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[V.S.'02, G. Heinrih & V.S.'04℄

Other partial results

[M. Czakon, J. Gluza & T. Riemann'05-06℄

The evaluation in the small mass limit

[S. Atis, M. Czakon, J. Gluza & T. Riemann'06-07℄
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(b)

Now: analyti evaluation of master integrals for graph (b).

Evaluating integrals for graph (a) with two di�erent masses

[M. Heller'21℄.
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Di�erential equations

∂vg = Avg ,

v = s, t,m2

, ∂v = ∂
∂v

and matries As ,At ,Am2

are rational

funtions of s, t,m2

and ǫ.
Turn to an ǫ-basis [J. Henn'13℄, gi → fi ,

∂v f = ǫĀv f

with Āv independent of ǫ.

We use the strategy of

[T. Gehrmann, A. von Manteu�el, L. Tanredi & E. Weihs'14℄
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dlog form: df = ǫdÃf .

Solution

f (s, t; ǫ) = Pexp

[

ǫ

∫

γ

dÃ

]

f
0

(ǫ)

where Pexp is the path-ordered exponential and f
0

(ǫ) is the
initial ondition related to the value of f at a spei� point.

The path γ onnets the initial point (s
0

, t
0

) to the generi

point (s, t).
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Evaluating planar master integrals for Bhabha sattering

The appearane of square roots is the prie for having a

anonial basis. There are four square roots,



Evaluating planar master integrals for Bhabha sattering

The appearane of square roots is the prie for having a

anonial basis. There are four square roots,

rs =
√
−s

√
4m2 − s, rt =

√
−t

√
4m2 − t,

ru =
√
−s − t

√
4m2 − s − t, rst =

√
−s

√

4m6 − s(m2 − t)2 .



Evaluating planar master integrals for Bhabha sattering

The appearane of square roots is the prie for having a

anonial basis. There are four square roots,

rs =
√
−s

√
4m2 − s, rt =

√
−t

√
4m2 − t,

ru =
√
−s − t

√
4m2 − s − t, rst =

√
−s

√

4m6 − s(m2 − t)2 .

The square roots are hosen in suh a way that that they are

manifestly real at Eulidean values, s, t < 0.



Evaluating planar master integrals for Bhabha sattering

The appearane of square roots is the prie for having a

anonial basis. There are four square roots,

rs =
√
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√
4m2 − s, rt =

√
−t

√
4m2 − t,

ru =
√
−s − t

√
4m2 − s − t, rst =

√
−s

√

4m6 − s(m2 − t)2 .

The square roots are hosen in suh a way that that they are

manifestly real at Eulidean values, s, t < 0.

The standard way to rationalize the �rst two square roots is to

turn to dimensionless variables x and y

−s

m2

=
(1− x)2

x

−t

m2

=
(1− y )2

y
.
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The square root ru is present only in f
14

.

We stay for f
14

with the variables x and y and evaluate this

element using ellipti MPLs.

The square root rst does not appear when solving di�erential

equations up to weight 3 for all elements but f
37

and at weight

4 for all elements but fi , i = 35, 36, 37, 38, 39, 41, 43.
The equations an be solved, �rst, in x , with results in terms

of MPLs of x with the letters {0,−1, 1,−y ,−1/y}.
MPLs

G (a
1

, . . . , an; x) =

∫ x

0

dt

t − a
1

G (a
2

, . . . , an; t)

G (0, . . . , 0
︸ ︷︷ ︸

n times

; x) =
1

n!
lnn x
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Then the equations with respet to y an be solved (after

heking that the variable x disappears in them) in terms of

MPLs of y with the letters {0,−1, 1}, i.e. harmoni

polylogarithms [E. Remiddi & J. Vermaseren'99℄.

To �x the solutions we use boundary onditions in the limit

s, t → 0.

Using expansion by regions [M. Beneke & VS'98℄

implemented in the ode asy.m [A. Pak & A.V. Smirnov'10℄

(whih is now inluded in the ode FIESTA [A.V. Smirnov'15℄;

also in pySeDe [E. Villa'21, talk tomorrow℄)

and evaluating resulting parametri integrals

we obtain the following leading order asymptoti behaviour in

this limit
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f
1
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π2ǫ2

6

− 2ζ(3)ǫ3
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+
7π4ǫ4
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f
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4
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− 11ζ(3)ǫ3

6

− 101

480

π4ǫ4 ,

f
9

∼ −π2ǫ2

12

+
1

4

ǫ3
(
2π2 log(2)− 7ζ(3)

)

+
1

180

ǫ4
(

13π4 − 90 log4(2)− 180π2 log2(2)− 2160Li

4

(
1

2

))

,

f
18

∼ 1
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(
2π2 log(2)− 3ζ(3)

)

+
1

20

ǫ4
(

7π4 − 20 log4(2)− 40π2 log2(2)− 480Li

4

(
1

2

))

,

f
19

∼ (−s)−ǫ

(

−1 +
8ζ(3)ǫ3

3

+
π4ǫ4

30

)

,
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f
22

∼ (−s)−ǫ

(

−1

2

+
4ζ(3)ǫ3

3

+
π4ǫ4

60

)

+(−s)−2ǫ

(
1

4

− π2ǫ2

24

− 14ζ(3)ǫ3

3

− 67

480

π4ǫ4
)

,

f
23

∼ (−s)−2ǫπ2

(
ǫ2 + 2ǫ3 log(2) + 2ǫ4

(
π2 + log2(2)

))
,

f
25

∼ (−s)−ǫπ2

(

−ǫ2 − 2ǫ3 log(2)− 1

2

ǫ4
(
π2 + 4 log2(2)

)
)

and fi ∼ 0, i.e. fi = o(s, t) for all the other elements.
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For example,

f
42

= . . . + ε
4

(−π
2

G(−1; y)G(0, x) +
1

2

π
2

G(0; y)G(0, x) −
1

3

π
2

G(1; y)G(0, x) − 36G(−1,−1, 0; y)G(0, x)

+ 24G(−1, 0, 0; y)G(0, x) − 12G(−1, 1, 0; y)G(0, x) + 24G(0,−1, 0; y)G(0, x) − 10G(0, 0, 0; y)G(0, x)

+ 8G(0, 1, 0; y)G(0, x) − 12G(1,−1, 0; y)G(0, x) + 8G(1, 0, 0; y)G(0, x) − 4G(1, 1, 0; y)G(0, x)

+ 11ζ(3)G(0, x) −
4

3

π
2

G(−1, x)G(0; y) + 2π
2

G(−1; y)G(−1/y ; x) −
1

6

π
2

G(0; y)G(−1/y ; x)

− 2π
2

G(−1; y)G(−y, x) +
3

2

π
2

G(0; y)G(−y, x) −
1

3

π
2

G(−1, 0, x)

− 12G(−1, 0, x)G(−1, 0; y) − 4π
2

G(−1, 0; y) + π
2

G(−1,−1/y ; x) − π
2

G(−1,−y, x)

− 2π
2

G(0,−1; y) + 8G(−1, 0, x)G(0, 0; y) + 2G(−1,−1/y ; x)G(0, 0; y)

− 2G(−1,−y, x)G(0, 0; y) +
7

2

π
2

G(0, 0; y) − 4G(−1, 0, x)G(1, 0; y) −
4

3

π
2

G(1, 0; y)

+ π
2

G(−1/y,−1; x) + 6G(−1, 0; y)G(−1/y, 0; x) − 4G(0, 0; y)G(−1/y, 0; x) + 2G(1, 0; y)G(−1/y, 0; x)

−

1

6

π
2

G(−1/y, 0; x) − G(0, 0; y)G(−1/y,−1/y ; x) −
1

2

π
2

G(−1/y,−1/y ; x) + G(0, 0; y)G(−1/y,−y ; x) + . . .)



Evaluating planar master integrals for Bhabha sattering

To evaluate f
37

at weights 3 and 4 and

fi , i = 35, 36, 38, 39, 41, 43 at weight 4 we have to deal with

the square root rst .



Evaluating planar master integrals for Bhabha sattering

To evaluate f
37

at weights 3 and 4 and

fi , i = 35, 36, 38, 39, 41, 43 at weight 4 we have to deal with

the square root rst .

It an be rationalized by the following further hange of

variables x → w :

x =
2

(

(1− w) (y 2 − y + 1)
2 − 2y 2

)

(1− w 2) (y 2 − y + 1)2
.



Evaluating planar master integrals for Bhabha sattering

To evaluate f
37

at weights 3 and 4 and

fi , i = 35, 36, 38, 39, 41, 43 at weight 4 we have to deal with

the square root rst .

It an be rationalized by the following further hange of

variables x → w :

x =
2

(

(1− w) (y 2 − y + 1)
2 − 2y 2

)

(1− w 2) (y 2 − y + 1)2
.

The equations are solved, �rst, in w and then in y. The results

are written in terms of G (. . . ,w) and G (. . . , y ).
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The letters in G (. . . ,w) and G (. . . , y ) are umbersome and

the result is rather ompliated, the ontributions of weight 4

take ∼ 60mb. Still we obtain an answer to the question about

the lass of funtions: these are MPLs, with the exeption of

f
14

.

Evaluating the weight 4 results with GiNaC [C. W. Bauer, A.

Frink & R. Krekel'00; J. Vollinga & S. Weinzierl'04℄

meets ertain problems onneted with timing and stability, so

that suh results beome impratial.
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For these ompliated elements, we prefer to apply the

reently developed ode DiffExp to evaluate Feynman

integrals numerially using di�erential equations

[M. Hidding'20; talk at this session℄.

based on the strategy of evaluating path-ordered exponentials

in an ǫ-expansion [F. Moriello'20℄.

Input data for this ode are matries in di�erential equations

and boundary onditions in some limit.

The ode works in an optimal way and provides the possibility

to obtain high-preision values (100 digits auray and more)

equally well in the Eulidean and physial regions.

With a anonial basis, the ode works muh better.
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Ellipti setor
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14

≡ ǫ4f̄ = −ǫ4
√
−s − t

√
4m2 − s − t times

The di�erential equation equations give



Evaluating planar master integrals for Bhabha sattering

∂

∂x
f̄ (x, y) =

1

(x − 1)x
√

(x + y)(xy + 1) (x2y + xy2 − 4xy + x + y)
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(
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−
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y
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−
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)
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)

G(−y , x)
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)
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)
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.

The funtion f̄ (x , y ) is symmetrial, f̄ (y , x) = f̄ (x , y ).



Evaluating planar master integrals for Bhabha sattering

The di�erential equation is solved on a path whih onsists of

two straight-line segments: the straight line from the point

(1, 1) (where the funtion = 0) to the point (1, y ), 0 ≤ y ≤ 1,



Evaluating planar master integrals for Bhabha sattering

The di�erential equation is solved on a path whih onsists of

two straight-line segments: the straight line from the point

(1, 1) (where the funtion = 0) to the point (1, y ), 0 ≤ y ≤ 1,

and from (1, y ) to the general (x , y ) in the Eulidean region

0 < x < 1, 0 < y < 1.



Evaluating planar master integrals for Bhabha sattering

The di�erential equation is solved on a path whih onsists of

two straight-line segments: the straight line from the point

(1, 1) (where the funtion = 0) to the point (1, y ), 0 ≤ y ≤ 1,

and from (1, y ) to the general (x , y ) in the Eulidean region

0 < x < 1, 0 < y < 1.

The square root

√

(x + y )(xy + 1) (x2y + xy 2 − 4xy + x + y )
annot be rationalized

[M. Besier, D. van Straten & S. Weinzierl'18℄

so that, maybe, it is not possible to arrive at a result in terms

of MPLs.



Evaluating planar master integrals for Bhabha sattering

The di�erential equation is solved on a path whih onsists of

two straight-line segments: the straight line from the point

(1, 1) (where the funtion = 0) to the point (1, y ), 0 ≤ y ≤ 1,

and from (1, y ) to the general (x , y ) in the Eulidean region

0 < x < 1, 0 < y < 1.

The square root

√

(x + y )(xy + 1) (x2y + xy 2 − 4xy + x + y )
annot be rationalized

[M. Besier, D. van Straten & S. Weinzierl'18℄

so that, maybe, it is not possible to arrive at a result in terms

of MPLs.

Let us apply ellipti MPLs (eMPLs)

[F. Brown & A. Levin; J. Broedel, C.R. Mafra, N. Matthes &

O. Shlotterer, J. Broedel, C. Duhr, F. Dulat & L. Tanredi'18;

J. Broedel, C. Duhr, F. Dulat, B. Penante & L. Tanredi'18 ℄



Evaluating planar master integrals for Bhabha sattering

The di�erential equation is solved on a path whih onsists of

two straight-line segments: the straight line from the point

(1, 1) (where the funtion = 0) to the point (1, y ), 0 ≤ y ≤ 1,

and from (1, y ) to the general (x , y ) in the Eulidean region

0 < x < 1, 0 < y < 1.

The square root

√

(x + y )(xy + 1) (x2y + xy 2 − 4xy + x + y )
annot be rationalized

[M. Besier, D. van Straten & S. Weinzierl'18℄

so that, maybe, it is not possible to arrive at a result in terms

of MPLs.

Let us apply ellipti MPLs (eMPLs)

[F. Brown & A. Levin; J. Broedel, C.R. Mafra, N. Matthes &

O. Shlotterer, J. Broedel, C. Duhr, F. Dulat & L. Tanredi'18;

J. Broedel, C. Duhr, F. Dulat, B. Penante & L. Tanredi'18 ℄

Use the variable x̄ = 1− x . Here is the result
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eMPLs

E
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... nk
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... ck ; x , ~a) =

∫ x

0

dt Ψn
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4
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... nk
c
2

... ck ; t, ~a)

The set of eMPLs in our ase is assoiated with the ellipti

urve z2 = Pn(x , y ), where Pn is a polynomial of degree n = 3

or 4. Here

P
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)(x − a
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)(x − a
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)(x − a
4
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a
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a
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= (y − 1)
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4

= 1/y + 1
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If all the indies Ai = ( ni
ci ) are equal to (±1

0

), the integral is

divergent and a de�nition with some subtrations is used.

For n = 0:

Ψ
0

(0, x , ~a) =
c
4

ω
1

y
,

where c
4

= 1

2

√

(a
1

− a
3

)(a
2

− a
4

), ω
1

= 2K(λ)
and K(λ) is the omplete ellipti integral of the �rst kind.

MPLs are partial ases of eMPLs:

E
4

(
1 ... 1

c
1

... ck ; x , ~a
)
= G (c

1

, . . . , ck ; x)
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We heked our result in the Eulidean region with FIESTA

[A.V. Smirnov'15℄.

When doing this we evaluated eMPLs with an inhouse ode.

One ould also do this using an ellipti extension of GiNaC

[M. Walden & S. Weinzierl'21℄.

Still we don't know if f
14

an be evaluated in terms of MPLs

only. The fat that there is a square root whih annot be

rationalized with a rational transformation doesn't mean that

it is impossible to do this.

There are at least two examples illustrating this point.

For the analog of our f
14

for the �rst type of Bhabha two-loop

integrals

[M. Heller, A. von Manteu�el & R.M. Shabinger'20℄.

H-diagram [P.A. Kreer & S. Weinzierl'21℄.
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Conlusion

We evaluated master integrals for the seond type of

two-loop Bhabha integrals.

All the master integrals but one are expressed in terms of

MPLs.

We have derived a ompat result for one master integral

in terms of eMPLs.


