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(Semi-)automated methods for solving Feynman 

integrals through differential equations



ÅIn recent years, the method of diffential equations has proven to be an exceptionally 

powerful way of computing Feynman integrals.

ÅThe effectiveness of the differential equations method is especially striking when it is 

applied to polylogarithmic integral families that admit an ‭-factorized (canonical) basis.

ÅFurthermore, numerical approaches to solving the differential equations can be 

efficient, precise, and may extend to cases beyond multiple polylogarithms or elliptic 

generalizations thereof.

ÅAlthough many individual steps have been automated, some ǆhmvfǇ!jt!still missing. In 

this talk we will consider some steps towards a full automatization.
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Outline of the talk

ÅThe method of differential equations

ÅSolutions through iterated series expansions

ÅOverview of an automated computational strategy

ÅThe DiffExp Mathematica package & the Caesar toolbox

ÅApplications to a 3-loop vertex topology
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ÅWe consider a family of Feynman integrals:

and a basis of master integrals ᴆὍȢTaking derivatives on kinematic invariants and 

masses and performing IBP reductions, we obtain:

ÅWe will proceed by solving these equations iteratively in terms of one-dimensional 

series expansions, which will allow us to obtain numerical results everywhere in 

phase-space.

Differential equations

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]
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ÅLet us briefly consider the special case of a canonical basis. Under a change of 

variables , we have that:

ÅFor polylogarithmic families, it is conjectured that a ἢexists, such that:

where ═does not depends on ‭, and such that

decomposes as a ᴗ-linear combination of logarithms of rat./algebraic functions.

Differential equations

[Henn,  2013]

See also:
[Lee, 1411.0911]

[Prausa, 1701.00725]
[Gituliar, Magerya, 1701.04269]

[Meyer, 1705.06252]
[Dlapa, Henn, Yan, 2002.02340]
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ÅLet us parametrize the differential equations along a one-dimensional path. In 

other words, we consider:

ÅThen we have that:

ÅUpon expanding in ‭, the equations can be solved order-by-order:

Differential equations
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ÅLet us expand the matrix Ἃ in the line parameter. Then we have:

ÅUsing integration-by-parts, we find can write for each rational άand integer ὲ:

ÅThus, we may perform all the integrations in terms of (generalized) series 

expansions

ÅAlthough each series solution has a limited range of convergence, we may 

concatenate such solutions to reach any point in phase-space.

Differential equations
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ÅMore generally, consider an unsimplified or partially simplified basis ᴆὪ, satisfying:

ÅWe will assume that Ἃ is finite as ‭goes to zero, which gives

ÅThis can typically be achieved by rescalings of the form:

ÅLastly, upon ordering the integrals sector-xjtf-!xf!pcubjo!b!Ǉcmpdl-usjbohvmbsǇ!gpsn;

, which allows us to decompose into 

differential equations of the form:

Differential equations

See e.g.:
[Moriello-!ǃ2:^-!

[R. Bonciani, V. Del Duca, H. 
Frellesvig, J. M. Henn, MH,      

L. Maestri , F. Moriello , G. 
Salvatori-!W/!B/!Tnjsopw-!ǃ2:^

[MH, `20]
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DiffExp
ÅDiffExp is a Mathematica package for solving linear systems of differential 

equations in terms of one-dimensional series expansions.

ÅDbqbcmf!pg!dpnqvujoh!ǆdpvqmfeǇ!tztufnt!pg!npsf!uibo!uxp!joufhsbmt

ÅTakes in (any) system of differential equations of the form

ÅUses: compute Feynman integrals numerically at high precision. Analytically 

continue results across thresholds. Transporting boundary conditions from 

one special point to another.

[MH, ` 2006.05510]
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ÅTypical usage of the package:

ÅSet configuration options using the method LoadConfiguration [opts_]

ÅPrepare a list of boundary conditions using PrepareBoundaryConditions [ bcs _, line_]

ÅThen we can find series solutions along a line using the function:

IntegrateSystem [ bcsprepared _, line_]

ÅOr one can transport the boundary conditions to a new point using:

TransportTo [ bcsprepared _, point_]

DiffExp
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ÅLoad DiffExp:

ÅSet the configuration options and load the matrices

Example: 3-loop banana graph
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Equal-mass case:



ÅPrepare the boundary conditions along an asymptotic limit:

3-loop banana graph
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ÅNext, we transport the boundary conditions:

3-loop banana graph
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ÅLastly, we plot the result:

3-loop banana graph
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ÅTiming:

ÅMoving from ὴ Њ to ὴ σπat a precision of 25 digits takes about 90 sec, where we computed 

the top sector integrals up to and including order ‭.

ÅMoving from ὴ Њ to ὴ σπat a precision of 100 digits takes a bit under 20 min, where we 

computed the top sector integrals up to and including order ‭.

ÅObtaining 100+ digits at ὴ ρππup to and including order ‭ takes about 2.5 min.

Åὄ ȡ

3-loop banana graph
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ÅWe may also compute the fully unequal mass case. We choose the basis:

3-Loop banana graph

ÅWe provide 55 digits of basis integral ὄ below, in the point 

ὴ υπȟά ςȟά σȾςȟά τȾσȟά ρ

These results were obtained in about 20 
minutes on a single CPU-core
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ÅIn the previous example, the boundary conditions were provided as closed-

form expressions in ‭. In general, this requires a manual case-by-case 

analysis using expansion by regions in the parametric representation.

ÅFurthermore, the basis was chosen such that the differential equations are 

finite (and also in precanonical form Ἃ ‭Ἃ .)

ÅMore generally, we would like to derive the basis, differential equations and 

boundary terms in an automated way.

Further automatization 

[See works by Benekeand Smirov] &  [Jantzen, Smirnov, 
Smirnov, 1206.0546] for the asy.m package 
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ÅFind a basis of (quasi-)finite Feynman integrals.

ÅDerive a closed linear system of differential equations for the basis.

ÅRescale integrals by powers of ‭to make the differential equations finite in ‭.

ÅCompute boundary conditions in a Euclidean point by numerical integration.

ÅObtain points in the physical region (and analytically continue) by numerically 

solving the differential equations using iterated series expansions.

Å(Optional) upgrade the boundary conditions to a higher precision by analyzing 

behavior near thresholds and pseudo-thresholds.

An automated computational strategy
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ÅTogether with J. Usovitsch, I am working on a Mathematica toolbox, Caesar, which automates all 

steps. It works by interfacing with various programs that are already on the market.

ÅA finite basis is derived in an automated fashion by using Reduzeto obtain candidate integrals 

and using Kira to select an independent set.

ÅThe differential equations are computed using inbuilt code, while the dimensional reduction 

relations are generated using LiteRed.

ÅpySecDecis used to obtain numerical boundary conditions in the Euclidean region

ÅDiffExp is used to obtain results everywhere else.

Caesar package

Kira 2.0:
[J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, 2008.06494]

Reduze2:
[A. von Manteuffel, C. Studerus, 2008.06494]

LiteRed 1.4:
[R.N. Lee, 1310.1145]

pySecDec:
[S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, 

M. Kerner, J. Schlenk, T. Zirke, 1703.09692]

DiffExp:
[MH, 2006.05510]
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ÅWe consider the 3-loop topology pictured below:

in the kinematic configuration:                                                     . We choose the following propagators:

ÅAfter IBP-reduction, the top sector collapses. The highest sectors remaining after IBP reduction 

have 8 propagators and are pictured in the top-right.

Application: 3-loop vertex topology (relevant for EW 
pseudo-observables at Z-boson resonance) In collaboration with:

[Ievgen Dubovyk, Ayres Freitas, Janusz Gluza, 
Krzysztof Grzanka, MH, Johann Usovitsch]
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Example: 3-loop topology

ÅThe (finite) basis consists of 77 integrals in total. We choose 19 integrals in Ὠ τ, 

53 integrals in Ὠ φ, and 5 integrals in Ὠ ψ. 

ÅWe rescale the integrals by powers of ‭in order to make the differential equations 

finite as ‭O π. The largest power we rescale by is ‭ .

ÅWe set up the system of differential equations, making use of IBP identities and 

dimensional recurrence relations. The differential equations are ~ 12 MB before 

expanding in ‭.
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Basis integrals
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