(Semi-)automated methods for solving Feynman integrals through differential equations

Martijn Hidding

Uppsala University

Based on work in collaboration with:
Ievgen Dubovyk, Krzysztof Grzanka, Johann Usovitsch

RADCOR/Loopfest 2021

Introduction

- In recent years, the method of diffential equations has proven to be an exceptionally powerful way of computing Feynman integrals.
[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]
- The effectiveness of the differential equations method is especially striking when it is applied to polylogarithmic integral families that admit an ϵ-factorized (canonical) basis.
[Henn, 2013]
- Furthermore, numerical approaches to solving the differential equations can be efficient, precise, and may extend to cases beyond multiple polylogarithms or elliptic generalizations thereof.
e.g.: [Lee, Smirnov, Smirnov, '18], [Mandal, Zhao, '19], [Moriello, '19], [Bonciani, Del Duca, Frellesvig, Henn, MH, Maestri,

Moriello, Salvatori, Smirnov, '19], [MH '20], [Abreu, Ita, Moriello, Page, Tschernow, Zeng '20]

- Although many individual steps have been automated, some "glue" is still missing. In this talk we will consider some steps towards a full automatization.

Outline of the talk

- The method of differential equations
- Solutions through iterated series expansions
- Overview of an automated computational strategy
- The DiffExp Mathematica package \& the Caesar toolbox
- Applications to a 3-loop vertex topology

Differential equations

- We consider a family of Feynman integrals:

$$
I_{a_{1}, \ldots, a_{n+m}}=\int\left(\prod_{i=1}^{l} \frac{d^{d} k_{i}}{i \pi^{d / 2}}\right) \frac{\prod_{i=n+1}^{n+m} N_{i}^{-a_{i}}}{\prod_{i=1}^{n} D_{i}^{a_{i}}}, \quad \begin{aligned}
& d=d_{\mathrm{int}}-2 \epsilon \\
& D_{i}=-q_{i}^{2}+m_{i}^{2}-i \delta
\end{aligned}
$$

and a basis of master integrals \vec{I}. Taking derivatives on kinematic invariants and masses and performing IBP reductions, we obtain:

$$
\partial_{s_{j}} \vec{I}=\mathbf{M}_{s_{j}}\left(\left\{s_{i}\right\}, \epsilon\right) \vec{I}
$$

- We will proceed by solving these equations iteratively in terms of one-dimensional series expansions, which will allow us to obtain numerical results everywhere in phase-space.

Differential equations

- Let us briefly consider the special case of a canonical basis. Under a change of variables $\vec{B}=\mathbf{T} \vec{I}$, we have that:

$$
\frac{\partial}{\partial s_{i}} \vec{B}=\left[\left(\partial_{s_{i}} \mathbf{T}\right) \mathbf{T}^{-1}+\mathbf{T M}_{s_{i}} \mathbf{T}^{-1}\right] \vec{B} .
$$

- For polylogarithmic families, it is conjectured that a \mathbf{T} exists, such that:

$$
\frac{\partial \vec{B}}{\partial s_{i}}=\epsilon \frac{\partial \tilde{\mathbf{A}}}{\partial s_{i}} \vec{B}, \quad d \vec{B}=\epsilon d \tilde{\mathbf{A}} \vec{B}
$$

where $\widetilde{\boldsymbol{A}}$ does not depends on ϵ, and such that

$$
\tilde{\mathbf{A}}=\sum_{i \in \mathcal{A}} \mathbf{C}_{i} \log \left(l_{i}\right)
$$

decomposes as a \mathbb{Q}-linear combination of logarithms of rat./algebraic functions.

Differential equations

- Let us parametrize the differential equations along a one-dimensional path. In other words, we consider: $\gamma:[0,1] \rightarrow \mathbb{C}^{|S|}$

$$
x \mapsto\left(\gamma_{s_{1}}(x), \ldots, \gamma_{s_{|S|}}(x)\right)
$$

- Then we have that: $\partial_{x} \vec{B}=\varepsilon \frac{\partial \tilde{\mathbf{A}}(\gamma(x))}{\partial x} \vec{B}$

$$
\partial_{x} \vec{B} \equiv \varepsilon \mathbf{A}_{x} \vec{B}
$$

- Upon expanding in ϵ, the equations can be solved order-by-order:

$$
\vec{B}=\sum_{i \geq 0} \vec{B}^{(i)} \varepsilon^{i} \quad \vec{B}^{(i)}(x)=\int_{0}^{x} \mathbf{A}_{x^{\prime}} \vec{B}^{(i-1)}\left(x^{\prime}\right) d x^{\prime}+\vec{B}^{(i)}(x=0)
$$

Differential equations

- Let us expand the matrix \mathbf{A}_{x} in the line parameter. Then we have:

$$
\mathbf{A}_{x}=x^{r}\left[\sum_{p=0}^{n} \mathbf{c}_{p} x^{p}+\mathcal{O}\left(x^{n+1}\right)\right]
$$

- Using integration-by-parts, we find can write for each rational m and integer n :

$$
\int x^{m} \log (x)^{n}=x^{m+1} \sum_{j=1}^{n} c_{j} \log (x)^{j}
$$

- Thus, we may perform all the integrations in terms of (generalized) series expansions $\quad B_{j}^{(k)}(x)=x^{r} \sum_{n=0}^{\infty} \sum_{m=0}^{k} c_{m n} x^{n} \log (x)^{m}, \quad c_{m n} \in \mathbb{C}, \quad 0 \geq r \in \mathbb{Q}$
- Although each series solution has a limited range of convergence, we may concatenate such solutions to reach any point in phase-space.

Differential equations

- More generally, consider an unsimplified or partially simplified basis \vec{f}, satisfying:

$$
\frac{\partial}{\partial x} \vec{f}(x, \epsilon)=\mathbf{A}_{x}(x, \epsilon) \vec{f}(x, \epsilon)
$$

See e.g.:

- We will assume that \mathbf{A}_{x} is finite as ϵ goes to zero, which gives

$$
\partial_{x} \vec{f}^{(k)}=\mathbf{A}_{x}^{(0)} \vec{f}^{(k)}+\sum_{j=0}^{k-1} \mathbf{A}_{x}^{(k-j)} f^{(j)}
$$

- This can typically be achieved by rescalings of the form:

$$
f_{i} \rightarrow \varepsilon^{\rho_{i}} f_{i,} \quad \rho_{i} \in \mathbb{Z}
$$

- Lastly, upon ordering the integrals sector-wise, we obtain a "block-triangular" form:

, which allows us to decompose into differential equations of the form:

$$
\partial_{x} \vec{g}=\mathbf{M} \vec{g}+\vec{b}
$$

DiffExp

- DiffExp is a Mathematica package for solving linear systems of differential equations in terms of one-dimensional series expansions.
- Capable of computing "coupled" systems of more than two integrals
- Takes in (any) system of differential equations of the form

$$
\frac{\partial}{\partial s_{i}} \vec{f}\left(\left\{s_{j}\right\}, \epsilon\right)=\mathbf{A}_{s_{i}} \vec{f}\left(\left\{s_{j}\right\}, \epsilon\right) \quad \mathbf{A}_{s_{i}}\left(\left\{s_{j}\right\}, \epsilon\right)=\sum_{k=0}^{\infty} \mathbf{A}_{s_{i}}^{(k)}\left(\left\{s_{j}\right\}\right) \epsilon^{k}
$$

- Uses: compute Feynman integrals numerically at high precision. Analytically continue results across thresholds. Transporting boundary conditions from one special point to another.

DiffExp

- Typical usage of the package:
- Set configuration options using the method LoadConfiguration [opts_]
- Prepare a list of boundary conditions using PrepareBoundaryConditions [bcs_, line_]
- Then we can find series solutions along a line using the function:

```
IntegrateSystem[bcsprepared_, line_]
```

- Or one can transport the boundary conditions to a new point using:

```
TransportTo[bcsprepared_, point_]
```


Example: 3-loop banana graph

- Load DiffExp:

Get[FileNameJoin[\{NotebookDirectory[], "..", "DiffExp.m"\}]];
Loading Diffexp version 1.0.7
For questions, email: martijn.hidding@physics.uu.se
For the latest version, see: https://gitlab.com/hiddingm/diffexp

- Set the configuration options and load the matrices

```
EqualMassConfiguration = {
    DeltaPrescriptions }->{t-16 + I \delta}
    MatrixDirectory -> NotebookDirectory[] <> "Banana_EqualMass_Matrices/",
    UseMobius }->\mathrm{ True, UsePade }->\mathrm{ True
    };
```


LoadConfiguration [EqualMassConfiguration];

DiffExp: Loading matrices.
Diffexp: Found files: \{dt_0.m, dt_1.m, dt_2.m, dt_3.m, dt_4.m\}
Diffexp: Kinematic invariants and masses: \{t \}
DiffExp: Getting irreducible factors..
Diffexp: Configuration updated.

Figure 1: The three-loop unequal mass banana diagram.

Equal-mass case:

$$
\begin{aligned}
\vec{B}^{\text {banana }}= & \left(\epsilon I_{2211}^{\text {banana }}, \epsilon(1+3 \epsilon) I_{2111}^{\text {banana }},\right. \\
& \left.\epsilon(1+3 \epsilon)(1+4 \epsilon) I_{1111}^{\text {banana }}, \epsilon^{3} I_{1110}^{\text {banana }}\right)
\end{aligned}
$$

$$
I_{a_{1} a_{2} a_{3} a_{4}}^{\mathrm{banana}}=\left(\frac{e^{\gamma_{E} \epsilon}}{i \pi^{d / 2}}\right)^{3}\left(m^{2}\right)^{a-\frac{3}{2}(2-2 \epsilon)}\left(\prod_{i=1}^{4} \int d^{d} k_{i}\right) D_{1}^{-a_{1}} D_{2}^{-a_{2}} D_{3}^{-a_{3}} D_{4}^{-a_{4}}
$$

$$
D_{1}=-k_{1}^{2}+m^{2}, \quad D_{2}=-k_{2}^{2}+m^{2}
$$

$$
D_{3}=-k_{3}^{2}+m^{2}, \quad D_{4}=-\left(k_{1}+k_{2}+k_{3}+p_{1}\right)^{2}+m^{2}
$$

3-loop banana graph

- Prepare the boundary conditions along an asymptotic limit:

```
EqualMassBoundaryConditions = {
"?",
"?",
```



```
    8 8\mp@subsup{e}{}{3\mathrm{ EulerGamma }\epsilon}(-\frac{1}{t}\mp@subsup{)}{}{1+2\epsilon}\epsilon\operatorname{Gamma [-\epsilon\mp@subsup{]}{}{3}\operatorname{Gamma [\epsilon] Gamma[2\epsilon]}}
e 3 EulerGamma\epsilon}\mp@subsup{\epsilon}{}{3}\mathrm{ Gamma [ }\epsilon\mp@subsup{]}{}{3
} // PrepareBoundaryConditions[#, <|t t-1/x|>] &;
DiffExp: Integral 1: Ignoring boundary conditions.
DiffExp: Integral 2: Ignoring boundary conditions.
DiffExp: Assuming that integral 3 is exactly zero at epsilon order 0.
DiffExp: Prepared boundary conditions in asymptotic limit, of the form:
\(\left.\begin{array}{lllll}? & ? & ? & ? & ? \\ \text { Diffexp: } & ? & ? & ? \\ 0[x]^{51} & ? & (\ldots) x+0[x]^{3 / 2} & (\ldots) x+0[x]^{3 / 2} & (\ldots) x+0[x]^{3 / 2}\end{array}\right)(\ldots) x+0[x]^{3 / 2}\)
```


3-loop banana graph

- Next, we transport the boundary conditions:

```
Transport1 = TransportTo[EqualMassBoundaryConditions, <|t >-1|>];
Transport2 = TransportTo[Transport1, <|t }->\textrm{x}|>, 32, True]
DiffExp: Transporting boundary conditions along }\langle|t->-\frac{1.}{x}|\rangle\mathrm{ from x = 0. to x = 1.
DiffExp: Preparing partial derivative matrices along current line..
DiffExp: Determining positions of singularities and branch-cuts.
DiffExp: Possible singularities along line at positions {0.}.
DiffExp: Analyzing integration segments.
DiffExp: Segments to integrate: 3.
DiffExp: Integrating segment: }\langle|t->\frac{8.(-1.+1.x)}{x}|\rangle
DiffExp: Integrated segment 1 out of 3 in 20.8565 seconds.
DiffExp: Evaluating at x = 0.0625
DiffExp: Current segment error estimate: 5.14483\times10-31
DiffExp: Total error estimate: 5.14483 \10-31
```


3-loop banana graph

- Lastly, we plot the result:

```
ResultsForPlotting = ToPiecewise[Transport2];
Quiet[ReImPlot[{ResultsForPlotting[[3, 4]][x], ResultsForPlotting[[3, 5]][x]}, {x, 0, 32},
```



```
    MaxRecursion }\boldsymbol{->15
```


3-loop banana graph

- Timing:
- Moving from $p^{2}=-\infty$ to $p^{2}=30$ at a precision of 25 digits takes about 90 sec , where we computed the top sector integrals up to and including order ϵ^{3}.
- Moving from $p^{2}=-\infty$ to $p^{2}=30$ at a precision of 100 digits takes a bit under 20 min , where we computed the top sector integrals up to and including order ϵ^{3}.
- Obtaining $100+$ digits at $p^{2}=-100$ up to and including order ϵ^{3} takes about 2.5 min .
- $B_{3}^{(k)}$:

0
4.082413202704059607801991461045097339855501253774222434496563798314848283907330199489603248642178129
$-0.7713150915227857546258559692543676298350939151980774607908277236769934490973612004866036340787026038$
$-15.52268532416518855576696548019433617730937578226039207428302008586262767404183548619606743796239099$

3-Loop banana graph

- We may also compute the fully unequal mass case. We choose the basis:

$$
\vec{B}^{\text {banana }}=\left\{\begin{array}{l}
\epsilon I_{1122}^{\text {banana }}, \epsilon I_{1212}^{\text {banana }}, \epsilon I_{1221}^{\text {bana }}, \epsilon I_{2112}^{\text {bana }}, \epsilon I_{2121}^{\text {banana }}, \epsilon I_{2211}^{\text {banana }}, \\
\epsilon(1+3 \epsilon) I_{1112}^{\text {banana }}, \epsilon(1+3 \epsilon) I_{1121}^{\text {banana }}, \epsilon(1+3 \epsilon) I_{1211}^{\text {banana }}, \\
\epsilon(1+3 \epsilon) I_{2111}^{\text {bana }}, \epsilon(1+3 \epsilon)(1+4 \epsilon) I_{1111}^{\text {banana }}, \\
\epsilon^{3} I_{0111}^{\text {banana }}, \epsilon^{3} I_{1011}^{\text {banana }}, \epsilon^{3} I_{1101}^{\text {banana }}, \epsilon^{3} I_{1110}^{\text {banana }}
\end{array}\right\}
$$

- We provide 55 digits of basis integral B_{11} below, in the point

$$
\left(p^{2}=50, m_{1}^{2}=2, m_{2}^{2}=3 / 2, m_{3}^{2}=4 / 3, m_{4}^{2}=1\right)
$$

$B_{11}^{(0)}=0$
$B_{11}^{(1)}=5.1972521136965043170129578538563652405618939122389078645$
$+i 6.8755169535390207501370685645538902299559024551830956594$
$B_{11}^{(2)}=-17.9580108112094060899523361698928478948780687053899075733$
$+i 31.7436703633693090908402932299011971913508950649494231047$
$B_{11}^{(3)}=-121.5101152068177565203392807541216084962880772908306370668$
$-i 40.7690762360202766453775999917172226537428258529145754746$
$B_{11}^{(4)}=125.6113388023605534745593764004798958232118632681257073923$

- i 229.9200257172388589952062757571215176834471783495112755027

These results were obtained in about 20 minutes on a single CPU-core

Further automatization

- In the previous example, the boundary conditions were provided as closedform expressions in ϵ. In general, this requires a manual case-by-case analysis using expansion by regions in the parametric representation.
[See works by Beneke and Smirov] \& [Jantzen, Smirnov, Smirnov, 1206.0546] for the asy.m package
- Furthermore, the basis was chosen such that the differential equations are finite (and also in precanonical form $\mathbf{A}_{0}+\epsilon \mathbf{A}_{1}$.)
- More generally, we would like to derive the basis, differential equations and boundary terms in an automated way.

An automated computational strategy

- Find a basis of (quasi-)finite Feynman integrals.
- Derive a closed linear system of differential equations for the basis.
- Rescale integrals by powers of ϵ to make the differential equations finite in ϵ.
- Compute boundary conditions in a Euclidean point by numerical integration.
- Obtain points in the physical region (and analytically continue) by numerically solving the differential equations using iterated series expansions.
- (Optional) upgrade the boundary conditions to a higher precision by analyzing behavior near thresholds and pseudo-thresholds.

Caesar package

- Together with J. Usovitsch, I am working on a Mathematica toolbox, Caesar, which automates all steps. It works by interfacing with various programs that are already on the market.
[J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, 2008.06494]
- A finite basis is derived in an automated fashion by using Reduze to obtain candidate integrals
[A. von Manteuffel, C. Studerus, 2008.06494] and using Kira to select an independent set.

LiteRed 1.4:
[R.N. Lee, 1310.1145]

- The differential equations are computed using inbuilt code, while the dimensional reduction relations are generated using LiteRed.
pySecDec:
[S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, 1703.09692]
- pySecDec is used to obtain numerical boundary conditions in the Euclidean region
- DiffExp is used to obtain results everywhere else.

Application: 3-loop vertex topology (relevant for EW pseudo-observables at Z-boson resonance)

In collaboration with:

- We consider the 3-loop topology pictured below:
[levgen Dubovyk, Ayres Freitas, Janusz Gluza, Krzysztof Grzanka, MH, Johann Usovitsch]
 Surviving 8-propagator sectors:

in the kinematic configuration: $p_{1}^{2}=0, p_{2}^{2}=0, p_{1} \cdot p_{2}=s / 2$. We choose the following propagators:
$\mathrm{D}_{1}=m_{W}^{2}-k_{3}^{2}$
$\mathrm{D}_{2}=-k_{2}^{2}$
$\mathrm{D}_{3}=-k_{1}^{2}$
$\mathrm{D}_{4}=-\left(k_{1}-p_{1}-p_{2}\right)^{2}$
$\mathrm{D}_{5}=-\left(k_{2}-p_{1}-p_{2}\right)^{2}$
$\mathrm{D}_{6}=m_{W}^{2}-\left(k_{3}-p_{1}-p_{2}\right)^{2}$
$\mathrm{D}_{7}=-\left(k_{3}-p_{1}\right)^{2}$
$\mathrm{D}_{8}=m_{t}^{2}-\left(k_{3}-k_{2}\right)^{2}$
$\mathrm{D}_{9}=-\left(k_{2}-k_{1}\right)^{2}$
$N_{10}=-\left(k_{1}-k_{3}\right)^{2}$
$N_{11}=-\left(k_{1}-p_{2}\right)^{2}$
$N_{12}=-\left(k_{2}-p_{2}\right)^{2}$
- After IBP-reduction, the top sector collapses. The highest sectors remaining after IBP reduction have 8 propagators and are pictured in the top-right.

Example: 3-loop topology

- The (finite) basis consists of 77 integrals in total. We choose 19 integrals in $d=4$, 53 integrals in $d=6$, and 5 integrals in $d=8$.
- We rescale the integrals by powers of ϵ in order to make the differential equations finite as $\epsilon \rightarrow 0$. The largest power we rescale by is ϵ^{-5}.
- We set up the system of differential equations, making use of IBP identities and dimensional recurrence relations. The differential equations are $\sim 12 \mathrm{MB}$ before expanding in ϵ.

Basis integrals

$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{4,2,2,2,2,0,0,0,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) \mathrm{I}_{3,0,2,2,2,0,0,2,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{2,2,2,2,0}^{\mathrm{d}=6-2 \epsilon}$
,2,2,0,1,0,2,0,0,0,0
$I^{\mathrm{d}=6-2 \epsilon}$
$\mathbf{1}_{0,2,2,2,1,0,1,3,0,0,0,0}$
$\left(\frac{1}{2}\right) I_{1,2,2,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{5}}\right) I_{3,0,2,0,0}^{d=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{5}}\right) I_{5,0,0,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{2,0,2,0,2}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{1,0,1,1,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{2,0,0,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{1,2,0,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{2,0,1,1,0}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1}^{\mathrm{d}=4-2 \epsilon}$
$\mathbf{1}_{1,1,1,1,0,0,1,1,1,0,0,0}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{1,0,2,0,2}^{\mathrm{d}=6-2 \epsilon}$
$I_{1,0,2,0,2,0,1,2,2,0,0,0}^{d=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) \mathrm{I}_{2,0,2,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{1,0,1,1,0,1,1,3,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{3,2,2,2,2,1,0,0,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) \mathrm{I}_{3,0,2,2,1,0,0,3,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{2,2,2,2,1,1,0,1,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{2,2,2,2,1}^{\mathrm{d}}=6-2 \epsilon$
$\mathrm{I}_{2,2,2,2,1,0,1,1,0,0,0,0}^{\mathrm{d}=6}$
$I^{d=6-2 \epsilon}$
$\mathrm{I}_{1,2,2,2,1,1,1,1,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{5}}\right) \mathrm{I}_{4,0,2,0,0,0,0,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{4}\right) I_{0,3,0,3,0}^{\mathrm{d}=8-2 \epsilon}$
0,3,0,3,0,0,0,5,3,0,0,0
$\left(\frac{1}{3}\right) \mathrm{I}_{2,0,2,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{2,0,1,1,0,1,0,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{0,2,0,2}^{\mathrm{d}=6-2}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{0,2,0,2,0,0,2,2,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) \mathrm{I}_{0,0,2,1,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{1,0,1,1,0,}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{2,1,1,1,0,0,1,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1,0,1,1,1,0,1,1,1,0,0,0}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{1,2,0,2,0,1,1,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1,1,1,1,0,1,1,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{2=2}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{3}\right) \mathrm{I}_{2,02}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{0,2,2,2,0,0,2,3,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$ $\mathrm{I}_{2,1,2,2,2}^{\mathrm{d}=6-2 \epsilon}$

$$
\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{5,3,0,3,0}^{\mathrm{d}=8-2 \epsilon}
$$

$\left(\frac{1}{5}\right) I_{3,0,0,2,}^{d=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{3,2,0,2,0,0,0,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$

$$
\left(\frac{1}{3}\right) \mathrm{I}_{1,0,2,0,0}^{\mathrm{d}=6-2 \epsilon}
$$

0,2,0,0,2,0,3,2,0,0,0
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{1,0,1,1,0,1,0,3,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) 1_{0,2,0,2,0,0,1,3,2,0,0,0}^{d}$
$\left(\frac{1}{3}\right) \mathrm{I}_{0,0,2,2,0}^{\mathrm{d}=6-2 \epsilon}$
,2,0,0,2,3,2,0,0,0
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{3,0,1,1,0,0,1,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,0,2,0,2,0,1,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathbf{I}_{2,0,1,1,1,0,1,1,1,0,0,0}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{1,1,0,2,0,1,1,2,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{4,0,2 \epsilon}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{0,2,2,2,2,0,0,4,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{2,0,2,2,2}^{\mathrm{d}=6}$
$\mathrm{I}_{2,1,2,2,1,}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{2,1,2,2,1,0,1,2,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{3}\right) I_{4,3,0,3,0}^{\mathrm{d}=8-2 \epsilon}$
$\left(\frac{1}{5}\right) \mathrm{I}_{4,0,0,2,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,0,2,0,2,0,0,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,2,0,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1,1,1,1,0,1,0,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,2,0,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{0,0,2,1,0,0,2,4,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{2,0,1,1,0,0,1,3,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{2,0,2,0,1,0,1,2,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathbf{1}_{1,0,1,1,1,0,1,2,1,0,0,0}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{1,0,1,1,0,1,1,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{3,2,2,2,0,0,0,2,0,0,0,0}^{d=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,0,2,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{0,2,2,2,1,0,2,2,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,0,2,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{3,3,0,3,0,1,1,0,3,0,0,0}^{\mathrm{d}=8-2 \epsilon}$
$\left(\frac{1}{5}\right) I_{3,0,0,2,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,0,2,0,1,0,0,2,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,1,0,2,0,}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{5}\right) \mathrm{I}_{0,0,3,0,0,0}^{\mathrm{d}=8-2 \epsilon}$
,0,3,4,3,0,0,0
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,1,0,2,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1,0,1,1,0,0,1,2,1,0,0,0}$
$I_{0}^{\mathrm{d}}=4-2 \epsilon$
$\mathrm{I}_{0,1,1,1,0,0,1,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{1,0,2,0,2,0,2,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{1,0,2,0,0,1,1,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{2,0,1,1,0,1,1,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$

Numerical boundary conditions using pySecDec

- When all basis integrals are finite, their numerical integration using pySecDec is sped up considerably.
- We compute all basis integrals in the Euclidean region in the point $s=-2, m_{W}^{2}=$ $4, m_{t}^{2}=16$, using the Qmc integrator configured with:
lib. use_Qmc (minn=10**7, maxeval=10**9, transform='korobov3', epsabs=1e-12, cputhreads=16)
- The computation took between 1/2-1 day on a Ryzen Threadripper Pro 3955WX.
- We find for example: $\mathrm{I}_{1,1,1,1,0,1,1,1,1,1}=0.133952666651743990-0.13899149646580500 \epsilon+O\left(\epsilon^{2}\right)$

$$
\pm\left(2 . \times 10^{-10}+7 . \times 10^{-10} \epsilon\right)
$$

Results in the physical region, using DiffExp

- Using DiffExp we may transport from the Euclidean point to any other (real) point in phasespace.
- Transporting from $\left(s, m_{W}^{2}, m_{t}^{2}\right)=(-2,4,16)$ to $\left(s, m_{W}^{2}, m_{t}^{2}\right)=\left(1,\left(\frac{401925}{455938}\right)^{2},\left(\frac{433000}{227969}\right)^{2}\right)$, we obtain:

```
I
I I=4-2\epsilon\epsilon,1,1,1,1,2,1,0,0,0}=(1.17171 + 1.03298i)-(3.13434-1.43328i)\epsilon+(5.9312+3.04346i)\epsilon \epsilon'O(\mp@subsup{\epsilon}{}{2}
I
I
I
```

- The computation involved 16 line segments and took 45 minutes on a single CPU core. The precision of the expansions was 10^{-17}, exceeding the precision of the boundary conditions.

Results in the physical region, using DiffExp

- We find that the numerical error of the boundary conditions approximately carries over after transporting from the Euclidean to the physical point.
- For example, at $\left(s, m_{W}^{2}, m_{t}^{2}\right)=(-2,4,16)$ we have:

$$
I_{1,1,1,1,0,1,1,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}=+0.133952666651744 \pm 2 \times 10^{-10}
$$

- While at $\left(s, m_{W}^{2}, m_{t}^{2}\right)=\left(1,\left(\frac{401925}{455938}\right)^{2},\left(\frac{433000}{227969}\right)^{2}\right)$ we have:
$\mathrm{I}_{1,1,1,1,0,1,1,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}=(1.30730596404577+3.42322623988039 i) \pm\left(3 \times 10^{-11}+2 \times 10^{-9} i\right)$

Results in the physical region, using DiffExp

- By concatenating series expansions along line segments, we can plot the results along a line. For example:

- It took about 2 hour and 15 minutes to obtain the results along this line, at a precision of $\sim 10^{-13}$.
- Afterwards, evaluating an integral anywhere along the line takes about 0.01 seconds.

Optional: upgrading the boundary conditions

- Suppose we want to go beyond the precision that pySecDec can provide in the Euclidean region. It turns out that we can lift the boundary conditions to a higher precision by looking at the scaling of the integrals near (pseudo-)thresholds.
- We don't have to use expansion by regions. Instead, we take the numerical boundary conditions, move around in phase-space and record at which locations there are branch-points or singularities.
[D. Chicherin, T. Gehrmann, J. M. Henn, N. A. Lo Presti, V. Mitev, P. Wasser, 1809.06240]
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2005.04195]
- In particular, for each line segment we record presence or absence of terms of the form of x^{-n}, $x^{-n / 2}$ and $\log (x)^{m}$, where we let $n \leq 0$.
- Because the boundary conditions are of finite precision, such terms may carry coefficients of the form 10^{-10} which we will interpret to be 0 exactly.

Optional: upgrading the boundary conditions

- We get a feeling for which directions to move towards, by looking at the poles of the differential equations. The differential equations have the following poles:

```
mt,
mt + s,
5*mw - 2*s, 2*mw - s,
mt - mw - 3*s, 2*mt - 4*mw + s,
mt^2 - 2*mt*mw + mw^^2 - 2*mt*s - 2*mw*s + s^^2, 2*mt*mw - 4*mw^2 + mt*s + 6*mw*s - 2*s^2,
2mt'4}mw-8m\mp@subsup{t}{}{3}m\mp@subsup{w}{}{2}+12m\mp@subsup{t}{}{2}m\mp@subsup{w}{}{3}-8mtm\mp@subsup{w}{}{4}+2m\mp@subsup{w}{}{5}-m\mp@subsup{t}{}{4}s+5m\mp@subsup{t}{}{3}mws-9m\mp@subsup{t}{}{2}m\mp@subsup{w}{}{2}s+7mt m\mp@subsup{w}{}{3}s-2m\mp@subsup{w}{}{4}s-m\mp@subsup{t}{}{2}mw\mp@subsup{s}{}{2}-3mt m\mp@subsup{w}{}{2}\mp@subsup{s}{}{2}+m\mp@subsup{t}{}{2}\mp@subsup{s}{}{3
```

- For example, with $m_{t}^{2}=16$, we obtain the following contour plot:
- The green dots represents points between which we transport. In particular, we consider lines from the Euclidean point $\left(s, m_{W}^{2}, m_{t}^{2}\right)=(-2,4,16)$, towards the outer green points. The points have been chosen in order to cross as many of the poles as possible.

Optional: upgrading the boundary conditions

- Adding two additional points that cross $m_{t}=0$ as well, we end up with the following 8 points to which we transport from $\left(s, m_{W}^{2}, m_{t}^{2}\right)=(-2,4,16)$:

$$
\begin{array}{ll}
\left\{s \rightarrow-29, m_{w}^{2} \rightarrow 50, m_{t}^{2} \rightarrow 17\right\} & \left\{s \rightarrow-90, m_{w}^{2} \rightarrow-50, m_{t}^{2} \rightarrow 17\right\} \\
\left\{s \rightarrow 25, m_{w}^{2} \rightarrow 65, m_{t}^{2} \rightarrow 17\right\} & \left\{s \rightarrow 90, m_{w}^{2} \rightarrow 20, m_{t}^{2} \rightarrow 17\right\} \\
\left\{s \rightarrow 37, m_{w}^{2} \rightarrow-30, m_{t}^{2} \rightarrow 17\right\} & \left\{s \rightarrow-26, m_{w}^{2} \rightarrow-18, m_{t}^{2} \rightarrow-10\right\} \\
\left\{s \rightarrow-22, m_{w}^{2} \rightarrow 20, m_{t}^{2} \rightarrow-10\right\} & \left\{s \rightarrow 70, m_{w}^{2} \rightarrow 40, m_{t}^{2} \rightarrow-10\right\}
\end{array}
$$

Optional: upgrading the boundary conditions

- Next, we repeat the computation with • Lastly, we impose the same behavior around the singular

 a set of unfixed boundary conditions:points, which fixes the coefficients:

0	0	0	$c_{1,4}$	$c_{1,5}$	$c_{1,6}$	$c_{1,7}$	0.	0.	0.	0.0104167	-0.00525246	0.0344235	-0.023964
0	0	0	0	$c_{2,5}$	$c_{2,6}$	$c_{2,7}$	0.	0.	0.	0.	0.00970283	-0.0055748	0.0324391
0	0	0	0	$c_{3,5}$	$c_{3,6}$	$c_{3,7}$	0.	0.	0.	0.	0.0148169	-0.0007125	0.0491314
0	$c_{4,2}$	$c_{4,3}$	$c_{4,4}$	$c_{4,5}$	$c_{4,6}$	$c_{4,7}$	0.	0.000217014	-0.000994722	0.00289226	-0.00649465	0.012447	$c_{4,7}$
0	0	$c_{5,3}$	$c_{5,4}$	$c_{5,5}$	$c_{5,6}$	$c_{5,7}$	0.	0.	0.00883742	-0.0437098	0.155112	-0.438363	1.10301
0	0	$c_{6,3}$	$c_{6,4}$	$c_{6,5}$	$c_{6,6}$	$c_{6,7}$	0.	0.	0.00861711	-0.0431707	0.153748	-0.436032	1.09904
0	0	$c_{7,3}$	$c_{7,4}$	$c_{7,5}$	$c_{7,6}$	$c_{7,7}$	0.	0.	0.00713239	-0.0443696	0.173696	-0.53395	1.4213
0	0	$c_{8,3}$	$c_{8,4}$	$c_{8,5}$	$c_{8,6}$	$c_{8,7}$	0.	0.	0.00547568	-0.0308585	0.118034	-0.356945	0.945135
0	0	0	$c_{9,4}$	$c_{9,5}$	$c_{9,6}$	$c_{9,7}$	0.	0.	0.	0.00260417	-0.00492326	0.0129286	-0.0203394
0	0	0	$c_{10,4}$	$c_{10,5}$	$c_{10,6}$	$c_{10,7}$	0.	0.	0.	0.000202142	-0.000940769	0.00275984	-0.00624196
!	\vdots	:	\vdots	\vdots	\vdots	:	\vdots	\vdots	\vdots	:	:	,	!
0	0	0	0	0	$c_{68,6}$	$c_{68,7}$	0.	0.	0.	0.	0.	0.138799	-0.384399
0	0	0	0	0	$c_{69,6}$	$c_{69,7}$	0.	0.	0.	0.	0.	0.0413123	-0.0991391
0	0	$c_{70,3}$	$c_{70,4}$	$c_{70,5}$	$c_{70,6}$	$c_{70,7}$	0.	0.	0.0171007	-0.172654	1.06597	-5.11074	$c_{70,7}$
0	0	$c_{71,3}$	$c_{71,4}$	$c_{71,5}$	$c_{71,6}$	$c_{71,7}$	0.	0.	0.000711127	-0.00496931	0.0221132	-0.0760124	$0.414657-0.00910467 c_{70,7}$
0	0	0	$c_{72,4}$	$c_{72,5}$	$c_{72,6}$	$c_{72,7}$	0.	0.	0.	0.0668526	-0.323007	1.56549	$-1 . c_{49,7}-0.790243 c_{70,7}+4.6316$
0	0	0	$c_{73,4}$	$c_{73,5}$	$c_{73,6}$	$c_{73,7}$	0.	0.	0.	0.0211336	-0.170294	0.931839	$0.0474158 c_{70,7}-5.06544$
0	0	0	0	$c_{74,5}$	$c_{74,6}$	$c_{74,7}$	0.	0.	0.	0.	0.0544231	-0.289769	1.13232
0	0	0	0	$c_{75,5}$	$c_{75,6}$	$c_{75,7}$	0.	0.	0.	0.	0.00711423	-0.0309455	0.110314
0	0	0	0	$c_{76,5}$	$c_{76,6}$	$c_{76,7}$	0.	0.	0.	0.	0.00118868	-0.00406291	0.0123885
0	0	0	0	0	$c_{77,6}$	$c_{77,7}$	0.	0.	0.	0.	0 .	0.133953	$c_{77,7}$

Optional: upgrading the boundary conditions

- We see that order ϵ^{6} has not been fully determined, and we would need to expand up to order ϵ^{7} in order to fully fix this order.
- Furthermore, we manually added high precision results for the basis integrals $1,4,23$ and 26 :

$$
\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{4,2,2,2,2,0,0,0,0,0,0,0}^{\mathrm{d}=6-2 \epsilon},\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{4,0,2,2,0,0,0,4,0,0,0,0}^{\mathrm{d}=6-2 \epsilon},\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{5,3,0,3,0,0,0,0,3,0,0,0}^{\mathrm{d}=8-2 \epsilon},\left(\frac{1}{\epsilon^{5}}\right) \mathrm{I}_{3,0,2,0,0,0,0,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}
$$

which were obtained by integrating the Feynman parametrization analytically.

- We performed the lifting procedure twice by transporting along different lines, in order to check consistency of the results. We obtain the following (preliminary) results at $\left(s, m_{W}^{2}, m_{t}^{2}\right)=$ $(-2,4,16)$:

$$
\mathrm{I}_{1,1,1,1,0,1,1,1,1,0,0,0}^{\mathrm{d}=4}=0.133952666444160183902749812
$$

at an expected precision of about 10^{-25}.

Conclusions

- Without spending significant effort on simplification of the basis, we can numerically solve the differential equations of non-trivial 3-loop Feynman integrals.
- By choosing the basis representatives to be finite integrals, we can obtain precise numerical boundary conditions in the Euclidean region using pySecDec.
- We find that the precision of the boundary conditions in the Euclidean region carries over to the physical region.
- We can upgrade the boundary conditions to a higher precision by reading of the scaling behavior of the integrals around singular points.
- The process can be almost fully automated.

Thank you for listening!

