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(Semi-)automated methods for solving Feynman 

integrals through differential equations



• In recent years, the method of diffential equations has proven to be an exceptionally 

powerful way of computing Feynman integrals.

• The effectiveness of the differential equations method is especially striking when it is 

applied to polylogarithmic integral families that admit an 𝜖-factorized (canonical) basis.

• Furthermore, numerical approaches to solving the differential equations can be 

efficient, precise, and may extend to cases beyond multiple polylogarithms or elliptic 

generalizations thereof.

• Although many individual steps have been automated, some “glue” is still missing. In 

this talk we will consider some steps towards a full automatization.

Introduction

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]

[Henn,  2013]

e.g.: [Lee, Smirnov, Smirnov, ’18], [Mandal, Zhao, ’19], [Moriello, ’19], 
[Bonciani, Del Duca, Frellesvig, Henn, MH, Maestri, 

Moriello, Salvatori, Smirnov, ’19], [MH ’20], 
[Abreu, Ita, Moriello, Page, Tschernow, Zeng ’20]



Outline of the talk

• The method of differential equations

• Solutions through iterated series expansions

• Overview of an automated computational strategy

• The DiffExp Mathematica package & the Caesar toolbox

• Applications to a 3-loop vertex topology
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• We consider a family of Feynman integrals:

and a basis of master integrals Ԧ𝐼. Taking derivatives on kinematic invariants and 

masses and performing IBP reductions, we obtain:

• We will proceed by solving these equations iteratively in terms of one-dimensional 

series expansions, which will allow us to obtain numerical results everywhere in 

phase-space.

Differential equations

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]
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• Let us briefly consider the special case of a canonical basis. Under a change of 

variables , we have that:

• For polylogarithmic families, it is conjectured that a 𝐓 exists, such that:

where ෩𝑨 does not depends on 𝜖, and such that

decomposes as a ℚ-linear combination of logarithms of rat./algebraic functions.

Differential equations

[Henn,  2013]

See also:
[Lee, 1411.0911]

[Prausa, 1701.00725]
[Gituliar, Magerya, 1701.04269]

[Meyer, 1705.06252]
[Dlapa, Henn, Yan, 2002.02340]
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• Let us parametrize the differential equations along a one-dimensional path. In 

other words, we consider:

• Then we have that:

• Upon expanding in 𝜖, the equations can be solved order-by-order:

Differential equations
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• Let us expand the matrix 𝐀𝑥 in the line parameter. Then we have:

• Using integration-by-parts, we find can write for each rational 𝑚 and integer 𝑛:

• Thus, we may perform all the integrations in terms of (generalized) series 

expansions

• Although each series solution has a limited range of convergence, we may 

concatenate such solutions to reach any point in phase-space.

Differential equations
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• More generally, consider an unsimplified or partially simplified basis Ԧ𝑓, satisfying:

• We will assume that 𝐀𝑥 is finite as 𝜖 goes to zero, which gives

• This can typically be achieved by rescalings of the form:

• Lastly, upon ordering the integrals sector-wise, we obtain a ”block-triangular” form:

, which allows us to decompose into 

differential equations of the form:

Differential equations

See e.g.:
[Moriello, ’19], 

[R. Bonciani, V. Del Duca, H. 
Frellesvig, J. M. Henn, MH,      

L. Maestri, F. Moriello, G. 
Salvatori, V. A. Smirnov, ’19]

[MH, `20]
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DiffExp
• DiffExp is a Mathematica package for solving linear systems of differential 

equations in terms of one-dimensional series expansions.

• Capable of computing “coupled” systems of more than two integrals

• Takes in (any) system of differential equations of the form

• Uses: compute Feynman integrals numerically at high precision. Analytically 

continue results across thresholds. Transporting boundary conditions from 

one special point to another.

[MH, ` 2006.05510]
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• Typical usage of the package:

• Set configuration options using the method LoadConfiguration[opts_]

• Prepare a list of boundary conditions using PrepareBoundaryConditions[bcs_, line_]

• Then we can find series solutions along a line using the function:

IntegrateSystem[bcsprepared_, line_]

• Or one can transport the boundary conditions to a new point using:

TransportTo[bcsprepared_, point_]

DiffExp
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• Load DiffExp:

• Set the configuration options and load the matrices

Example: 3-loop banana graph
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Equal-mass case:



• Prepare the boundary conditions along an asymptotic limit:

3-loop banana graph
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• Next, we transport the boundary conditions:

3-loop banana graph
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• Lastly, we plot the result:

3-loop banana graph
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• Timing:

• Moving from 𝑝2 = −∞ to 𝑝2 = 30 at a precision of 25 digits takes about 90 sec, where we computed 

the top sector integrals up to and including order 𝜖3.

• Moving from 𝑝2 = −∞ to 𝑝2 = 30 at a precision of 100 digits takes a bit under 20 min, where we 

computed the top sector integrals up to and including order 𝜖3.

• Obtaining 100+ digits at 𝑝2 = −100 up to and including order 𝜖3 takes about 2.5 min.

• 𝐵3
𝑘
:

3-loop banana graph
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• We may also compute the fully unequal mass case. We choose the basis:

3-Loop banana graph

• We provide 55 digits of basis integral 𝐵11 below, in the point 

(𝑝2 = 50,𝑚1
2 = 2,𝑚2

2 = 3/2,𝑚3
2 = 4/3,𝑚4

2 = 1)

These results were obtained in about 20 
minutes on a single CPU-core
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• In the previous example, the boundary conditions were provided as closed-

form expressions in 𝜖. In general, this requires a manual case-by-case 

analysis using expansion by regions in the parametric representation.

• Furthermore, the basis was chosen such that the differential equations are 

finite (and also in precanonical form 𝐀0 + 𝜖𝐀1.)

• More generally, we would like to derive the basis, differential equations and 

boundary terms in an automated way.

Further automatization 

[See works by Beneke and Smirov] &  [Jantzen, Smirnov, 
Smirnov, 1206.0546] for the asy.m package 
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• Find a basis of (quasi-)finite Feynman integrals.

• Derive a closed linear system of differential equations for the basis.

• Rescale integrals by powers of 𝜖 to make the differential equations finite in 𝜖.

• Compute boundary conditions in a Euclidean point by numerical integration.

• Obtain points in the physical region (and analytically continue) by numerically 

solving the differential equations using iterated series expansions.

• (Optional) upgrade the boundary conditions to a higher precision by analyzing 

behavior near thresholds and pseudo-thresholds.

An automated computational strategy
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• Together with J. Usovitsch, I am working on a Mathematica toolbox, Caesar, which automates all 

steps. It works by interfacing with various programs that are already on the market.

• A finite basis is derived in an automated fashion by using Reduze to obtain candidate integrals 

and using Kira to select an independent set.

• The differential equations are computed using inbuilt code, while the dimensional reduction 

relations are generated using LiteRed.

• pySecDec is used to obtain numerical boundary conditions in the Euclidean region

• DiffExp is used to obtain results everywhere else.

Caesar package

Kira 2.0:
[J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, 2008.06494]

Reduze 2:
[A. von Manteuffel, C. Studerus, 2008.06494]

LiteRed 1.4:
[R.N. Lee, 1310.1145]

pySecDec:
[S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, 

M. Kerner, J. Schlenk, T. Zirke, 1703.09692]

DiffExp:
[MH, 2006.05510]
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• We consider the 3-loop topology pictured below:

in the kinematic configuration:                                                     . We choose the following propagators:

• After IBP-reduction, the top sector collapses. The highest sectors remaining after IBP reduction 

have 8 propagators and are pictured in the top-right.

Application: 3-loop vertex topology (relevant for EW 
pseudo-observables at Z-boson resonance) In collaboration with:

[Ievgen Dubovyk, Ayres Freitas, Janusz Gluza, 
Krzysztof Grzanka, MH, Johann Usovitsch]
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Example: 3-loop topology

• The (finite) basis consists of 77 integrals in total. We choose 19 integrals in 𝑑 = 4, 

53 integrals in 𝑑 = 6, and 5 integrals in 𝑑 = 8. 

• We rescale the integrals by powers of 𝜖 in order to make the differential equations 

finite as 𝜖 → 0. The largest power we rescale by is 𝜖−5.

• We set up the system of differential equations, making use of IBP identities and 

dimensional recurrence relations. The differential equations are ~ 12 MB before 

expanding in 𝜖.
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Basis integrals
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Numerical boundary conditions using pySecDec

• When all basis integrals are finite, their numerical integration using pySecDec is 

sped up considerably.

• We compute all basis integrals in the Euclidean region in the point 𝑠 = −2,𝑚𝑊
2 =

4,𝑚𝑡
2 = 16, using the Qmc integrator configured with:

• The computation took between 1/2-1 day on a Ryzen Threadripper Pro 3955WX.

• We find for example:
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Results in the physical region, using DiffExp
• Using DiffExp we may transport from the Euclidean point to any other (real) point in phase-

space.

• Transporting from 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 = (−2,4,16) to 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 = 1,
401925

455938

2
,

433000

227969

2
, we 

obtain:

• The computation involved 16 line segments and took 45 minutes on a single CPU core. The 

precision of the expansions was 10−17, exceeding the precision of the boundary conditions.
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Results in the physical region, using DiffExp

• We find that the numerical error of the boundary conditions approximately carries 

over after transporting from the Euclidean to the physical point.

• For example, at 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 = (−2,4,16) we have:

• While at 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 = 1,
401925

455938

2
,

433000

227969

2
we have:
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Results in the physical region, using DiffExp
• By concatenating series expansions along line segments, we can plot the results along a line. For 

example:

• It took about 2 hour and 15 minutes to obtain the results along this line, at a precision of ~ 10−13.

• Afterwards, evaluating an integral anywhere along the line takes about 0.01 seconds.
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Optional: upgrading the boundary conditions

• Suppose we want to go beyond the precision that pySecDec can provide in the Euclidean region. It 

turns out that we can lift the boundary conditions to a higher precision by looking at the scaling of 

the integrals near (pseudo-)thresholds.

• We don’t have to use expansion by regions. Instead, we take the numerical boundary conditions, 

move around in phase-space and record at which locations there are branch-points or singularities.

• In particular, for each line segment we record presence or absence of terms of the form of 𝑥−𝑛, 

𝑥−𝑛/2 and log 𝑥 𝑚, where we let 𝑛 ≤ 0.

• Because the boundary conditions are of finite precision, such terms may carry coefficients of the 

form 10−10 which we will interpret to be 0 exactly.

See also: 
[D. Chicherin, T. Gehrmann, J. M. Henn, N. A. Lo Presti, V. Mitev, P. Wasser, 1809.06240]

[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2005.04195]
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Optional: upgrading the boundary conditions
• We get a feeling for which directions to move towards, by looking at the poles of the differential 

equations. The differential equations have the following poles:

• For example, with 𝑚𝑡
2 = 16, we obtain the following contour plot:

• The green dots represents points between which 

we transport. In particular, we consider lines from the Euclidean 

point 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 = −2,4,16 , towards the outer green points. 

The points have been chosen in order to cross as many of the

poles as possible.
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Optional: upgrading the boundary conditions

• Adding two additional points that cross 𝑚𝑡 = 0 as well, we end up with the following 8 points to 

which we transport from 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 = −2,4,16 :
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Optional: upgrading the boundary conditions
• Next, we repeat the computation with 

a set of unfixed boundary conditions:

• Lastly, we impose the same behavior around the singular 

points, which fixes the coefficients:
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Optional: upgrading the boundary conditions
• We see that order 𝜖6 has not been fully determined, and we would need to expand up to order 𝜖7 in 

order to fully fix this order.

• Furthermore, we manually added high precision results for the basis integrals 1, 4, 23 and 26:

which were obtained by integrating the Feynman parametrization analytically.

• We performed the lifting procedure twice by transporting along different lines, in order to check 

consistency of the results. We obtain the following (preliminary) results at 𝑠,𝑚𝑊
2 , 𝑚𝑡

2 =

−2,4,16 :

at an expected precision of about 10−25.
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Conclusions

• Without spending significant effort on simplification of the basis, we can numerically solve the 

differential equations of non-trivial 3-loop Feynman integrals.

• By choosing the basis representatives to be finite integrals, we can obtain precise numerical 

boundary conditions in the Euclidean region using pySecDec.

• We find that the precision of the boundary conditions in the Euclidean region carries over to the 

physical region.

• We can upgrade the boundary conditions to a higher precision by reading of the scaling behavior of 

the integrals around singular points.

• The process can be almost fully automated. 
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Thank you for listening!
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