Power Corrections to event shapes using eikonal dressed gluon exponentiation

Sourav Pal

Collaborators: Neelima Agarwal, Ayan Mukhopadhyay, Anurag Tripathi

Indian Institute of Technology Hyderabad Department of Physics

RADCOR-LoopFest 2021
May 18, 2021

Outline

- Event Shape Variables
- Power Corrections
- Eikonal Dressed gluon exponentiation
- Summary

Event Shapes

What are Event Shapes

- Most basic final state observable in $e^{+} e^{-}$colliders.

- two-jet event $T=1$
- three-jet event $2 / 3 \leq T \leq 1$

Event shapes

- Thrust
- C parameter
- Angularity
- Jet Mass
- Jet boardening

Definition of event shapes

- Thrust $\left.{ }_{[\text {Farhi }}(1977)\right]$

$$
T=\operatorname{Max}_{\mathrm{n}} \frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i} E_{i}}
$$

- C-parameter [Parisi (1978)]

$$
C=3-\frac{3}{2} \sum_{i, j} \frac{\left(p^{(i)} \cdot p^{(j)}\right)^{2}}{\left(p^{(i)} \cdot q\right)\left(p^{(j)} \cdot q\right)}
$$

$$
\begin{aligned}
& Q=\sum_{i} E_{i} \\
& q=p_{1}+p_{2}+p_{3}+\ldots p_{N}
\end{aligned}
$$

- Angularity [Berger,Sterman (2003)]

$$
\tau_{a}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}
$$

Power Corrections

Power corrections

- A physical quantity has the form

$$
\sigma=\sigma_{\mathrm{pert}}+\sum_{n} \sigma_{n}\left(\frac{\Lambda}{Q}\right)^{n}
$$

- Calculation of Power corrections from perturbative corrections.

Power corrections

- A physical quantity has the form

$$
\sigma=\sigma_{\mathrm{pert}}+\sum_{n} \sigma_{n}\left(\frac{\Lambda}{Q}\right)^{n}
$$

- Calculation of Power corrections from perturbative corrections.
- $\sigma_{\text {Pert }}$ is not well defined: factorial growth.
- σ_{n} is ambiguous
- Ambiguity in σ_{n} is compensated by the factorial growth of $\sigma_{\text {Pert }}$.

Borel summation

- A physical quantity

$$
R \approx \sum_{n=0}^{\infty} r_{n} \alpha^{n+1}
$$

- Borel transform

$$
B[R](u)=\sum_{n=0}^{\infty} r_{n} \frac{u^{n}}{n!}
$$

- Borel sum

$$
\tilde{R}=\int_{0}^{\infty} d u e^{-\frac{u}{\alpha}} B[R](u)
$$

Borel summation

- A physical quantity

$$
R \approx \sum_{n=0}^{\infty} r_{n} \alpha^{n+1}
$$

- Borel transform

$$
B[R](u)=\sum_{n=0}^{\infty} r_{n} \frac{u^{n}}{n!}
$$

- Borel sum

$$
\tilde{R}=\int_{0}^{\infty} d u e^{-\frac{u}{\alpha}} B[R](u)
$$

- pole for $B[R](u)$ is p / β_{0}, ambiguity $\delta \tilde{R} \propto\left(\frac{\Lambda}{Q}\right)^{2 p}$

$$
\alpha_{s} \approx \frac{1}{\beta_{0} \log \left(Q^{2} / \Lambda^{2}\right)}
$$

Dressed gluon exponentiation

- Single Dressed gluon [Beneke, Braun (1994))

$$
\frac{1}{\sigma} \frac{d \sigma}{d e}\left(e, Q^{2}\right)=-\frac{C_{F}}{2 \beta_{0}} \int_{0}^{1} d \xi \frac{d \mathcal{F}(e, \xi)}{d \xi} A\left(\xi Q^{2}\right)
$$

- \mathcal{F} is Characteristic function
- Running Coupling

$$
A\left(\xi Q^{2}\right)=\int_{0}^{\infty} d u\left(Q^{2} / \Lambda^{2}\right)^{-u} \frac{\sin \pi u}{\pi u} \mathrm{e}^{\frac{5}{3} u} \xi^{-u}
$$

Contd. . .

- Interchanging the order of integration

$$
\frac{1}{\sigma} \frac{d \sigma}{d e}\left(e, Q^{2}\right)=\frac{C_{F}}{2 \beta_{0}} \int_{0}^{\infty} d u\left(Q^{2} / \Lambda^{2}\right)^{-u} B(e, u)
$$

- Borel function

$$
B(e, u)=-\frac{\sin \pi u}{\pi u} e^{\frac{5}{3} u} \int_{0}^{\infty} d \xi \xi^{-u} \frac{d \mathcal{F}(e, \xi)}{d \xi}
$$

- $B(e, u)$ is free from any $u=0$ poles.

Sudakov Logs

- Additive property of the event shape variables with respect to multiple gluon emissions
- Exponentiation in Laplace space

$$
\frac{1}{\sigma} \frac{d \sigma\left(e, Q^{2}\right)}{d e}=\int \frac{d \nu}{2 \pi i} e^{\nu e} \exp \left[S\left(\nu, Q^{2}\right)\right]
$$

- Sudakov Logs [Gardi (2001)]

$$
S\left(\nu, Q^{2}\right)=\frac{C_{F}}{2 \beta_{0}} \int_{0}^{\infty} d u\left(\frac{Q^{2}}{\Lambda^{2}}\right)^{-u} B_{\nu}^{e}(u)
$$

- Borel function is Laplace space

$$
B_{\nu}^{e}(u)=\int_{0}^{1} d e B(e, u)\left(e^{-\nu e}-1\right)
$$

Eikonal dressed gluon exponentiation

Steps for EDGE

- Soft approximated Matrix element.
- Factorization of phase space
- Soft approximated version of the relevant event shapes
- Produces the Leading terms without the painful calculations

Matrix element

- Energy fractions

$$
x_{1}=\frac{2 p_{1} \cdot Q}{Q^{2}}, \quad x_{2}=\frac{2 p_{2} \cdot Q}{Q^{2}}, \quad x_{3}=\frac{2 k \cdot Q}{Q^{2}}
$$

- Soft approximated matrix element

$$
\mathcal{M}_{\mathrm{soft}}\left(x_{1}, x_{2}, \xi\right)=\frac{2}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Phase Space

- Characteristic function [Webber et.al. (1995)]

$$
\mathcal{F}(e, \xi)=\int d x_{1} d x_{2} \mathcal{M}_{\mathrm{soft}}\left(x_{1}, x_{2}, \xi\right) \delta\left(e-\bar{e}_{\mathrm{eik}}\left(x_{1}, x_{2}, \xi\right)\right)
$$

Eikonal definitions of event shapes

T	$\operatorname{Max}\left\{x_{1}, x_{2}, \sqrt{x_{3}^{2}-4 \xi}\right\}$
$C_{e i k}\left(x_{1}, x_{2}\right)$	$\frac{\left(1-x_{1}\right)\left[1-x_{2}\right)}{\left(1-x_{1}\right)+\left(1-x_{2}\right)}$
$\tau_{a}^{e k k}\left(x_{1}, x_{2}, \xi\right)$	$\left(1-x_{1}\right)^{1-a / 2}\left(1-x_{2}\right)^{a / 2}$

Borel function under EDGE

$B(t, u)$	$4 \frac{\sin \pi u}{\pi u} e^{\frac{5 u}{3}} \frac{1}{u} \frac{1}{t}\left(\frac{1}{t^{2 u}}-\frac{1}{t^{u}}\right)$
$B(c, u)$	$4 \frac{\sin \pi u}{\pi u} e^{\frac{5 u}{3}} \frac{1}{c}\left[\frac{1}{(2 c)^{2 u}} \frac{\sqrt{\pi} \Gamma(u)}{\Gamma\left(u+\frac{1}{2}\right)}-\frac{1}{u c^{u}}\right]$
$B\left(\tau_{a}, u\right)$	$4 \frac{\sin \pi u}{\pi u} e^{\frac{5}{3} u} \frac{1}{1-a} \frac{1}{\tau_{a}}\left[\frac{1}{\tau_{a}^{2 u}}-\frac{1}{\tau_{a}^{2-a}}\right]$

[Agarwal, Mukhopadhyay, SP, Tripathi (2021)]

- $B(e, u)$ are free from any $u=0$ poles.
- $B(t, u), B(c, u)$ and $B\left(\tau_{a}, u\right)$ produces the leading order terms correctly as compared to the full results.

Event shapes in k_{\perp} and y

- In the soft limit [Salam, Wicke (2001)]

$$
\bar{e}(k, Q)=\sqrt{\frac{k_{\perp}^{2}+k^{2}}{Q^{2}}} h_{e}(y)
$$

- $h_{e}(y)$

$$
\begin{array}{ll}
\text { 1-Thrust }(t) & e^{-|y|} \\
\text { c-parameter } & \frac{1}{\cosh y}
\end{array}
$$

Angularity $\quad e^{-|y|(1-a)}$

- Characteristic function in these co-ordinates

$$
\mathcal{F}(e, \xi)=\frac{8}{e} \int_{y_{\min }} d y
$$

Borel function using these co-ordinates

- $y_{\text {min }}$ for different event shapes

t	$\ln \left(\frac{1}{t} \sqrt{\xi}\right)$
c	$\cosh ^{-1}(\sqrt{\xi} /(2 c))$.
τ_{a}	$\frac{1}{1-a} \ln \left(\frac{1}{\tau_{a}} \sqrt{\xi}\right)$

- Reproduces the same \mathcal{F}.
- Reproduces the same Borel function $B(t, u), B(c, u)$ and $B\left(\tau_{a}, u\right)$. compared to energy fractions.

Borel function in Laplace space

$$
B_{\nu}^{t, \text { eik }}(u)=2 e^{\frac{5}{3} u} \frac{\sin \pi u}{\pi u} \times
$$

$$
\left[\Gamma(-2 u)\left(\nu^{2 u}-1\right) \frac{2}{u}-\Gamma(-u)\left(\nu^{u}-1\right) \frac{2}{u}\right]
$$

[Agarwal, Mukhopadhyay, SP, Tripathi (2021)]

$$
\begin{aligned}
& B_{\nu}^{t}(u)=2 \mathrm{e}^{\frac{5}{3} u} \frac{\sin \pi u}{\pi u} \times \\
& {\left[\Gamma(-2 u)\left(\nu^{2 u}-1\right) \frac{2}{u}-\Gamma(-u)\left(\nu^{u}-1\right)\left(\frac{2}{u}+\frac{1}{1-u}+\frac{1}{2-u}\right)\right]}
\end{aligned}
$$

[Gardi, Rathsman (2001)]

- No extra renormalon singularities as compared to full result.
- $B_{t}^{\nu, \text { eik }}$ has renormalon poles only at half-integer values of u.

Expansion

$$
\begin{aligned}
B_{\nu}^{t, \text { eik }}(u)= & -2 L^{2}-2.31 L \\
& +\left(-2 L^{3}-6.79 L^{2}-15.71 L\right) u \\
& +\left(-1.167 L^{4}-6.02 L^{3}-19.10 L^{2}-44.56 L\right) u^{2} \\
& +\ldots
\end{aligned}
$$

$$
\begin{aligned}
B_{\nu}^{t}(u) & =-2 L^{2}+0.691 L \\
& +\left(-2 L^{3}-5.297 L^{2}-6.485 L\right) u \\
& +\left(-1.167 L^{4}-5.527 L^{3}-14.491 L^{2}-31.655 L\right) u^{2} \\
& +\ldots
\end{aligned}
$$

[Gardi, Magnea (2003)]
$L=\log (\nu)$, the leading log terms are produced correctly.

Soft and collinear corrections

$$
S\left(\nu, Q^{2}\right) \approx \int_{0}^{\infty} d u\left(\frac{Q^{2}}{\Lambda^{2}}\right)^{-u} B_{\nu}^{t}(u)
$$

order	soft correction	collinear correction
ν^{1}	$8 \frac{\bar{\Lambda}}{Q}$	$-\frac{2}{\pi}\left(\frac{\bar{\Lambda}}{Q}\right)^{2}$

In LEP the ratio of the size of the collinear correction to the soft correction for ν^{1} is approximately -0.0017

Summary and Conclusions

- Perturbative series has a factorial growth which makes the series divergent.
- Power corrections can be estimated from the ambiguity in the perturbative series.
- Eikonal approximation of matrix element and event shapes produces the leading order terms correctly in few simple steps.
- EDGE works in both energy fraction and light cone co-ordinates.
- This process may be useful for complicated hadron event shapes in future.

