Evaluation of two-loop EW box diagrams for $e^{+} e^{-} \rightarrow Z H$

Qian Song
Ayres Freitas
17 May, Monday

Content

- Introduction
- Evaluation method: planar box diagram
 non-planar box diagram
- Numerical result
- Summary

1. Introduction

- Discovery of Higgs boson $(2012$, LHC $)$: last fundamental particle in SM
- Experiments at the ATLAS and CMS: agrees with the result SM predicted
- Problems not solved: electroweak symmetry breaking, Higgs coupling to SM particles/DM, hierarchy problem... Require new physics beyond SM
- One promising way probing new physics: precision measurements of the properties of H
- LHC is difficult to reach very high precision due to complicated background

1. Introduction

- FCC-ee, CEPC, ILC: e+e- collider, large statistics, high luminosity, clean environment, measure H properties with very high precision ($\sqrt{s}=240-250 \mathrm{GeV}$)
- ILC: $\sigma_{Z H} \sim 1.2 \%, 250 \mathrm{fb}-1$ (H. Baer et al. [arxiv:1306.6352 [hep-ph]])
- FCC-ee: $\sigma_{Z H} \sim 0.4 \%, 5 a b-1$ (A.Abada et allfcc collaboration])
- CEPC: $\sigma_{Z H} \sim 0.5 \%, 5.6 a b-1$ (arxiv:1811.10545)

1. Introduction

- LO on $\sigma\left(e^{+} e^{-} \rightarrow Z H\right)$: only consider s channel t , u channel amplitude is zero due to small Yukawa coupling
- NLO on $\sigma\left(e^{+} e^{-} \rightarrow Z H\right)$: unpolarized beam: 5-10\%;
(A. Denner et al,Phys. C 56, 261(1992)) polarized beam: 10-20\%;
(S.Bondarenko, Phys. Rev. D 100,073002(2019))
$\sigma\left(P_{e^{-}}, P_{e^{+}}\right)=\frac{1}{4} \sum_{\chi_{1} \chi_{2}}\left(1+\chi_{1} P_{e^{+}}\right)\left(1+\chi_{2} P_{e^{-}}\right) \sigma_{\chi_{1<2}}$,

TABLE I. Hard ($E_{\gamma}>1 \mathrm{GeV}$), Born, and one-loop cross sections in fb and relative corrections δ in $\%$ for the c.m. energy $\sqrt{s}=250 \mathrm{GeV}$ and various polarization degrees of the initial particles.

$P_{e^{-}}$	$P_{e^{+}}$	$\sigma^{\text {hard }}, \mathrm{fb}$	$\sigma^{\text {Born }}, \mathrm{fb}$	$\sigma^{\text {one-loop }}, \mathrm{fb}$	$\delta, \%$
0	0	$82.0(1)$	$225.59(1)$	$206.77(1)$	$-8.3(1)$
-0.8	0	$96.7(1)$	$266.05(1)$	$223.33(2)$	$-16.1(1)$
-0.8	-0.6	$46.3(1)$	$127.42(1)$	$111.67(2)$	$-12.4(1)$
-0.8	0.6	$147.1(1)$	$404.69(1)$	$334.99(1)$	$-17.2(1)$

1. Introduction

- NNLO:(s=240-250GeV)

EW+QCD:0.4-1.3\% $\left(\alpha(0), \alpha\left(M_{z}\right), G_{\mu}\right)$
(Q.F.Sun, Phys.Rev.D 96,051301(2017))

EW+QCD:1.3\% ($\left.\overline{M S}, \alpha\left(M_{z}\right)\right)$
(Q.F.Sun, Phys.Rev.D 96,051301(2017))

\sqrt{s}	schemes	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	$\sigma_{\mathrm{NNLO}}(\mathrm{fb})$
240	$\alpha(0)$	223.14 ± 0.47	229.78 ± 0.77	$232.21_{-0.75-0.21}^{+0.75+0.10}$
	$\alpha\left(M_{Z}\right)$	252.03 ± 0.60	$228.36_{-0.81}^{+0.82}$	$231.28_{-0.79-0.25}^{+0.80+12}$
	G_{μ}	239.64 ± 0.06	$232.46_{-0.07}^{+0.07}$	$233.29_{-0.06}^{+0.07+0.03}$
250	$\alpha(0)$	223.12 ± 0.47	229.20 ± 0.77	$231.63_{-0.75-0.21}^{+0.05+0.12}$
	$\alpha\left(M_{Z}\right)$	252.01 ± 0.60	$227.67_{-0.81}^{+0.82}$	$230.58_{-0.79-0.25}^{+0.80+14}$
	G_{μ}	239.62 ± 0.06	231.82 ± 0.07	$232.65_{-0.07}^{+0.07}+0.04$

1. Introduction

- NNLO:(s=240-250GeV)

EW+QCD:0.4-1.3\% ($\left.\alpha(0), \alpha\left(M_{z}\right), G_{\mu}\right)$
(Q.F.Sun, Phys.Rev.D 96,051301(2017))

EW+QCD:1.3\% ($\overline{M S}, \alpha\left(M_{z}\right)$)
(Q.F.Sun, Phys.Rev.D 96,051301(2017))

\sqrt{s}	schemes	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	$\sigma_{\mathrm{NNLO}}(\mathrm{fb})$
	$\alpha(0)$	223.14 ± 0.47	229.78 ± 0.77	$232.21_{-0.75-0.21}^{+0.75+0.10}$
240	$\alpha\left(M_{Z}\right)$	252.03 ± 0.60	$228.36_{-0.81}^{+0.82}$	$231.28_{-0.79-0.25}^{+0.80+0.12}$
	G_{μ}	239.64 ± 0.06	$232.46_{-0.07}^{+0.07}$	$233.29_{-0.06-0.07}^{+0.07+0.03}$
	$\alpha(0)$	223.12 ± 0.47	229.20 ± 0.77	$231.63_{-0.75-0.21}^{+0.75+0.12}$
250	$\alpha\left(M_{Z}\right)$	252.01 ± 0.60	$227.67_{-0.81}^{+0.82}$	$230.58_{-0.79-0.25}^{+0.80+0.14}$
	G_{μ}	239.62 ± 0.06	231.82 ± 0.07	$232.65_{-0.07-0.07}^{+0.07+0.04}$

TABLE II. Total cross sections at various collider energies in the $\alpha\left(m_{Z}\right)$ scheme.

$\sqrt{s}(\mathrm{GeV})$	$\sigma_{\mathrm{LO}}(\mathrm{fb})$	$\sigma_{\mathrm{NLO}}(\mathrm{fb})$	$\sigma_{\mathrm{NNLO}}(\mathrm{fb})$	$\sigma_{\mathrm{NNLO}}^{\exp }(\mathrm{fb})$
240	252.0	228.6	231.5	231.5
250	252.0	227.9	230.8	230.8
300	190.0	170.7	172.9	172.9
350	135.6	122.5	124.2	124.0
500	60.12	54.03	54.42	54.81

1. Introduction

- EW+QCD:0.4-1.3\% $\left(\alpha(0), \alpha\left(M_{z}\right), G_{\mu}\right)$ (Q..f.Sun, Phys.Rev.D 96,051301(2017))

EW+QCD:1.3\% ($\left.\overline{M S}, \alpha\left(M_{z}\right)\right)($ Q.F.Sun, Phys.Rev.D 96,051301(2017))

- EW+EW: ~1\% (arxiv:1906.05379) (25377 diagrams(arxiv:2102.15213))
challenging type: 2250 diagrams with 7 denominators, 4 independent mass scale, 2 independent energy scale diagrams with closed fermion loop dominant due to large top-quark Yukawa coupling and large number of fermions in SM
\rightarrow planar \& Non-planar diagrams with closed top-quark loop (18+9)

1. Introduction

$e \quad e \rightarrow Z H$

Planar double-box diagrams

1. Introduction

- Analytical calculation: can be done for 1-loop, but difficult in 2-loop: require more knowledge about special functions(harmonic polylogarithmic functions, iterated elliptic integrals)
- Numerical calculation: use Feynman parametrization. Box diagram is equal to integration over 6 Feynman parameters. It requires large computing resources and takes few days because the integrand converges slowly
(F. Yuasa et al; Comput. Phys. Commun. 183, 2136-2144 (2012))

$$
I_{\text {planar }}=-\int_{0}^{1} d \rho \int_{0}^{1} d \xi \int_{0}^{1} d u_{1} \int_{0}^{1-u_{1}} d u_{2} \int_{0}^{1} d u_{3} \int_{0}^{1-u 3} d u_{4} \frac{\mathcal{C}}{(\mathcal{D}-i \epsilon \mathcal{C})^{3}} \rho^{3} \xi^{2}(1-\xi)^{2}
$$

- Our method: simplify the integrand with Feynman parametrization and dispersion relation. The box diagram is reduced to 3 -fold integration, which takes few minutes to calculate.

1. Introduction

- Feynman diagrams \rightarrow FeynArts (т. Hahn, Comput. Phys. Commun. 140, 418 (2001). [hep-ph/0012260])
- Square amplitude \rightarrow FeynCalc ($\operatorname{dim}=4$)
(V. Shtabovenko, R. Mertig and F. Orellana, "FeynCalc 9.3: New features and improvements", arXiv:2001.04407.)
- (...) \rightarrow dispersion relation and Feynman parameterization(Mathematica)
- Numerical calculation \rightarrow C++, LoopTools, Gauss-Kronrod quadrature In Boost package
(Comput.Phys.Commun.118(1999)153)
(https://www.boost.org/doc/libs/master/libs/math/doc/html/index .html)

2. Evaluation Method - planar diagram

According to Feynman rules, the amplitude for planar diagram can be written as $I_{\text {plan }}$.
Use Feynman parametrization to simplify the denominators only involve q2
Feynman parametrizaiton: $\frac{1}{a b c}=\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{(a x+b y+c(1-x-y))^{3}}$

$$
\begin{aligned}
& I_{p l a n}=\int d_{q_{1}}^{D} d_{q_{2}}^{D} \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)\left(q_{1}-q_{2}\right)^{2}-m_{q^{\prime}}^{2}} \\
& \quad \underbrace{1-x d y \partial_{m^{\prime 2}}^{2} \frac{1}{\left(q_{2}+k^{\prime}\right)^{2}-m^{\prime 2}}}_{\left.\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{\left(\left(q_{2}^{2}+k^{\prime}\right)^{2}-m^{\prime 2}\right)^{3}}=\int_{0}^{2}\right)\left(\left(q_{2}+k_{1}\right)^{2}-m_{t}^{2}\right)\left(\left(q_{2}+k_{1}+k_{2}\right)^{2}-m_{t}^{2}\right)}
\end{aligned}
$$

$$
=\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime 2}}^{2} \int d_{q_{1}}^{D} \frac{B_{0}\left(\left(q_{1}+k^{\prime}\right)^{2}, m_{q^{\prime}}^{2}, m^{\prime 2}\right)}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)}
$$

Loop momentum q1 appears in B0 functions, so cannot integrate over q1. \rightarrow use dispersion relation to put q1 outside BO function

2. Evaluation Method - planar diagram

dispersion relation:

$$
\begin{aligned}
& B_{0}\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=\frac{1}{2 \pi i} \oint_{C} d_{\sigma} \frac{B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}{\sigma-p^{2}-i \varepsilon} \\
& =\int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} d \sigma \frac{\Delta B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}{\sigma-p^{2}-i \epsilon} \\
& =\int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} d \sigma \frac{1}{\pi} \frac{\operatorname{Im} B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}{\sigma-p^{2}-i \epsilon}
\end{aligned}
$$

$$
I_{\mathrm{plan}}=\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \Delta B_{0}\left(s, m^{\prime 2}, m_{q^{\prime}}^{2}\right) D_{0}(\ldots, \sigma)
$$

$$
\left.=\int_{0}^{1} d x \int_{0}^{1-x} d y \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \partial_{m^{\prime 2}}^{2} \Delta B_{0}\left(s, m^{\prime 2}, m_{q^{\prime}}^{2}\right)\left(D_{0}(\ldots, \sigma)-\frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right)\right)\right)
$$

$$
+\int_{0}^{1} d x \int_{0}^{1-x} d y \sigma_{0} D_{0}\left(\ldots, \sigma_{0}\right) \partial_{m^{\prime 2}}^{2} B_{0}\left(0, m^{\prime 2}, m_{q^{\prime}}^{2}\right)
$$

2. Evaluation Method - non-planar diagram

Similarly, use Feynman parametrization to simplify the denominators including q2 and integrating loop momentum q2 gives BO function

$$
\begin{aligned}
I_{N P} & =\int d_{q_{1}}^{D} d_{q_{2}}^{D} \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)} \\
& \underbrace{\left.\left.1-q_{2}\right)^{2}-m_{q^{\prime}}^{2}\right)\left(\left(q_{1}-q_{2}+k_{1}\right)^{2}-m_{q^{\prime}}^{2}\right)}_{\int_{0}^{1} d x \partial_{m^{\prime} \frac{1}{1}} \frac{1}{\left(\left(q_{1}-q_{2}+(1-x) k_{1}\right)^{2}-m_{1}^{\prime 2}\right.}} \underbrace{1}_{\left.\int_{0}^{1} d y \partial_{m^{\prime} \frac{2}{2} \frac{1}{\left(q_{2}+y k_{2}\right)^{2}-m^{\prime 2}}}^{\left(q_{2}^{2}\right.}-m_{t}^{2}\right)\left(\left(q_{2}+k_{2}\right)^{2}-m_{t}^{2}\right)} \\
& =\int_{0}^{1} d x \int_{0}^{1} d y \partial_{m_{1}^{\prime 2}} \partial_{m^{\prime 2}} \int d_{q_{1}}^{D} B_{0}\left(\left(q 1+(1-x) k_{1}+y k_{2}\right)^{2}, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right) \\
& \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)}
\end{aligned}
$$

2. Evaluation Method - non-planar diagram

- For non-planar double box including $\gamma \gamma, \gamma Z, Z Z$, use the same dispersion relation as planar diagram
- For non-planar double-box including WW:
$m_{1}^{\prime 2}=m_{b}^{2}-x(1-x) m_{Z}^{2}<0$
Branch cut changes, we use a new dispersion relation
$B_{0}\left(p^{2}, m^{\prime}{ }_{1}^{2}, m^{\prime 2}{ }_{2}\right)=\frac{1}{2 \pi i} \oint_{C} d \sigma \frac{B_{0}\left(\sigma, m^{\prime}{ }_{1}^{2}, m^{\prime}{ }_{2}^{2}\right)}{\sigma-p^{2}-i \varepsilon}$
$=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} d \sigma \frac{B_{0}\left(\sigma, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right)}{\sigma-p^{2}-i \epsilon}$
$I_{N P-W W}=\frac{-1}{2 \pi i} \int_{0}^{1} d x \int_{0}^{1} d y \int_{-\infty}^{\infty} d \sigma \partial_{m_{1}^{\prime 2}} \partial_{m^{\prime 2}} B_{0}\left(\sigma, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right) D 0(\ldots, \sigma-i \epsilon)$

2. Evaluation Method

$$
I=\underbrace{\int d x \int d y \int d \sigma}_{\text {Gauss-kronrod quadrature(Boost) }} \underbrace{B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right) \text { or } \Delta B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}_{\text {analytical expression is known }} \times \underbrace{\left(c_{A} A_{0}+c_{B} B_{0}+c_{C} C_{0} \ldots\right)}_{\text {LoopTools package }}
$$

- Programming using C++
- Running time: few minutes to half an hour(non-planar WW)
- Advantages: low requirement of computer, short running time
- Precision: 4-digit, the precision is confined by the Looptools(double-precision)
- Stability: integrand is smooth

3. Result: instability

- Upper and lower bound of the integrand, $\delta \sim 10^{-3}, \Lambda \sim 10^{8}$

$$
\int_{\sigma_{0}}^{\infty} f(\sigma)=\int_{\sigma_{0}(1+\delta)}^{\Lambda} f(\sigma)+2 \sigma_{0} \delta f\left(\sigma_{0} \delta\right)+\Lambda f(\Lambda)
$$

- For non-planar diagram, the Gram determinants(tensor decomposition arxiv:0812.2134[hepph])for some Passarino-Veltman tensor functions vanish when x is equal to y, and Looptools is not able to give a number.
a) separate the integration region of $x:(0,0.5)(0.5,1)$
b) separate the integration region of y : $(0, x-\delta),(x-\delta, x+\delta),(x+\delta, 1) \delta=10^{-2,-3, \ldots}$
- For non-planar diagram with W bosons, $\sigma-i \epsilon, \epsilon \sim 10^{-9}|\sigma|$ or $\epsilon \sim 10^{-5}$

3. Result

few minutes

Parameter	Value
M_{Z}	91.1876 GeV
M_{W}	80.379 GeV
M_{H}	125.1 GeV
m_{t}	172.76 GeV
α	$1 / 137$
$E_{C M}$	240 GeV
m_{γ}	$10^{-6} \mathrm{GeV}$
θ	$\pi / 2$

$V_{1} V_{2}$ diagr. class	$\operatorname{Re}\left\{\mathcal{M}_{2} \mathcal{M}_{0}^{*}\right\}$
$\gamma \gamma$	$-1.524(1) \times 10^{-7}$
γZ	$-1.537(1) \times 10^{-8}$
$Z Z$ planar	$-4.402(4) \times 10^{-8}$
$Z Z$ non-planar	$1.724(2) \times 10^{-8}$
$W W$ planar	$-1.1392(8) \times 10^{-6}$
$W W$ non-planar	$-5.577(5) \times 10^{-7}$

regulate the IR divergence, no UV divergence

3. Result

Dependence of the $\gamma \gamma$ (left) and γZ (right) two-loop boxes on the photon mass m_{γ}

3. Result

few minutes

Parameter	Value
M_{Z}	91.1876 GeV
M_{W}	80.379 GeV
M_{H}	125.1 GeV
m_{t}	172.76 GeV
α	$1 / 137$
$E_{C M}$	240 GeV
m_{γ}	$10^{-6} \mathrm{GeV}$
θ	$\pi / 2$

$V_{1} V_{2}$ diagr. class	$\operatorname{Re}\left\{\mathcal{M}_{2} \mathcal{M}_{0}^{*}\right\}$
$\gamma \gamma$	$-1.524(1) \times 10^{-7}$
γZ	$-1.537(1) \times 10^{-8}$
$Z Z$ planar	$-4.402(4) \times 10^{-8}$
$Z Z$ non-planar	$1.724(2) \times 10^{-8}$
$W W$ planar	$-1.1392(8) \times 10^{-6}$
$W W$ non-planar	$-5.577(5) \times 10^{-7}$

regulate the IR divergence, no UV divergence

3. Summary

- Double-box diagrams can be efficiently evaluated by Feynman parametrization and dispersion relation (For non-planar diagrams with 2 W bosons, dispersion relation is different from other diagrams)
- Takes few minutes for numerical calculation. For non-planar diagrams with 2 W bosons, takes half an hour.
- IR divergence is controlled by giving photon a small mass without loss of numerical precision.
- The evaluation method can also be applied for the calculation of electroweak corrections to other $2 \rightarrow 2$ process, such as $e^{+} e^{-} \rightarrow W^{+} W^{-}$

Thank you!

2. Evaluation Method - planar diagram

According to Feynman rules, the amplitude for planar diagram can be written as $I_{\text {plan }}$. Use Feynman parametrization to simplify the denominators only involve q2

$$
\begin{aligned}
& I_{\text {plan }}=\int d_{q_{1}}^{D} d_{q_{2}}^{D} \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)\left(q_{1}-q_{2}\right)^{2}-m_{q^{\prime}}^{2}} \\
& \underbrace{\frac{1}{\left(q_{2}^{2}-m_{t}^{2}\right)\left(\left(q_{2}+k_{1}\right)^{2}-m_{t}^{2}\right)\left(\left(q_{2}+k_{1}+k_{2}\right)^{2}-m_{t}^{2}\right)}}_{\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{\left(\left(q_{2}+k^{\prime}\right)^{2}-m^{\prime 2}\right)^{3}}=\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime}}^{2} \frac{1}{\left(q_{2}+k^{\prime}\right)^{2}-m^{\prime 2}}} \\
& \text { Feynman parametrizaiton: } \frac{1}{a b c}=\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{(a x+b y+c(1-x-y))^{3}}
\end{aligned}
$$

2. Evaluation Method - planar diagram

Integrating over loop momentum q2 gets B0 function:

$$
\begin{aligned}
I_{\text {plan }} & =\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime 2}}^{2} \int d_{q_{1}}^{D} d_{q_{2}}^{D} \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)} \\
& \frac{1}{\left(\left(q_{1}-q_{2}\right)^{2}-m_{q^{\prime}}^{2}\right)} \frac{1}{\left(q_{2}+k^{\prime}\right)^{2}-m^{\prime 2}} \\
& =\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime 2}}^{2} \int d_{q_{1}}^{D} \frac{B_{0}\left(\left(q_{1}+k^{\prime}\right)^{2}, m_{q^{\prime}}^{2}, m^{\prime 2}\right)}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)}
\end{aligned}
$$

Loop momentum q1 appears in B0 functions, so cannot integrate over q1.
\rightarrow use dispersion relation to put q1 outside B0 function

2. Evaluation Method - planar diagram

dispersion relation:

$$
\begin{aligned}
& B_{0}\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=\frac{1}{2 \pi i} \oint_{C} d_{\sigma} \frac{B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}{\sigma-p^{2}-i \varepsilon} \\
& =\int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} d \sigma \frac{\Delta B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}{\sigma-p^{2}-i \epsilon} \\
& =\int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} d \sigma \frac{1}{\pi} \frac{\operatorname{Im} B_{0}\left(\sigma, m_{1}^{2}, m_{2}^{2}\right)}{\sigma-p^{2}-i \epsilon}
\end{aligned}
$$

2. Evaluation Method - planar diagram

Integrating over q1 gets the D0 function.
Use Leibiniz's rule to put the derivative inside the integral: ΔB_{0} is divergent at the lower bound, it can be fixed by subtracting one term to make the integrand become 0 at the lower bound.

$$
\begin{aligned}
I_{p l a n} & =\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \int d_{q_{1}}^{D} \Delta B_{0}\left(s, m^{\prime 2}, m_{q^{\prime}}^{2}\right) \\
& \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)\left(s-\left(q_{1}+k^{\prime}\right)^{2}\right)} \\
& =-\int_{0}^{1} d x \int_{0}^{1-x} \partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \Delta B_{0}\left(\sigma, m^{\prime 2}, m_{q^{\prime}}^{2}\right) D_{0}\left(p_{1}^{2}, p_{2}^{2}, k_{2}^{\prime 2}, k_{1}^{\prime 2}, s, t, m_{V_{1}}^{2}, m_{f^{\prime}}^{2}, m_{V_{2}}^{2}, \sigma\right)
\end{aligned}
$$

Leibiniz's rule:

$$
\frac{d}{d x}\left(\int_{a(x)}^{b(x)} f(x, t) d t\right)=\int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) d t+f(x, b(x)) \frac{d b(x)}{d x}-f(x, a(x)) \frac{d a(x)}{d x}
$$

2. Evaluation Method - planar diagram

$$
\begin{aligned}
& \partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \Delta B_{0}\left(\sigma, m^{\prime 2}, m_{q^{\prime}}^{2}\right)\left(D_{0}(\ldots, \sigma)-\frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right)+\frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right)\right) \\
& =\partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \Delta B_{0}\left(\sigma, m^{\prime 2}, m_{q^{\prime}}^{2}\right)\left(D_{0}(\ldots, \sigma)-\frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right)\right) \quad \rightarrow 0 \text { at the lower bound, so derivative van be put } \\
& \text { inside the integral }
\end{aligned} \begin{aligned}
& +\partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \Delta B_{0}\left(\sigma, m^{\prime 2}, m_{q^{\prime}}^{2}\right) \frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right) \rightarrow \text { integrate over } \sigma \text { gives } B_{0}\left(0, m^{\prime 2}, m_{q^{\prime}}^{2}\right) \text { (dispersion relation) } \\
& I_{\text {plan }}=\int_{0}^{1} d x \int_{0}^{1-x} d y \partial_{m^{\prime 2}}^{2} \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \Delta B_{0}\left(s, m^{\prime 2}, m_{q^{\prime}}^{2}\right) D_{0}\left(p_{1}^{2}, p_{2}^{2},,_{2}^{\prime 2},,_{1}^{\prime 2}, s, t, m_{V_{1}}^{2}, m_{f^{\prime}}^{2}, m_{V_{2}}^{2}, \sigma\right) \\
& =\int_{0}^{1} d x \int_{0}^{1-x} d y \int_{\left(m^{\prime}+m_{q^{\prime}}\right)^{2}}^{\infty} d \sigma \partial_{m^{\prime 2}}^{2} \Delta B_{0}\left(s, m^{\prime 2}, m_{q^{\prime}}^{2}\right)\left(D_{0}(\ldots, \sigma)-\frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right)\right) \\
& +\int_{0}^{1} d x \int_{0}^{1-x} d y \sigma_{0} D_{0}\left(\ldots, \sigma_{0}\right) \partial_{m^{\prime 2}}^{2} B_{0}\left(0, m^{\prime 2}, m_{q^{\prime}}^{2}\right)
\end{aligned}
$$

2. Evaluation Method - planar diagram

If the numerator is not equal to 1 , integrating over $q 2$ gets $B 1, B 00, B 11$ functions. They have same dispersion relation as BO.
For example, num $=p_{1} \cdot q_{2}$

$$
\begin{aligned}
& \text { num }=p_{1} \cdot q_{2},\left(p_{1} \cdot q_{2}\right)\left(k_{1} \cdot q_{2}\right) \ldots \neq 1 \\
& \int d^{D} q_{2} \frac{p_{1} \cdot q_{2}}{\left(q_{2}^{2}-m_{q^{\prime}}^{2}\right)\left(q_{2}+q_{1}+k^{\prime}\right)^{2}-m^{\prime 2}}=p_{1 \mu} \int d^{D} q_{2} \frac{q_{2}^{\mu}}{\left(q_{2}^{2}-m_{q^{\prime}}^{2}\right)\left(q_{2}+q_{1}+k^{\prime}\right)^{2}-m^{\prime 2}} \\
& =p_{1 \mu} B_{\mu}\left(\left(q_{1}+k^{\prime}\right)^{2}, m^{\prime 2}, m_{q^{\prime}}^{2}\right) \\
& =\underbrace{p_{1 \mu}\left(p_{1}+k^{\prime}\right)_{\mu}}_{p_{1} \cdot\left(p_{1}+k^{\prime}\right)} B_{1}\left(\left(q_{1}+k^{\prime}\right)^{2}, m^{\prime 2}, m_{q^{\prime}}^{2}\right) \Rightarrow \frac{p_{1} \cdot\left(p_{1}+k^{\prime}\right)}{\sigma-\left(q_{1}+k^{\prime}\right)^{2}} \int d \sigma \Delta B_{1}
\end{aligned}
$$

similarly,

$$
\begin{aligned}
\int d^{D} q_{2} \frac{q_{2}^{\mu} q_{2}^{\nu}}{\left(q_{2}^{2}-m_{q^{\prime}}^{2}\right)\left(q_{2}+q_{1}+k^{\prime}\right)^{2}-m^{\prime 2}} & \Rightarrow B_{00}, B_{11} \Rightarrow \int d \sigma \Delta B_{00}, \int d \sigma \Delta B_{11} \\
\int d^{D} q_{2} \frac{q_{2}^{\mu} q_{2}^{\nu}, q_{2}^{\rho}}{\left(q_{2}^{2}-m_{q^{\prime}}^{2}\right)\left(q_{2}+q_{1}+k^{\prime}\right)^{2}-m^{\prime 2}} & \Rightarrow B_{\substack{001 \\
\text { LoopFest2021 }}}, B_{111} \Rightarrow \int d \sigma \Delta B_{001}, \int d \sigma \Delta B_{111}
\end{aligned}
$$

2. Evaluation Method - non-planar diagram

Similarly, use Feynman parametrization to simplify the denominators including q2 and integrating loop momentum q2 gives BO function

$$
\begin{aligned}
I_{N P} & =\int d_{q_{1}}^{D} d_{q_{2}}^{D} \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)} \\
& \underbrace{\left.\left.1-q_{2}\right)^{2}-m_{q^{\prime}}^{2}\right)\left(\left(q_{1}-q_{2}+k_{1}\right)^{2}-m_{q^{\prime}}^{2}\right)}_{\int_{0}^{1} d x \partial_{m^{\prime} \frac{1}{1}} \frac{1}{\left(\left(q_{1}-q_{2}+(1-x) k_{1}\right)^{2}-m_{1}^{\prime 2}\right.}} \underbrace{1}_{\left.\int_{0}^{1} d y \partial_{m^{\prime} \frac{2}{2} \frac{1}{\left(q_{2}+y k_{2}\right)^{2}-m^{\prime 2}}}^{\left(q_{2}^{2}\right.}-m_{t}^{2}\right)\left(\left(q_{2}+k_{2}\right)^{2}-m_{t}^{2}\right)} \\
& =\int_{0}^{1} d x \int_{0}^{1} d y \partial_{m_{1}^{\prime 2}} \partial_{m^{\prime 2}} \int d_{q_{1}}^{D} B_{0}\left(\left(q 1+(1-x) k_{1}+y k_{2}\right)^{2}, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right) \\
& \frac{1}{\left(q_{1}^{2}-m_{V_{1}}^{2}\right)\left(\left(q_{1}+p_{1}\right)^{2}-m_{f^{\prime}}^{2}\right)\left(\left(q_{1}+p_{1}+p_{2}\right)^{2}-m_{V_{2}}^{2}\right)}
\end{aligned}
$$

2. Evaluation Method - non-planar diagram

For non-planar double box including $\gamma \gamma, \gamma Z, Z Z$, use the same dispersion relation. Put the derivative inside the integral by subtracting $\frac{\sigma_{0}}{\sigma} D_{0}$ and add it back

$$
\begin{aligned}
I_{N P(\gamma \gamma, \gamma Z, Z Z)} & =\int_{0}^{1} d x \int_{0}^{1} d y \int_{\left(m_{1}^{\prime}+m_{2}^{\prime}\right)^{2}}^{\infty} d \sigma \partial_{m_{1}^{\prime 2}} \partial_{m_{2}^{\prime 2}} \Delta B_{0}\left(\sigma, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right)\left(D_{0}(\ldots, \sigma)-\frac{\sigma_{0}}{\sigma} D_{0}\left(\ldots, \sigma_{0}\right)\right) \\
& +\int_{0}^{1} d x \int_{0}^{1} d y \sigma_{0} D_{0}\left(\ldots, \sigma_{0}\right) \partial_{m_{1}^{\prime 2}} \partial_{m_{2}^{\prime 2}} B_{0}\left(0, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right)
\end{aligned}
$$

2. Evaluation Method - non-planar diagram

For non-planar double-box including WW:

$$
m_{1}^{\prime 2}=m_{b}^{2}-x(1-x) m_{Z}^{2}<0
$$

Branch cut changes, we use a new dispersion relation.

$$
\begin{aligned}
& B_{0}\left(p^{2}, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right)=\frac{1}{2 \pi i} \oint_{C} d \sigma \frac{B_{0}\left(\sigma, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right)}{\sigma-p^{2}-i \varepsilon} \\
& =\frac{1}{2 \pi i} \int_{-\infty}^{\infty} d \sigma \frac{B_{0}\left(\sigma, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right)}{\sigma-p^{2}-i \epsilon}
\end{aligned}
$$

$$
I_{N P-W W}=\frac{-1}{2 \pi i} \int_{0}^{1} d x \int_{0}^{1} d y \int_{-\infty}^{\infty} d \sigma \partial_{m_{1}^{\prime 2}} \partial_{m_{2}^{\prime 2}} B_{0}\left(\sigma, m_{1}^{\prime 2}, m_{2}^{\prime 2}\right) D 0(\ldots, \sigma-i \epsilon)
$$

