Multiscale pentagon integrals to all orders

Nikolaos Syrrakos1,2

based on work in collaboration with D. Canko and C. Papadopoulos

1Institute of Nuclear and Particle Physics, NCSR Demokritos

2School of Applied Mathematics and Physical Sciences, NTUA

Florida State University 17-21 May, 2021 (Virtual)
Table of Contents

1 Motivation

2 Computational framework

3 Pentagons to all orders
 - One-mass pentagon
 - Two-mass pentagon
 - Three-mass pentagon
 - GPLS

4 Conclusions

5 Backup slides
Motivation

- Indications for the need of physics Beyond the Standard Model mostly from Cosmology (e.g. is dark matter a new particle/particles?).
- Absence of a clear signal for BSM physics from the LHC → Collider Physics at the Precision Frontier\(^1\).
- Measured cross sections are being compared to improved theoretical predictions looking for deviations from the SM → constraints on BSM physics.
- LHC Run 3 and HL-LHC Run will require at least NNLO corrections.
- 2 → 3 current precision frontier at NNLO.
- Numerical approaches not efficient (physical kinematics) → need for analytical results.

Motivation

State-of-the-art for $2 \to 3$ NNLO calculations (focus on Master Integrals):

- All Master Integrals involving massless particles are known.
- All planar Master Integrals with up to one off-shell leg are known.
- Recent progress in non-planar two-loop Master Integrals with one off-shell leg (see talks from C. Papadopoulos and B. Page).

Looking ahead: At some point we will have to go beyond processes with one massive external particle and with internal masses. Starting point: one-loop five-point Master Integrals with $n \geq 1$ off-shell legs and $m \geq 1$ internal masses.

This talk: Pentagons with up to three off-shell legs.
Motivation

State-of-the-art for $2 \rightarrow 3$ NNLO calculations (focus on Master Integrals):

- All Master Integrals involving massless particles are known.
- All planar Master Integrals with up to one off-shell leg are known.
- Recent progress in non-planar two-loop Master Integrals with one off-shell leg (see talks from C. Papadopoulos and B. Page).

Looking ahead:

- At some point we will have to go beyond processes with one massive external particle and with internal masses.
- Starting point: one-loop five-point Master Integrals with $n \geq 1$ off-shell legs and $m \geq 1$ internal masses.

This talk: Pentagons with up to three off-shell legs.
Table of Contents

1 Motivation

2 Computational framework

3 Pentagons to all orders
 - One-mass pentagon
 - Two-mass pentagon
 - Three-mass pentagon
 - GPLS

4 Conclusions

5 Backup slides
Computing Master Integrals \textit{analytically}

- IBP reduction identifies a minimal set of Master Integrals, called basis of MI G.
- Use DE to compute them.

\begin{equation}
\frac{\partial}{\partial s_{ij}} G = A(\{s_{ij}\}, \epsilon) G
\end{equation}

In general the matrix A can be very complicated.

- \textit{Canonical revolution}²: instead of G use a special basis $g = TG$ for which

\begin{equation}
dg = \epsilon \sum_a d \log (W_a) \tilde{M}_a g
\end{equation}

²J. M. Henn, Phys. Rev. Lett. 110 (2013), 251601
Computing Master Integrals analytically

- When W_a are rational functions of the differential variables, solved with recursive iterations in terms of Goncharov PolyLogarithms (GPLs)

\[
G(a_1, a_2, \ldots, a_n; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \ldots, a_n; t) \quad (3)
\]

\[
G(0, \ldots, 0; x) = \frac{1}{n!} \log^n(x) \quad (4)
\]

- For 5-point integrals going beyond weight 3 is a non-trivial task.

- Algebraic letters W_a prohibit a direct integration in terms of GPLs (roots arising from massive 3-point functions and Gramm determinant of external momenta).
Computing Master Integrals \textit{analytically}

- Simplified Differential Equations approach (SDE)3: introduce an external parameter x and differentiate wrt it.
- Combine with canonical (pure) basis g:

$$\partial_x g = \epsilon \sum_b \frac{1}{x - l_b} M_b g$$

(5)

- In many cases the new letters $W'_b = x - l_b$ are fully rationalised wrt x.
- Solution of canonical SDE trivially expressed in terms of GPLs.
- Boundary terms: compute $x \rightarrow 0$ limit with expansion-by-regions method.

3C. G. Papadopoulos, JHEP 07 (2014), 088
Table of Contents

1 Motivation

2 Computational framework

3 Pentagons to all orders
 • One-mass pentagon
 • Two-mass pentagon
 • Three-mass pentagon
 • GPLS

4 Conclusions

5 Backup slides
One-mass pentagon: Kinematics

- External momenta q_i, $i = 1 \ldots 5$

 - $\sum_1^5 q_i = 0$, $q_3^2 \equiv m^2$, $q_i^2 = 0$, $i = 1, 2, 4, 5$

 - $\{ q_3^2, s_{12}, s_{23}, s_{34}, s_{45}, s_{15} \}$, with $s_{ij} := (q_i + q_j)^2$
One-mass pentagon: SDE parametrization

\[q_1 = \lambda p_1, \quad q_2 = \lambda p_2, \quad q_3 = p_{123} - \lambda p_{12}, \quad q_4 = -p_{123}, \quad q_5 = -p_{1234} \quad (6) \]

- Underline momenta \(p_i, \ i = 1 \ldots 5 \)
- \(\sum_{1}^{5} p_i = 0, \ p_i^2 = 0, \ i = 1 \ldots 5, \) with \(p_{i \ldots j} := p_i + \ldots + p_j \)
- \(\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, \lambda \}, \) with \(S_{ij} := (p_i + p_j)^2 \)
- Mapping of kinematic invariants:
 \[m^2 = (\lambda - 1) (S_{12} \lambda - S_{45}), \quad s_{12} = S_{12} \lambda^2, \quad s_{23} = S_{23} \lambda - S_{45} \lambda + S_{45}, \]
 \[s_{34} = \lambda (S_{12}(\lambda - 1) + S_{34}), \quad s_{45} = S_{45}, \quad s_{51} = S_{51} \lambda \]
One-mass pentagon: Pure basis

Top-sector pure basis element:

\[\epsilon^2 \frac{\mathcal{P}_{11111}^2}{\Delta_5} G_{11111} \]

\[G_{a_1 a_2 a_3 a_4 a_5} = \int \frac{d^d k_1}{i \pi^{(d/2)}} \frac{e^{i \epsilon \gamma E}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4} D_5^{a_5}} \]

\[D_1 = -(k_1)^2, \quad D_2 = -(k_1 + q_1)^2, \quad D_3 = -(k_1 + q_1 + q_2)^2 \]

\[D_4 = -(k_1 + q_1 + q_2 + q_3)^2, \quad D_5 = -(k_1 + q_1 + q_2 + q_3 + q_4)^2 \]

\[\mathcal{P}_{11111} \text{ is the Baikov polynomial of } G_{11111}. \]

\[\Delta_5 = \sqrt{\det[q_i \cdot q_j]} \]
One-mass pentagon: Canonical SDE & boundaries

\[\partial_x g = \epsilon \left(\sum_{i=1}^{11} \frac{M_i}{x - l_i} \right) g \]

(10)
One-mass pentagon: Canonical SDE & boundaries

\[\partial_x g = \epsilon \left(\sum_{i=1}^{11} \frac{M_i}{x - l_i} \right) g \] \hspace{1cm} (10)

- \(M_i \) independent of the kinematics.
- All kinematic dependence in \(l_i \).
- Resummation matrix for \(l_1 = 0, (M_1 = SDS^{-1}) \)

\[R = S e^{\epsilon D \log(x)} S^{-1} \] \hspace{1cm} (11)

- \(g = TG \)
- Expansion-by-regions: \(G_i = \sum_j x^{b_j + a_j \epsilon} G_i^{(b_j + a_j \epsilon)} \)

\[Rb = \lim_{x \to 0} TG \bigg|_{\mathcal{O}(x^{0+a_j \epsilon})}, \quad b = \sum_{i=0}^{n} \epsilon^i b_0^{(i)} \]
One-mass pentagon: Solution up to weight four

\[
g = \epsilon^0 b_0^{(0)} + \epsilon \left(\sum G_a M_a b_0^{(0)} + b_0^{(1)} \right) \\
+ \epsilon^2 \left(\sum G_{ab} M_a M_b b_0^{(0)} + \sum G_a M_a b_0^{(1)} + b_0^{(2)} \right) \\
+ \epsilon^3 \left(\sum G_{abc} M_a M_b M_c b_0^{(0)} + \sum G_{ab} M_a M_b b_0^{(1)} + \sum G_a M_a b_0^{(2)} + b_0^{(3)} \right) \\
+ \epsilon^4 \left(\sum G_{abcd} M_a M_b M_c M_d b_0^{(0)} + \sum G_{abc} M_a M_b M_c b_0^{(1)} \\
+ \sum G_{ab} M_a M_b b_0^{(2)} + \sum G_a M_a b_0^{(3)} + b_0^{(4)} \right)
\]

(13)

\(G_{ab...} := G(l_a, l_b, \ldots ; x)\)

Boundaries in closed form.

Solution trivially extended to higher weights!
Two-mass pentagon: Kinematics

- External momenta q_i, $i = 1 \ldots 5$
- $\sum_{i=1}^{5} q_i = 0$, $\{q_3^2 \equiv m_3^2, q_5^2 \equiv m_5^2\}$, $q_i^2 = 0$, $i = 1, 2, 4$
- $\{m_3^2, m_5^2, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}\}$, with $s_{ij} := (q_i + q_j)^2$
Two-mass pentagon: SDE parametrization

\[q_1 = x p_1, \quad q_2 = x p_2, \quad q_3 = p_{123} - x p_{12}, \quad q_4 = -p_{123}, \quad q_5 = -p_{1234} \quad (14) \]

- Underline momenta \(p_i, \quad i = 1 \ldots 5 \)
- \(\sum_{i=1}^{5} p_i = 0, \quad p_i^2 = 0, \quad i = 1, 2, 3, 4, \quad p_5^2 = m_5^2, \) with \(p_{i\ldots j} := p_i + \ldots + p_j \)
- \(\{ m_5^2, S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, x \} \), with \(S_{ij} := (p_i + p_j)^2 \)
Two-mass pentagon: Canonical SDE

- Top-sector pure basis element as for one-mass pentagon.

\[\partial_x g = \epsilon \left(\sum_{i=1}^{14} \frac{M_i}{x - l_i} \right) g \] \hspace{1cm} (15)

- Alphabet rational in \(x \).
- Boundaries in closed form.
- Solution in terms of GLPs effectively to all orders in \(\epsilon \).
Three-mass pentagon: Kinematics

- External momenta q_i, $i = 1 \ldots 5$
- $\sum_{i=1}^{5} q_i = 0$, $\{q_1^2 \equiv m_1^2, q_3^2 \equiv m_3^2, q_5^2 \equiv m_5^2\}$, $q_i^2 = 0$, $i = 2, 4$
- $\{m_1^2, m_3^2, m_5^2, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}\}$, with $s_{ij} := (q_i + q_j)^2$
Three-mass pentagon: SDE parametrization

\[q_1 = x p_1, \quad q_2 = x p_2, \quad q_3 = p_{123} - x p_{12}, \quad q_4 = -p_{123}, \quad q_5 = -p_{1234} \quad (16) \]

- Underline momenta \(p_i, \ i = 1 \ldots 5 \)
- \(\sum_{1}^{5} p_i = 0, \quad p_i^2 = 0, \quad i = 2, 3, 4, \quad p_1^2 = \hat{m}_1^2, \quad p_5^2 = m_5^2, \) with \(p_{i \ldots j} := p_i + \ldots + p_j \)
- \(\{ \hat{m}_1^2, \ m_5^2, \ S_{12}, \ S_{23}, \ S_{34}, \ S_{45}, \ S_{51}, \ x \} \), with \(S_{ij} := (p_i + p_j)^2 \)
Three-mass pentagon: Canonical SDE

- Top-sector pure basis element as for one-mass pentagon.

\[\partial_x g = \epsilon \left(\sum_{i=1}^{19} \frac{M_i}{x - l_i} \right) g \] \hspace{1cm} (17)

- Alphabet rational in \(x \).
- Boundaries in closed form.
- Solution in terms of GLPs effectively to all orders in \(\epsilon \).
Analysis of resulting functions

<table>
<thead>
<tr>
<th>Family</th>
<th>$W=1$</th>
<th>$W=2$</th>
<th>$W=3$</th>
<th>$W=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{1m}</td>
<td>10 (2)</td>
<td>50 (21)</td>
<td>170 (99)</td>
<td>496 (339)</td>
</tr>
<tr>
<td>P_{2m}</td>
<td>9 (0)</td>
<td>54 (16)</td>
<td>204 (106)</td>
<td>628 (406)</td>
</tr>
<tr>
<td>P_{3m}</td>
<td>13 (0)</td>
<td>87 (24)</td>
<td>349 (172)</td>
<td>1115 (696)</td>
</tr>
</tbody>
</table>

Table: Number of GPLs entering in the solution. Top-sector b.e. in parenthesis.

<table>
<thead>
<tr>
<th>Family</th>
<th>$W=5$</th>
<th>$W=6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{1m}</td>
<td>1322 (959)</td>
<td>2983 (1924)</td>
</tr>
<tr>
<td>P_{2m}</td>
<td>1728 (1254)</td>
<td>4341 (2656)</td>
</tr>
<tr>
<td>P_{3m}</td>
<td>3145 (2228)</td>
<td>7849 (4656)</td>
</tr>
</tbody>
</table>

Table: Number of GPLs entering in the solution. Top-sector b.e. in parenthesis.
Numerical results in Euclidean points

<table>
<thead>
<tr>
<th>Top-Sec</th>
<th>Time (sec)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{13}</td>
<td>1.90759</td>
<td>$0.0944261 \epsilon^3 + 0.31615 \epsilon^4 + 0.666923 \epsilon^5 + 1.09948 \epsilon^6$</td>
</tr>
<tr>
<td>g_{15}</td>
<td>3.75112</td>
<td>$-0.120811 \epsilon^3 - 0.314547 \epsilon^4 - 0.616424 \epsilon^5 - 0.985647 \epsilon^6$</td>
</tr>
<tr>
<td>g_{18}</td>
<td>9.27125</td>
<td>$-0.0215131 \epsilon^3 - 0.0332408 \epsilon^4 - 0.0501992 \epsilon^5 - 0.057848 \epsilon^6$</td>
</tr>
</tbody>
</table>

Table: Numerical computation of GPLs using GiNaC.
Table of Contents

1 Motivation

2 Computational framework

3 Pentagons to all orders
 • One-mass pentagon
 • Two-mass pentagon
 • Three-mass pentagon
 • GPLS

4 Conclusions

5 Backup slides
Conclusions

- Pure basis + SDE + Exp-by-reg. efficient computational framework for analytical computation of multiscale MI.
- Application to multiloop problems, see talks by C. Papadopoulos and D. Canko.
- Rational alphabet in $x \rightarrow$ need to study different parametrizations.
- Analytic continuation of GPLs for fast and stable numerical results in physical phase-space points.
- Next step: introduce internal masses.
Acknowledgement

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Program Human Resources Development, Education and Lifelong Learning 2014 - 2020 in the context of the project ”Higher order corrections in QCD with applications to High Energy experiments at LHC” -MIS 5047812.

Thank you for your attention!
Table of Contents

1. Motivation

2. Computational framework

3. Pentagons to all orders
 - One-mass pentagon
 - Two-mass pentagon
 - Three-mass pentagon
 - GPLS

4. Conclusions

5. Backup slides
Automated tools

- Ginac4 for the numerical calculation of GPLs.
- PolyLogTools5 for the algebraic manipulation of GPLs.
- FIRE6 and KIRA7 for the IBP reduction.
- FIESTA4 for Expansion-By-Regions.
- pySecDec9 and FIESTA4 for numerical computation of FI, used for cross-checking our results.

4 J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005), 177
5 C. Duhr and F. Dulat, JHEP 08 (2019), 135
8 A. V. Smirnov, Comput. Phys. Commun. 204 (2016), 189-199
Scattering kinematics

- Results in Euclidean region (all initial kinematic invariants are negative).
- GPLs and solutions are real there.
- Analytic continuation to get results in physical regions for phenomenology.
- Fibration basis techniques (exploit symbol algebra and coproduct to analytically continue GPLs).
- Numerically: \(\{ S_{ij}, \chi \} \rightarrow \{ S_{ij} + i\delta_{ij}\eta, \chi + i\delta\eta \} \) for \(\eta \rightarrow 0 \).
- Constraints on \(\delta_{ij}, \delta_{\chi} \) from one-scale integrals and second graph polynomial of top sector FI.
Accumulated results

- Fully analytical results for all MI for $2 \rightarrow 2$ with up to one mass in all kinematic regions.
- Analytical results for all MI for $2 \rightarrow 2$ with two masses in Euclidean region (numerical analytic continuation for physical regions)\(^{10}\)\(^{11}\)\(^{12}\).
- All planar 2-loop MI for $2 \rightarrow 3$ with up to one mass.
- Two planar families for $2 \rightarrow 2$ with up to one mass at three loops\(^{13}\).
- Pentagon with up to one massive leg to all orders\(^{14}\).

\(^{10}\) C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 01 (2015), 072

\(^{11}\) J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 05 (2014), 090

\(^{12}\) F. Caola, J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 09 (2014), 042

\(^{13}\) D. D. Canko and NS, [arXiv:2010.06947 [hep-ph]]

\(^{14}\) NS, [arXiv:2012.10635 [hep-ph]]