G}(0, \ldots, 0 ; x) & =\frac{1}{n!} \log ^{n}(x) \tag{4}
\end{align*}
$$

- For 5-point integrals going beyond weight 3 is a non-trivial task.
- Algebraic letters W_{a} prohibit a direct integration in terms of GPLs (roots arising from massive 3-point functions and Gramm determinat of external momenta).

Computing Master Integrals analytically

- Simplified Differential Equations approach (SDE) ${ }^{3}$: introduce an external parameter x and differentiate wrt it.
- Combine with canonical (pure) basis \mathbf{g} :

$$
\begin{equation*}
\partial_{x} \mathbf{g}=\epsilon \sum_{b} \frac{1}{x-l_{b}} \mathbf{M}_{b} \mathbf{g} \tag{5}
\end{equation*}
$$

- In many cases the new letters $W_{b}^{\prime}=x-I_{b}$ are fully rationalised wrt x.
- Solution of canonical SDE trivially expressed in terms of GPLs.
- Boundary terms: compute $x \rightarrow 0$ limit with expansion-by-regions method.
${ }^{3}$ C. G. Papadopoulos, JHEP 07 (2014), 088

Table of Contents

(1) Motivation

(2) Computational framework
(3) Pentagons to all orders

- One-mass pentagon
- Two-mass pentagon
- Three-mass pentagon
- GPLS

4. Conclusions

One－mass pentagon：Kinematics

Figure： 13 MI ．
－External momenta $q_{i}, i=1 \ldots 5$

$$
\begin{aligned}
& \text { 人⿻上丨 } \circ \sum_{1}^{5} q_{i}=0, q_{3}^{2} \equiv m^{2}, q_{i}^{2}=0, i=1,2,4,5
\end{aligned}
$$

One-mass pentagon: SDE parametrization

$$
\begin{equation*}
q_{1}=x p_{1}, \quad q_{2}=x p_{2}, q_{3}=p_{123}-x p_{12}, q_{4}=-p_{123}, q_{5}=-p_{1234} \tag{6}
\end{equation*}
$$

- Underline momenta $p_{i}, i=1 \ldots 5$
- $\sum_{1}^{5} p_{i}=0, p_{i}^{2}=0, i=1 \ldots 5$, with $p_{i \ldots j}:=p_{i}+\ldots+p_{j}$
- $\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, x\right\}$, with $S_{i j}:=\left(p_{i}+p_{j}\right)^{2}$
- Mapping of kinematic invariants:

$$
m^{2}=(x-1)\left(S_{12} x-S_{45}\right), s_{12}=S_{12} x^{2}, s_{23}=S_{23} x-S_{45} x+S_{45},
$$

$$
s_{34}=x\left(S_{12}(x-1)+S_{34}\right), s_{45}=S_{45}, s_{51}=S_{51} x
$$

One-mass pentagon: Pure basis

Top-sector pure basis element:

$$
\begin{equation*}
\epsilon^{2} \frac{\mathcal{P}_{11111}}{\Delta_{5}} G_{11111} \tag{8}
\end{equation*}
$$

- $G_{a_{1} a_{2} a_{3} a_{4} a_{5}}=\int \frac{\mathrm{d}^{d} k_{1}}{i \pi^{(d / 2)}} \frac{\mathrm{e}^{\epsilon \gamma_{E}}}{\mathcal{D}_{1}^{a_{1}} \mathcal{D}_{2}^{a_{2} \mathcal{D}_{3}^{a_{3}} \mathcal{D}_{4}^{a_{4}} \mathcal{D}_{5}^{a_{5}}}}$

$$
\begin{align*}
& \mathcal{D}_{1}=-\left(k_{1}\right)^{2}, \mathcal{D}_{2}=-\left(k_{1}+q_{1}\right)^{2}, \mathcal{D}_{3}=-\left(k_{1}+q_{1}+q_{2}\right)^{2} \\
& \mathcal{D}_{4}=-\left(k_{1}+q_{1}+q_{2}+q_{3}\right)^{2}, \mathcal{D}_{5}=-\left(k_{1}+q_{1}+q_{2}+q_{3}+q_{4}\right)^{2} \tag{9}
\end{align*}
$$

- \mathcal{P}_{11111} is the Baikov polynomial of G_{11111}.

One-mass pentagon: Canonical SDE \& boundaries

$$
\begin{equation*}
\partial_{\times} \mathbf{g}=\epsilon\left(\sum_{i=1}^{11} \frac{\mathbf{M}_{i}}{x-l_{i}}\right) \mathbf{g} \tag{10}
\end{equation*}
$$

One-mass pentagon: Canonical SDE \& boundaries

$$
\begin{equation*}
\partial_{x} \mathbf{g}=\epsilon\left(\sum_{i=1}^{11} \frac{\mathbf{M}_{i}}{x-l_{i}}\right) \mathbf{g} \tag{10}
\end{equation*}
$$

- \mathbf{M}_{i} independent of the kinematics.
- All kinematic dependence in l_{i}.
- Resummation matrix for $I_{1}=0,\left(\mathbf{M}_{1}=\mathbf{S D S}^{-1}\right)$

$$
\begin{equation*}
\mathbf{R}=\mathbf{S} e^{\epsilon \mathbf{D} \log (x)} \mathbf{S}^{-1} \tag{11}
\end{equation*}
$$

- $\mathbf{g}=$ TG
- Expansion-by-regions: $G_{i}=\underset{x \rightarrow 0}{ } \sum_{j} x^{b_{j}+a_{j} \epsilon} G_{i}^{\left(b_{j}+a_{j} \epsilon\right)}$

$$
\mathbf{R b}=\left.\lim _{x \rightarrow 0} \mathbf{T G}\right|_{\mathcal{O}\left(x^{0+\mathrm{a}_{j} \epsilon}\right)}, \quad \mathbf{b}=\sum_{i=0}^{n} \epsilon^{i} \mathbf{b}_{0}^{(i)}
$$

One-mass pentagon: Solution up to weight four

$$
\begin{align*}
\mathbf{g} & =\epsilon^{0} \mathbf{b}_{0}^{(0)}+\epsilon\left(\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(0)}+\mathbf{b}_{0}^{(1)}\right) \\
& +\epsilon^{2}\left(\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(1)}+\mathbf{b}_{0}^{(2)}\right) \\
& +\epsilon^{3}\left(\sum \mathcal{G}_{a b c} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(1)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(2)}+\mathbf{b}_{0}^{(3)}\right) \\
& +\epsilon^{4}\left(\sum \mathcal{G}_{a b c d} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{M}_{d} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a b c} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{b}_{0}^{(1)}\right. \\
& \left.+\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(2)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(3)}+\mathbf{b}_{0}^{(4)}\right) \tag{13}\\
\mathcal{G}_{a b \ldots .} & :=\mathcal{G}\left(l_{a}, l_{b}, \ldots ; x\right)
\end{align*}
$$

Boundaries in closed form.
Solution trivially extended to higher weights!

Two-mass pentagon: Kinematics

Figure: 15 MI .

- External momenta $q_{i}, i=1 \ldots 5$

$$
\begin{aligned}
& \text { 삽 ○ } \sum_{1}^{5} q_{i}=0,\left\{q_{3}^{2} \equiv m_{3}^{2}, q_{5}^{2} \equiv m_{5}^{2}\right\}, q_{i}^{2}=0, i=1,2,4 \\
& \left\{m_{3}^{2}, m_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}\right\} \text {, with } s_{i j}:=\left(q_{i}+q_{j}\right)^{2}
\end{aligned}
$$

Two-mass pentagon: SDE parametrization

$$
\begin{equation*}
q_{1}=x p_{1}, q_{2}=x p_{2}, q_{3}=p_{123}-x p_{12}, q_{4}=-p_{123}, q_{5}=-p_{1234} \tag{14}
\end{equation*}
$$

- Underline momenta $p_{i}, i=1 \ldots 5$
- $\sum_{1}^{5} p_{i}=0, p_{i}^{2}=0, i=1,2,3,4, p_{5}^{2}=m_{5}^{2}$, with $p_{i \ldots j}:=p_{i}+\ldots+p_{j}$
- $\left\{m_{5}^{2}, S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, x\right\}$, with $S_{i j}:=\left(p_{i}+p_{j}\right)^{2}$

Two-mass pentagon: Canonical SDE

- Top-sector pure basis element as for one-mass pentagon.

$$
\begin{equation*}
\partial_{x} \mathbf{g}=\epsilon\left(\sum_{i=1}^{14} \frac{\mathbf{M}_{i}}{x-l_{i}}\right) \mathbf{g} \tag{15}
\end{equation*}
$$

- Alphabet rational in x.
- Boundaries in closed form.
- Solution in terms of GLPs effectively to all orders in ϵ.

Three-mass pentagon: Kinematics

Figure: 18 MI .

- External momenta $q_{i}, i=1 \ldots 5$

此 ${ }^{\circ} \sum_{1}^{5} q_{i}=0,\left\{q_{1}^{2} \equiv m_{1}^{2}, q_{3}^{2} \equiv m_{3}^{2}, q_{5}^{2} \equiv m_{5}^{2}\right\}, q_{i}^{2}=0, i=2,4$

Three-mass pentagon: SDE parametrization

$$
\begin{equation*}
q_{1}=x p_{1}, \quad q_{2}=x p_{2}, \quad q_{3}=p_{123}-x p_{12}, \quad q_{4}=-p_{123}, \quad q_{5}=-p_{1234} \tag{16}
\end{equation*}
$$

- Underline momenta $p_{i}, i=1 \ldots 5$
- $\sum_{1}^{5} p_{i}=0, p_{i}^{2}=0, i=2,3,4, p_{1}^{2}=\hat{m}_{1}^{2}, p_{5}^{2}=m_{5}^{2}$, with $p_{i \ldots j}:=p_{i}+\ldots+p_{j}$
- $\left\{\hat{m}_{1}^{2}, m_{5}^{2}, S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, x\right\}$, with $S_{i j}:=\left(p_{i}+p_{j}\right)^{2}$

Three-mass pentagon: Canonical SDE

- Top-sector pure basis element as for one-mass pentagon.

$$
\begin{equation*}
\partial_{x} \mathbf{g}=\epsilon\left(\sum_{i=1}^{19} \frac{\mathbf{M}_{i}}{x-l_{i}}\right) \mathbf{g} \tag{17}
\end{equation*}
$$

- Alphabet rational in x.
- Boundaries in closed form.
- Solution in terms of GLPs effectively to all orders in ϵ.

Analysis of resulting functions

Family	$\mathrm{W}=1$	$\mathrm{~W}=2$	$\mathrm{~W}=3$	$\mathrm{~W}=4$
$P_{1 m}$	$10(2)$	$50(21)$	$170(99)$	$496(339)$
$P_{2 m}$	$9(0)$	$54(16)$	$204(106)$	$628(406)$
$P_{3 m}$	$13(0)$	$87(24)$	$349(172)$	$1115(696)$

Table: Number of GPLs entering in the solution. Top-sector b.e. in parenthesis.

Family	$\mathrm{W}=5$	$\mathrm{~W}=6$
$P_{1 m}$	$1322(959)$	$2983(1924)$
$P_{2 m}$	$1728(1254)$	$4341(2656)$
$P_{3 m}$	$3145(2228)$	$7849(4656)$

Table: Number of GPLs entering in the solution. Top-sector b.e. in parentry

Numerical results in Euclidean points

Top-Sec	Time (sec)	Result
g_{13}	1.90759	$0.0944261 \epsilon^{3}+0.31615 \epsilon^{4}+0.666923 \epsilon^{5}+1.09948 \epsilon^{6}$
g_{15}	3.75112	$-0.120811 \epsilon^{3}-0.314547 \epsilon^{4}-0.616424 \epsilon^{5}-0.985647 \epsilon^{6}$
g_{18}	9.27125	$-0.0215131 \epsilon^{3}-0.0332408 \epsilon^{4}-0.0501992 \epsilon^{5}-0.057848 \epsilon^{6}$

Table: Numerical computation of GPLs using GiNaC.

DEMOKRITOS

Table of Contents

(1) Motivation

(2) Computational framework
(3) Pentagons to all orders

- One-mass pentagon
- Two-mass pentagon
- Three-mass pentagon
- GPLS
(4) Conclusions

Conclusions

- Pure basis + SDE + Exp-by-reg. efficient computational framework for analytical computation of multiscale MI.
- Application to multiloop problems, see talks by C. Papadopoulos and D. Canko.
- Rational alphabet in $x \rightarrow$ need to study different parametrizations.
- Analytic continuation of GPLs for fast and stable numerical results in physical phase-space points.
- Next step: introduce internal masses.

Acknowledgement

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Program Human Resources Development, Education and Lifelong Learning 2014-2020 in the context of the project "Higher order corrections in QCD with applications to High Energy experiments at LHC" -MIS 5047812.

Thank you for your attention!

European Union
European Social Fund

Operational Programme
Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

DEMOKRITOS

Table of Contents

(1) Motivation

(2) Computational framework
(3) Pentagons to all orders

- One-mass pentagon
- Two-mass pentagon
- Three-mass pentagon
- GPLS
(4) Conclusions

Automated tools

- Ginac ${ }^{4}$ for the numerical calculation of GPLs.
- PolyLogTools ${ }^{5}$ for the algebraic manipulation of GPLs.
- FIRE6 ${ }^{6}$ and KIRA2 ${ }^{7}$ for the IBP reduction.
- FIESTA4 ${ }^{8}$ for Expansion-By-Regions.
- pySecDec ${ }^{9}$ and FIESTA4 for numerical computation of FI, used for cross-checking our results.

[^0]
Scattering kinematics

- Results in Euclidean region (all initial kinematic invariants are negative).
- GPLs and solutions are real there.
- Analytic continuation to get results in physical regions for phenomenology.
- Fibration basis techniques (exploit symbol algebra and coproduct to analytically continue GPLs).
- Numerically: $\left\{S_{i j}, x\right\} \rightarrow\left\{S_{i j}+i \delta_{i j} \eta, x+i \delta \eta\right\}$ for $\eta \rightarrow 0$.
- Constraints on $\delta_{i j}, \delta_{x}$ from one-scale integrals and second graph polynomial of top sector FI .

Accumulated results

- Fully analytical results for all MI for $2 \rightarrow 2$ with up to one mass in all kinematic regions.
- Analytical results for all MI for $2 \rightarrow 2$ with two masses in Euclidean region (numerical analytic continuation for physical regions) ${ }^{101112}$.
- All planar 2-loop MI for $2 \rightarrow 3$ with up to one mass.
- Two planar families for $2 \rightarrow 2$ with up to one mass at three loops ${ }^{13}$.
- Pentagon with up to one massive leg to all orders ${ }^{14}$.
${ }^{10}$ C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 01 (2015), 072
M. Henn, K. Melnikov and V. A. Smirnov, JHEP 05 (2014), 090 Caola, J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 09 (2014), 0 D. Canko and NS, [arXiv:2010.06947 [hep-ph]]
${ }^{14}$ NS, [arXiv:2012.10635 [hep-ph]]

[^0]: ${ }^{4}$ J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005), 177
 ${ }^{5}$ C. Duhr and F. Dulat, JHEP 08 (2019), 135
 ${ }^{6}$ A. V. Smirnov and F. S. Chuharev, arXiv:1901.07808 [hep-ph] Comput. Phys. Commun. 222 (2018), 313-326

