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Introduction

An recent years, the method of diffential equations has proven to be an exceptionally

: : [Kotikov, 1991], Remiddi, 1997]
powerful way of computing Feynman integrals. [Gehrmann, Remiddi, 2000]

A The effectiveness of the differential equations method is especially striking when it is

applied to polylogarithmic integral families that admit an T -factorized (canonical) basis.
[Henn, 2013]

A Furthermore, numerical approaches to solving the differential equations can be

efficient, precise, and may extend to cases beyond multiple polylogarithms or elliptic
e.g.. [Lee, SmirnovT n | s o p whandal,Zltad, 19], Moriello- ! ]! 2

generalizations thereof. [Bonciani, Del Duca, Frellesvig, Henn, MH, Maestri,
Moriello, Salvatori, Smirnov- ! '[®I: "1- 3 ]
[Abreu, Ita, Moriello, Page,Tschernow- ! [ f o h!

A Although many individual steps have been automated, somedzh mv s$tilLahigsing! In

this talk we will consider some steps towards a full automatization.



Introduction

Outline of the talk

AThe method of differential equations

A Solutions through iterated series expansions
AOverview of an automated computational strategy

AThe DiffExp Mathematica package & the Caesar toolbox

AApplications to a 3-loop vertex topology



Differential equations and series solutions

Differential equations

AWe consider a family of Feynman integrals:

Coddk \ T N 4= e e
o 7 i=n+1 " "1 o 2 9 .
; 1= 1

1=1

and a basis of master integrals @Taking derivatives on kinematic invariants and

masses and performing IBP reductions, we obtain:
= = [Kotikov, 1991], Remiddi, 1997]
5’sj I = MSj ({Si}a E)I [Gehrmann, Remiddi, 2000]
AWe will proceed by solving these equations iteratively in terms of one-dimensional
P y g g y

series expansions, which will allow us to obtain numerical results everywhere in

phase-space.



Differential equations and series solutions

Differential equations

ALet us briefly consider the special case of a canonical basis. Under a change of

variables ]§ = Tf . we have that:

83-B = (0,,T) T+ TM,, T | B. [Henn, 2013]
1

AFor polylogarithmic families, it is conjectured that a f exists, such that: Lee Sljlelag'ﬁ]

O B’ 8A _ . o - [Prausa, 1701.00725]

L _ [Gituliar, Magerya, 1701.04269]

s, ¢ P B, dB = edADB [Meyer, 1705.06252]

Si Si [Dlapa, Henn, Yan, 2002.02340]

where =does not depends onf , and such that

A = Z C; log(l;)

decomposes as a v -linear combination of logarithms of rat./algebraic functions.



Differential equations and series solutions

Differential equations

ALet us parametrize the differential equations along a one-dimensional path. In

other words, we consider: ~ : [0,1] — C!®
L = (731 ('CC)D s ”)/S|S| (x))

AThen we have that: 9,8 = saAg(m)) B
xX
0,B =cA,B

AUpon expanding inj , the equations can be solved orderby-order:

B=> BWs  BU(z)= / A, BV (2)dz' + B (z = 0)
0

i>0



Differential equations and series solutions

Differential equations

ALet us expand the matrix ‘A in the line parameter. Then we have:

A, =2" [Z cpz? + O (2" 1)

p=0

AUsing integration-by-parts, we find can write for each rational & and integer & :

/ ™ log(z)" = ™t Z cjlog(z

AThus, we may perform all the mtegratlons In terms of (generalized) series

expansions B(k) =" Z Z Cmn T log(z Cmn € C, 0>re@Q

n=0m=0

A Although each series solution has a limited range of convergence, we may

concatenate such solutions to reach any point in phase-space.



Differential equations and series solutions

Differential equations

AMore generally, consider anunsimplified or partially simplified basis "8 satisfying:

0 - - See e.g.:
a—f(zc, €) = Ay (x,€)f(x,¢€) [Moriello- ! !

L [R.Bonciani, V. Del Duca, H.

. on - g - : : Frellesvig, J. M. Henn, MH,

AWe will assume that ‘A is finite as| goes to zero, which gives L Maeim, F.Moriello. G.
k—1 Salvatori- ! W/ ! B/ ! Tr

O, FF) = Agso)f(k) 4+ Z A=) £ () [MH, "20]

§=0

AThis can typically be achieved by rescalings of the form:
fi = elfs, pi€l
ALastly, upon ordering the integralssectorx j t f - | xf ! pc-u®j bd bV ink

(0) , Which allows us to decompose into .
Ay~ - | 0:G = Mg + b
| differential equations of the form:




Differential equations and series solutions

DIffExp

ADIffExp is a Mathematica package for solving linear systems of differential

equations in terms of one -dimensional series expansions. [MH, * 2006.05510]
ADbgbcmf! pg!dpngvujoh! dzZdpvgmfelLltztufn
ATakes in (any) system of differential equations of the form
o Tsih ) = Auffsih) Anlisiho) ZAW ({s:)e"

AUses: compute Feynman integrals numerically at hlgh precision. Analytically

continue results across thresholds. Transporting boundary conditions from

one special point to another.



Differential equations and series solutions

DIffEXp

ATypical usage of the package:
A Set configuration options using the method LoadConfiguration [opts_]
A Prepare a list of boundary conditions using PrepareBoundaryConditions
A Then we can find series solutions along a line using the function:
IntegrateSystem [ bcsprepared |, line ]
A Or one can transport the boundary conditions to a new point using:

TransportTo [ bcsprepared |, point ]

[ bcs , line ]



Differential equations and series solutions

Example: 3loop banana graph

ALoad DiffExp:

Get[FileNameJoin[{NotebookDirectory[], "..", "DiffExp.m"}1];

Loading DiffExp version 1.0.7

For questions, email: martijn.hiddingephysics.uu.se

For the latest version, see: https://gitlab.com/hiddingm/diffexp

A Set the configuration options and load the matrices

EqualMassConfiguration = {
DeltaPrescriptions -» {t-16+16},

MatrixDirectory -» NotebookDirectory[] <> "Banana_EqualMass Matrices/",

UseMobius -» True, UsePade -» True

}s

LoadConfiguration[EqualMassConfiguration];

DiffExp: Loading matrices.

DiffExp: Found files:

{dt_©@.m, dt_1.m, dt_2.m, dt_3.m, dt_4.m}

DiffExp: Kinematic invariants and masses: {t}

DiffExp: Getting irreducible factors..

DiffExp: Configuration updated.

my
P A P
i)
Ty

Figure 1: The three-loop unequal mass banana diagram.

Equalmass case:
B = (el e(1+ ) Iy
e(1+3¢)(1 +4e) [T L I ™ )
pe \ 3 . 3 (o 1
Layasasas = (ij) (m?)* 22729 (1:[1 [ ddk,,) D™ Dy Dy Dy

Dy =—k¥4+m?, Dy=—ki+m?,
D3 = —k2+m?, Dy=—(ki+ky+ks+p1)*+m?



Differential equations and series solutions

3-loop banana graph

APrepare the boundary conditions along an asymptotic limit:

EqualMassBoundaryConditions = {

non
R ]

non
R |

6e3Euler~Gannnac—:(_%)1”5eGamma[—e]zGamma[e]3

e (L+3€) (1+4e)

4 e3 EulerGamma e Gamma [G] 3
- +
t Gamma[-2 €]
g @3 Fulercamnac (_ %)1"26 € Gamma[-¢]® Gamma[e] Gamma[2e] 3 e?Fulercammac (_ %)1"36 e Gamma[-€]% Gamma[3 €]
+
Gamma[-3 €] Gamma[-4 €]

e3 EulerGamma € €3 Gamma[€] 3

} // PrepareBoundaryConditions[#, <|t-> -1/x|>] &;

DiffExp: Integral 1: Ignoring boundary conditions.
DiffExp: Integral 2: Ignoring boundary conditions.
DiffExp: Assuming that integral 3 is exactly zero at epsilon order @.

DiffExp: Prepared boundary conditions in asymptotic limit, of the form:

> ? ? ? ?
? ? ? ? ?
Dl'F'FEXp: O[X]Sl ( ) X+0[X]3/2 ( ) x+o[x]3/2 ( ) X+O[X}3/2 ( )X+O[X]3/2



Differential equations and series solutions

3-loop banana graph

ANext, we transport the boundary conditions:

Transportl = TransportTo[EqualMassBoundaryConditions, <|t-> -1|>];
Transport2 = TransportTo[Transportl, <|t-> x|>, 32, True];

1.
DiffExp: Transporting boundary conditions along (‘te——‘} from x = 0. to x = 1.
X

DiffExp: Preparing partial derivative matrices along current line..
DiffExp: Determining positions of singularities and branch-cuts.
DiffExp: Possible singularities along line at positions {©.}.
DiffExp: Analyzing integration segments.

DiffExp: Segments to integrate: 3.
8. (-1.+1.x)

X

DiffExp: Integrating segment: {‘t-e

DiffExp: Integrated segment 1 out of 3 in 20.8565 seconds.
DiffExp: Evaluating at x = 0.0625
DiffExp: Current segment error estimate: 5.14483x10 3!

DiffExp: Total error estimate: 5.14483x10 !
-1.+1.Xx

N3 LLCvne ThtAamnatrina canmmant. /|+ . \



Differential equations and series solutions

ALastly, we plot the result:

3-loop banana graph

ResultsForPlotting = ToPiecewise[Transport2];
Quiet[ReImPlot[{ResultsForPlotting[ [3, 4]][x], ResultsForPlotting[[3, 5]1]1[x]}, {x, @, 32},

ClippingStyle » Red, PlotLegends - {"Béa) ", "Bé‘” "}, AxesLabel - {
MaxRecursion - 15, WorkingPrecision - 100] |
800 |
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"}, PlotRange » {-700, 850},



Differential equations and series solutions

3-loop banana graph
ATiming:
A Moving from 1 Hoton o rat a precision of 25 digits takes about 90 sec, where we computed

the top sector integrals up to and including order |

A Moving from 1 Hoto n o tat a precision of 100 digits takes a bit under 20 min, where we

computed the top sector integrals up to and including order |

A Obtaining 100+ digits at 1) p Tt mp to and including order| takes about 2.5 min.

AE)( )do

%)

4.082413202704059607801991461045097339855501253774222434496563798314848283907330199489603248642178129
-0.7713150915227857546258559692543676298350939151980774607908277236769934490973612004866036340787026038
-15.52268532416518855576696548019433617730937578226039207428302008586262767404183548619606743796239099
78.125097281480016929867/90482079302619114776011817121195506011258285334682242128391076363566162968586



Differential equations and series solutions

3-Loop banana graph

A We may also compute the fully unequal mass case. We choose the basis:

( banana banana banana banana banana banana )
elt1a5me, €bI1212 , €17597 abd2112 , €l3797 ba el3517 M,
anana anana anana
fhanana _ J e(1+ 3e) 17715, e(1 + 3e) IPfor™®, (1 4 3e) I3, \
e(1 + 3€) IR e(1 4 3€) (1 + 4e) IDppre,
3 rbanana 3 rbanana 3 rbanana 3 rbanana
. € Iotii™, e Lo ™, e Ior ™, €170 )

A We provide 55 digits of basis integral & below, in the point

N L T chi ofcha
B =0
Bﬂ) = 5.1972521136965043170129578538563652405618939122389078645

+ 1 6.8755169535390207501370685645538902299559024551830956594

Bﬁ) = —17.9580108112094060899523361698928478948780687053899075733
+ ¢ 31.7436703633693090908402932299011971913508950649494231047

BS) = —121.5101152068177565203392807541216084962880772908306370668
— 1 40.7690762360202766453775999917172226537428258529145754746

Bﬁ) = 125.6113388023605534745593764004798958232118632681257073923
— 1 229.9200257172388589952062757571215176834471783495112755027

1 Tohi

These results were obtained in about 20
minutes on a single CPU-core



Differential equations and series solutions

Further automatization

Aln the previous example, the boundary conditions were provided as closed-
form expressions in 7 . In general, this requires a manual caseby-case

analysis using expansion by regions in the parametric representation.

[See works by Beneke and Smirov] & [Jantzen, Smirnov,
Smirnov, 1206.0546] for the asy.m package

AFurthermore, the basis was chosen such that the differential equations are

finite (and also in precanonical form A T'A )

AMore generally, we would like to derive the basis, differential equations and

boundary terms in an automated way.



Differential equations and series solutions

An automated computational strategy

AFind a basis of (quasi-)finite Feynman integrals.

ADerive a closed linear system of differential equations for the basis.
ARescale integrals by powers of T to make the differential equations finite in 7 .
ACompute boundary conditions in a Euclidean point by numerical integration.

AObtain points in the physical region (and analytically continue) by numerically

solving the differential equations using iterated series expansions.

A (Optional) upgrade the boundary conditions to a higher precision by analyzing

behavior near thresholds and pseudo-thresholds.



Differential equations and series solutions

Caesar package

A Together with J. Usovitsch, | am working on a Mathematica toolbox, Caesar, which automates all

steps. It works by interfacing with various programs that are already on the market. Kira 2.0:
[J. Klappert, F. Lange, PMaierhofer, J. Usovitsch, 2008.06494]

A A finite basis is derived in an automated fashion by using Reduzeto obtain candidate integralsOI ,
Reduze?2:

[A. von Manteuffel, C. Studerus 2008.06494]

and using Kira to select an independent set.
LiteRed 1.4:

[R.N. Lee, 1310.1145]
A The differential equations are computed using inbuilt code, while the dimensional reduction

pySecDec
[S. Borowka, G. Heinrich, S. Jahn, S.P. Jones,
M. Kerner, J. Schlenk, T. Zirke1703.09692]

A pySecDecis used to obtain numerical boundary conditions in the Euclidean region

relations are generated using LiteRed.

_ _ _ DiffExp:
A DIffExp is used to obtain results everywhere else. [MH, 2006.05510]



3-loop topology

Application: 3-loop vertex topology (relevant for EW

pseudo-observables at Z-boson resonance) i collaboration with
_ _ [levgen Dubovyk, Ayres Freitas,Janusz Gluza,
A We consider the 3-loop topology pictured below: Krzysztof Grzanka, MH, Johann Usovitsch]
P1 Surviving 8-propagator sectors:
yal P1
my ) IBP | r |
3 My mwy P3
mt < i Ty my
my ! myy
mw P2 | P2 |
P2
in the kinematic configuration: pi =0, p53 =0, p1 - P2 = 5/2 . We choose the following propagators:
D; = mW - k3 ) Do = _kQ ) D3 = _k% ) Dy = - (kl —DP1— p22)2
Ds = — (k2 — 5 —p2)” Dg=mi, — (ks —pl p2)” D7 =—(ks —p1) , Dg =mj — (ks — 132)
D9=—(k2—k1) Ny = — (k1 — k3)’ Nip = — (k1 —p2)” Niz = — (k2 — p2)

A After IBP-reduction, the top sector collapses. The highest sectors remaining after IBP reduction

have 8 propagators and are pictured in the top-right.



3-loop topology

Example: 3loop topology

AThe (finite) basis consists of 77 integrals in total. We choose 19 integrals in Q T,

53 integrals in Q @, and 5 integrals InQQ .

AWe rescale the integrals by powers of] in order to make the differential equations

finite as7 © 1t The largest power we rescale by isj

AWe set up the system of differential equations, making use of IBP identities and

dimensional recurrence relations. The differential equations are ~ 12 MB before

expanding infT .



3-loop topology

Basis integrals



