

DIFFERENTIAL γ^* production with N3LO QCD corrections radius $^{\rm RADCOR}$ & Loopfest 2021

Xuan Chen ITP, IAP, Karlsruhe Institute of Technology Online, May 18, 2021

??? IN THE DETAILS

Precision phenomenology examples

> g-2 exam with 4.2 σ significance

 $a_{\mu} = \frac{g-2}{2} \qquad a_{\mu}^{EXP} = \frac{116592061(41) \times 10^{-11}}{Phys.Rev.Lett. 126, 141801 (2021)} \\ a_{\mu}^{SM} = \frac{116591810(43) \times 10^{-11}}{Phy.Reports 887 (2020) 1-116}$ More in Massimo's talk Phy.Reports 887 (2020) 1-116 17
Beauty-quark decays with 3.1 σ difference

$$R_{H} \equiv \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(B \to H\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(B \to He^{+}e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}} \qquad R_{K} = 0.846 \stackrel{+ 0.044}{- 0.042} \stackrel{- 0.042}{- 0.042} \stackrel{-$$

Anomaly in fundamental parameters

- Discovery needs more precision
- Accurate interpretation of SM
- Manifest in other observables

Xuan Chen (KIT)

PRECISION MEASUREMENT AT THE LHC

- Flip every stone searching for new physics: (More in Harrison's talk)
 - Measured total cross section at 10% accuracy for di-boson productions
 - Gauge boson production in associate with jets (from 1 to 7 jets)
 - HL-LHC projected Higgs cross section measurements at 2-4% precision

Xuan Chen (KIT)

PRECISION MEASUREMENT AT THE LHC

- Flip every stone searching for new physics: (More in Harrison's talk)
 - Measured total cross section at 10% accuracy for di-boson productions
 - Gauge boson production in associate with jets (from 1 to 7 jets)
 - HL-LHC projected Higgs cross section measurements at 2-4% precision

Xuan Chen (KIT)

PRECISION MEASUREMENT AT THE LHC

- Flip every stone searching for new physics: (More in Harrison's talk)
 - Measured total cross section at 10% accuracy for di-boson productions
 - Gauge boson production in associate with jets (from 1 to 7 jets)
 - HL-LHC projected Higgs cross section measurements at 2-4% precision

FLORIDA STATE

Xuan Chen (KIT)

Xuan Chen (KIT)

Xuan Chen (KIT)

Remarkable progress at differential NNLO

FLORIDA STATE

Xuan Chen (KIT)

- Remarkable progress at differential NNLO
 - Complexity at 2 to 3 scattering Tri-photon: JHEP 02 (2020) 057
 Phys.Lett.B 812 (2021) 136013
 Di-photon+Jet: 2105.06940
 WH+Jet: Phys.Lett.B 817 (2021) 136335
 - Di-jet triple differential predictions

- Remarkable progress at differential NNLO
 - Complexity at 2 to 3 scattering Tri-photon: JHEP 02 (2020) 057
 Phys.Lett.B 812 (2021) 136013
 Di-photon+Jet: 2105.06940
 WH+Jet: Phys.Lett.B 817 (2021) 136335
 - Di-jet triple differential predictions

Xuan Chen (KIT)

- Remarkable progress at differential NNLO
 - Complexity at 2 to 3 scattering Tri-photon: JHEP 02 (2020) 057
 Phys.Lett.B 812 (2021) 136013
 Di-photon+Jet: 2105.06940
 WH+Jet: Phys.Lett.B 817 (2021) 136335
 - Di-jet triple differential predictions

- ► 14 on 2-loop amplitudes
- 5 on N3LO pheno+amplitude

May 18, 2021

- N3LO QCD corrections available for LHC observables
 - Total and differential predictions of Higgs production and decay
 - ► Gluon fusion channel (ggF) in heavy top quark limit (HTL): H and HH

Xuan Chen (KIT)

Fully differential γ^* production at LHC with N3LO QCD

- N3LO QCD corrections available for LHC observables
 - Total and differential predictions of Higgs production and decay
 - Differential distributions from ggF channel in HTL

- ► N3LO QCD corrections available for LHC observables
 - Total and differential predictions of Higgs production and decay

 $y_{cut}=0.1$

bbH production and decay predictions

- N3LO QCD corrections available for LHC observables
 - Excellent convergence of perturbative series for Higgs related obs.
 - ➤ To answer the precision challenge from HL-LHC
 - Critical thinking needed for the new "shortest board of a bucket"
 - > Uncertainties from PDF, α_{s} , fixed couplings, mass effect etc.

- N3LO QCD corrections available for LHC observables
 - Neutral and charged current total cross section (CFB collaboration)
 - Tension for perturbative convergence of fixed order corrections

- ► N3LO QCD corrections available for LHC observables
 - Neutral and charged current total cross section (CFB collaboration)
 - Tension for perturbative convergence of fixed order corrections

C. Duhr, F. Dulat and B. Mistlberger Phys. Rev. Lett. 125 (2020) 17, 172001

► Require 2nd calculation to check the -2% correction & scale variation

Need to study differential observables with wide dynamic range

> To feed coherent predictions for PDF and α_s fittings

Xuan Chen (KIT)

Xuan Chen (KIT)

Fully differential γ^* production at LHC with N3LO QCD

XC, T. Gehrmann, N. Glover, A. Huss, T. Z. Yang, H. X. Zhu

Apply qt-subtraction at N3LO with SCET factorisation and expand to N3LO:

$$\begin{split} \frac{d^3\sigma}{dQ^2d^2\vec{q}_Tdy} &= \int \frac{d^2b_{\perp}}{(2\pi)^2} e^{-iq_{\perp}\cdot b_{\perp}} \sum_q \sigma_{\rm LO}^{\gamma^*} H_{q\bar{q}} \bigg[\sum_k \int_{x_1}^1 \frac{dz_1}{z_1} \mathcal{I}_{qk} \left(z_1, b_T^2, \mu \right) f_{k/h_1}(x_1/z_1, \mu) \\ &\times \sum_j \int_{x_2}^1 \frac{dz_2}{x_2} \mathcal{I}_{\bar{q}j} \left(z_2, b_T^2, \mu \right) f_{j/h_2}(x_2/z_2, \mu) \mathcal{S} \left(b_{\perp}, \mu \right) + (q \leftrightarrow \bar{q}) \bigg] + \mathcal{O} \left(\frac{q_T^2}{Q^2} \right) \end{split}$$

All factorised functions are recently known up to N3LO:
1) 3-loop hard function H⁽³⁾_{qq̄} from JHEP 06 (2010) 094
2) TMD soft function S(b₁, μ) at α³_s from Phys.Rev.Lett. 118 (2017) 022004
3) Matching kernel of TMD beam function I_{qk} at α³_s from: Phys.Rev.Lett. 124 (2020) 092001 and JHEP 09 (2020) 146

Apply qt cut to factorise N3LO contribution into two parts: $d\sigma_{N^3LO}^{\gamma^*} = [\mathscr{H}^{\gamma^*} \otimes d\sigma^{\gamma^*}]_{N^3LO} \Big|_{\delta(p_{T,\gamma^*})} + \left[d\sigma_{NNLO}^{\gamma^*+jet} - d\sigma_{N^3LO}^{\gamma^*,CT} \right]_{p_{T,\gamma^*} > qt}$

> $d\sigma_{NNLO}^{\gamma^*+jet}$ from NNLOJET with excellent numerical stability at small p_{T,γ^*}

Xuan Chen (KIT)

XC, T. Gehrmann, N. Glover, A. Huss, T. Z. Yang, H. X. Zhu

Apply qt-subtraction at N3LO with SCET factorisation and expand to N3LO:

$$\begin{split} \frac{d^3\sigma}{Q^2 d^2 \vec{q_T} dy} &= \int \frac{d^2 b_\perp}{(2\pi)^2} e^{-iq_\perp \cdot b_\perp} \sum_q \sigma_{\rm LO}^{\gamma^*} H_{q\bar{q}} \bigg[\sum_k \int_{x_1}^1 \frac{dz_1}{z_1} \mathcal{I}_{qk} \left(z_1, b_T^2, \mu \right) f_{k/h_1}(x_1/z_1, \mu) \\ &\times \sum_j \int_{x_2}^1 \frac{dz_2}{x_2} \mathcal{I}_{\bar{q}j} \left(z_2, b_T^2, \mu \right) f_{j/h_2}(x_2/z_2, \mu) \mathcal{S} \left(b_\perp, \mu \right) + (q \leftrightarrow \bar{q}) \bigg] + \mathcal{O} \left(\frac{q_T^2}{Q^2} \right) \end{split}$$

All factorised functions are recently known up to N3LO:
1) 3-loop hard function H⁽³⁾_{qq̄} from JHEP 06 (2010) 094
2) TMD soft function S(b_⊥, μ) at α³_s from Phys.Rev.Lett. 118 (2017) 022004
3) Matching kernel of TMD beam function I_{qk} at α³_s from: Phys.Rev.Lett. 124 (2020) 092001 and JHEP 09 (2020) 146

Apply qt cut to factorise N3LO contribution into two parts: $d\sigma_{N^3LO}^{\gamma^*} = [\mathscr{H}^{\gamma^*} \otimes d\sigma^{\gamma^*}]_{N^3LO} \Big|_{\delta(p_{T,\gamma^*})} + \left[d\sigma_{NNLO}^{\gamma^*+jet} - d\sigma_{N^3LO}^{\gamma^*} \right]_{p_{T,\gamma^*} > qt}$

> $d\sigma_{NNLO}^{\gamma^*+jet}$ from NNLOJET with excellent numerical stability at small p_{T,γ^*}

Xuan Chen (KIT)

XC, T. Gehrmann, N. Glover, A. Huss, T. Z. Yang, H. X. Zhu

Apply qt-subtraction at N3LO with SCET factorisation and expand to N3LO:

$$\begin{split} \frac{d^3\sigma}{dQ^2d^2\bar{q}_Tdy} &= \int \frac{d^2b_{\perp}}{(2\pi)^2} e^{-iq_{\perp}\cdot b_{\perp}} \sum_q \sigma_{\rm LO}^{\gamma^*} H_{q\bar{q}} \bigg[\sum_k \int_{x_1}^1 \frac{dz_1}{z_1} \mathcal{I}_{qk} \left(z_1, b_T^2, \mu \right) f_{k/h_1}(x_1/z_1, \mu) \\ &\times \sum_j \int_{x_2}^1 \frac{dz_2}{x_2} \mathcal{I}_{\bar{q}j} \left(z_2, b_T^2, \mu \right) f_{j/h_2}(x_2/z_2, \mu) \mathcal{S} \left(b_{\perp}, \mu \right) + (q \leftrightarrow \bar{q}) \bigg] + \mathcal{O} \left(\frac{q_T^2}{Q^2} \right) \end{split}$$

All factorised functions are recently known up to N3LO:
1) 3-loop hard function H⁽³⁾_{qq̄} from JHEP 06 (2010) 094
2) TMD soft function S(b_⊥, μ) at α³_s from Phys.Rev.Lett. 118 (2017) 022004
3) Matching kernel of TMD beam function I_{qk} at α³_s from: Phys.Rev.Lett. 124 (2020) 092001 and JHEP 09 (2020) 146

► Apply qt cut to factorise N3LO contribution into two parts: $d\sigma_{N^3LO}^{\gamma^*} = [\mathscr{H}^{\gamma^*} \otimes d\sigma^{\gamma^*}]_{N^3LO} \Big|_{\delta(p_{T,\gamma^*})} + \left[d\sigma_{NNLO}^{\gamma^*+jet} - d\sigma_{N^3LO}^{\gamma^*CT} \right]_{p_{T,\gamma^*} > qt}$

> $d\sigma_{NNLO}^{\gamma^*+jet}$ from NNLOJET with excellent numerical stability at small p_{T,γ^*}

Xuan Chen (KIT)

XC, T. Gehrmann, N. Glover, A. Huss, T. Z. Yang, H. X. Zhu

Apply qt-subtraction at N3LO with SCET factorisation and expand to N3LO:

$$\begin{split} \frac{d^3\sigma}{Q^2 d^2 \vec{q_T} dy} &= \int \frac{d^2 b_\perp}{(2\pi)^2} e^{-iq_\perp \cdot b_\perp} \sum_q \sigma_{\rm LO}^{\gamma^*} H_{q\bar{q}} \bigg[\sum_k \int_{x_1}^1 \frac{dz_1}{z_1} \mathcal{I}_{qk} \left(z_1, b_T^2, \mu \right) f_{k/h_1}(x_1/z_1, \mu) \\ &\times \sum_j \int_{x_2}^1 \frac{dz_2}{x_2} \mathcal{I}_{\bar{q}j} \left(z_2, b_T^2, \mu \right) f_{j/h_2}(x_2/z_2, \mu) \mathcal{S} \left(b_\perp, \mu \right) + (q \leftrightarrow \bar{q}) \bigg] + \mathcal{O} \left(\frac{q_T^2}{Q^2} \right) \end{split}$$

► Apply qt cut to factorise N3LO contribution into two parts: $d\sigma_{N^3LO}^{\gamma^*} = [\mathscr{H}^{\gamma^*} \otimes d\sigma^{\gamma^*}]_{N^3LO} \Big|_{\delta(p_{T,\gamma^*})} + \left[d\sigma_{NNLO}^{\gamma^*+jet} - d\sigma_{N^3LO}^{\gamma^*CT} \right]_{p_{T,\gamma^*} > qt}$

► $d\sigma_{NNLO}^{\gamma^*+jet}$ from NNLOJET with excellent numerical stability at small p_{T,γ^*} *JHEP* 12 (2018) 132 and *Eur.Phys.J.C* 79 (2019) 10

Xuan Chen (KIT)

Fully differential γ^* production at LHC with N3LO QCD

- ► Computational setup for $pp \rightarrow \gamma^*$ (identical to CFB paper *Phys.Rev.Lett.* 125 (2020) 17, 172001)
 - Fix Q value for γ^* at 100 GeV (NNLO and N3LO scale variations deviate)
 - Use central value of PDF4LHC15_nnlo_mc as benchmark input
 - > $\alpha_s(m_Z) = 0.118$ with scale variation values calculated from LHAPDF
 - > G_{μ} EW-scheme with fixed α value
 - > $\mu_R = \mu_F = 100$ GeV for central QCD scale and use 7-point variations for uncertainty estimation
- > Apply p_{T,γ^*} > 0.25 GeV constrain for NNLO γ^* + Jet without jet definition
- Use SCET factorisation to integrate contributions below qt cut.
- Dedicated MC adaption to four sub-channels: gg, qqb = (qqb+qbq), qg =/(qg+gq+qbg+gqb), qq = (qq+qbqb)

Xuan Chen (KIT)

- ► Computational setup for $pp \rightarrow \gamma^*$ (identical to CFB paper *Phys.Rev.Lett.* 125 (2020) 17, 172001)
 - Fix Q value for γ^* at 100 GeV (NNLO and N3LO scale variations deviate)
 - Use central value of PDF4LHC15_nnlo_mc as benchmark input
 - > $\alpha_s(m_Z) = 0.118$ with scale variation values calculated from LHAPDF
 - > G_{μ} EW-scheme with fixed α value
 - > $\mu_R = \mu_F = 100$ GeV for central QCD scale and use 7-point variations for uncertainty estimation
- > Apply $p_{T,\gamma^*} > 0.25$ GeV constrain for NNLO $\gamma^* + Jet$ without jet definition
- ► Use SCET factorisation to integrate contributions below qt cut.
- Dedicated MC adaption to four sub-channels:
 gg, qqb = (qqb+qbq), qg = (qg+gq+qbg+gqb), qq = (qq+qbqb)

Xuan Chen (KIT)

Check each channel for N3LO only

 $d\sigma_{NNLO}^{\gamma^*+jet}$

- Convergence between SCET and NNLOJET: gg below ~1 GeV qg below ~4 GeV qq below ~6 GeV
- Deviations seen in qqb obvious below 4 GeV a
- Surface only with large statistics at small p_{T,γ^*}
- Large cancellation between qg and qqb

Xuan Chen (KIT)

Check each channel for N3LO only

 $d\sigma_{NNLO}^{\gamma^*+jet}$

- Convergence between **SCET** and **NNLOJET**: gg below ~1 GeV qg below ~4 GeV qq below ~6 GeV
- Deviations seen in qqb obvious below 4 GeV
- ► Surface only with large statistics at small p_{T,γ^*}
- ► Large cancellation between qg and qqb

[fb] 150 100 --100 - SCET NNLOJET Xuan Chen (KIT)

 $\sqrt{s} = 13 \text{ TeV}$

 $\sqrt{s} = 13 \text{ TeV}$

11

SCET N3LO only qq

NNLOJET N3LO only qq

PDF4LHC15_nnlo_mc

7-point scale variation

 $\mu_F = \mu_R = 100 \text{ GeV}$

PDF4LHC15_nnlo_mc

7-point scale variation

 $\mu_F = \mu_B = 100 \text{ GeV}$

> $d\sigma_{NNLO}^{\gamma^*+jet}$ vs. $d\sigma_{N^3LO}^{\gamma^* CT}$ at small p_{T,γ^*}

► Dive into each colour level of qqb channel: $\sigma_{q\bar{q}}^{\gamma^*}|_{N3LO only} = (N^2 - 1) \times [N^0 + N_f N^{-1} + N^{-1} + N_f N^{-2} + N^{-2} + N_f N^{-3} + N^{-3} + N^{-4}]$

FLORIDA STATE

Xuan Chen (KIT)

Xuan Chen (KIT)

Fully differential γ^* production at LHC with N3LO QCD

May 18, 2021 12

- > N3LO ccumulated cross section from p_{T,γ^*} (N3LO' coefficient) $\sum d\sigma_{N3LO}^{\gamma^*} \equiv \sum_{dp_{T,\gamma^*}} d\sigma_{NNLO}^{\gamma^*+jet} / dp_{T,\gamma^*} |_{p_{T,\gamma^*} > qt} + \sum_{dp_{T,\gamma^*}} d\sigma_{N^3LO}^{\gamma^* SCET} / dp_{T,\gamma^*} |_{p_{T,\gamma^*} \in [0,qt]}$
- More challenging than p_{T,γ^*}
- Large scale cancellation among channels

Xuan Chen (KIT)

- N3LO ccumulated cross section from p_{T,γ^*} (N3LO' coefficient) $\sum d\sigma_{N3LO}^{\gamma^*} \equiv \sum d\sigma_{NNLO}^{\gamma^*+jet} / dp_{T,\gamma^*} |_{p_{T,\gamma^*} > qt} + \sum d\sigma_{N^3LO}^{\gamma^* SCET} / dp_{T,\gamma^*} |_{p_{T,\gamma^*} > qt}$ $dp_{T_{\gamma}^{*}}$
- More challenging than p_{T,γ^*}
- Large scale cancellation among channels
- Compare to CFB total cross section results First validation for gg, qq and Compare to CFB total cross
- qg channels (below 1 GeV)
- **Missing Ncm3 contribution** in qqb channel at ~13% (8% with respect to N3LO)
- Within MC error of full channel N3LO coefficient

Xuan Chen (KIT)

More challenging than p_{T,γ^*}

- Large scale cancellation among channels
- Compare to CFB total cross section results First validation for gg, qq and
- qg channels (below 1 GeV)
- **Missing Ncm3 contribution** in qqb channel at ~13% (8% with respect to N3LO)
- Within MC error of full channel N3LO coefficient

ction from p_T $+jet/dp_{T,\gamma^*}|_p$ pp to y* SCET+NNLOJET $\sqrt{s} = 13 \text{ TeV}$ 10 SCT+NNLOJET total --- CFB qq -20 PDF4LHC15 nnlo mc CFB total SCET+NNLOJET qq SCET+NNLOJET qqb' --- CFB qq 7-point scale variation SCET+NNLOJET gg CFB qqb -30 $\mu_F = \mu_R = 100 \text{ GeV}$ SCET+NNLOJET qq CFB gg total Ratio to CFB tota 100 101 10^{2} qt cut [GeV] Fully differential γ^* production at LHC with N3LO QCD May 18, 2021

13

Xuan Chen (KIT)

()

N3LO ccumulated cross section from p_{T,γ^*} (N $\sum d\sigma_{N3LO}^{\gamma^*} \equiv \sum d\sigma_{NNLO}^{\gamma^*+jet}/dp_{T,\gamma^*}$ $dp_{T_{\nu}^{*}}$ SCET+NNLOJE More challenging than p_{T,γ^*} 10 Large scale cancellation among channels [fb] Compare to CFB total cross section results First validation for gg, qq and SCET+NNLOJET total' --- CFB qq -20 PDF4LHC15 nnlo mc SCET+NNLOJET qq CFB total qg channels (below 1 GeV) SCET+NNLOJET qqb' --- CFB qq 7-point scale variation SCET+NNLOJET gg CFB qqb -30 $\mu_F = \mu_R = 100 \text{ GeV}$ Missing Ncm3 contribution SCET+NNLOJET qq CFB gg in qqb channel at ~13% total Ratio to CFB tota (8% with respect to N3LO) Within MC error of full channel N3LO coefficient 100 10^{1} 10^{2}

Fully differential γ^* production at LHC with N3LO QCD

Xuan Chen (KIT)

May 18, 2021 13

qt cut [GeV]

N3LO ccumulated cross section from p_{T,γ^*} (N3LØ $\sum d\sigma_{N3LO}^{\gamma^*} \equiv \sum d\sigma_{NNLO}^{\gamma^*+jet} / dp_{T,\gamma^*} |_{p_{T,\gamma^*} > qt} +$ $dp_{T_{\nu}^{*}}$ $dp_{T,\gamma}$ **10** SCET+NNLØJET More challenging than p_{T,γ^*} 10 Large scale cancellation among channels Compare to CFB total cross section results First validation for gg, qq and among channels Compare to CFB total cross -10SCET+NNLOJET total' --- CFB qq -20 PDF4LHC15 nnlo mc SCET+NNLOJET qq CFB total qg channels (below 1 GeV) SCET+NNLOJET qqb' --- CFB qq 7-point scale variation CFB qqb SCET+NNLOJET gg -30 $\mu_F = \mu_R = 100 \text{ GeV}$ Missing Ncm3 contribution SCET+NNLOJET qq CFB gg in qqb channel at ~13% total Ratio to CFB tota (8% with respect to N3LO) Within MC error of full

100

Fully differential γ^* production at LHC with N3LO QCD

channel N3LO coefficient

Xuan Chen (KIT)

May 18, 2021 13

 10^{2}

 10^{1}

qt cut [GeV]

- N3LO differential cross sections (N3LO' coefficient)
 - > Apply SCET+NNLOJET calculations for $y_{\gamma*}$ distribution
 - ► Large cancellation in each histogram bin with × 20 multiplier ± 0.5% accuracy → ± 10% fluctuation
 - Stable predictions with qt cut variation at 1 GeV

- N3LO differential cross sections
 - > Apply SCET+NNLOJET calculations for $y_{\gamma*}$ distribution

[fb]

- First N3LO differential cross section for γ^* production
- N3LO corrections contribute -2% with respect to NNLO
- Uniformly distributed for y_{γ^*} ≻ cross central rapidity region
- The N3LO scale variation band is outside the NNLO ones
- Scale variations at central region: NNLO: $^{+0.26\%}_{-0.4\%}$ N3LO: $^{+0.26\%}_{-0.33\%}$ Lo to
- Scale variation range mildly increase towards large y_{v^*}

Xuan Chen (KIT)

SUMMARY

- Precision phenomenology could be the key to reveal new physics principles.
- Comprehensive understanding requires comparable precision between theory and experiment to achieve accurate interpretation/reveal disagreement.
- For theory predictions of LHC observables, there has been rapid progress in perturbative QCD calculations towards to NNLO and N3LO.
- Our standard methodology to estimate theoretical uncertainties via scale variation is challenged by N3LO calculations of charge and neutral current.
- We preform an independent calculation of the N3LO QCD correction to γ* production and confirm the N3LO scale uncertainty disagree with NNLO for Q = 100 GeV.
- > We use qt slicing method to further calculate N3LO differential y_{γ^*} distribution and find disagreement of scale uncertainties at differential level.

SUMMARY

- During the N3LO calculation, we find mismatch between FO and SCET expansion for contributions from sub-leading colour qqb channel.
- The mismatch is very likely due to numerical instability issues from FO and more investigation is needed. (We have to fix this)
- Luckily, by omitting this sub-leading colour contribution, we only miss 0.16% of the N3LO total cross section of γ* production.
- The performance of qt slicing is stable with qt cut around 1 GeV. This estimation will get worse when applying fiducial cuts on decay products of γ^* .
- With all factorisation functions at N3LO available, N3LO+N3LL' precision is expected but require careful validation of matching for inclusive production and could be very challenging with fiducial cuts upon decay products.
- Progress on qt cut power correction of LL at NNLO would help in the future.
- Differential N3LO DY and W production in the future, hopefully we could better estimate uncertainties due to missing higher order contributions.

SUMMARY

- During the N3LO calculation, we find mismatch between FO and SCET expansion for contributions from sub-leading colour qqb channel.
- The mismatch is very likely due to numerical instability issues from FO and more investigation is needed. (We have to fix this)
- Luckily, by omitting this sub-leading colour contribution, we only miss 0.16% of the N3LO total cross section of γ* production.
- The performance of qt slicing is stable with qt cut around 1 GeV. This estimation will get worse when applying fiducial cuts on decay products of γ^* .
- With all factorisation functions at N3LO available, N3LO+N3LL' precision is expected but require careful validation of matching for inclusive production and could be very challenging with fiducial cuts upon decay products.
- Progress on qt cut power correction of LL at NNLO would help in the future.
- Differential N3LO DY and W production in the future, hopefully we could better estimate uncertainties due to missing higher order contributions.

Thank You for Your Attention

Xuan Chen (KIT)

BACK SLIDES

Triple-differential Drell-Yan cross section

Lepton pair production: EW precision observable

 $\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{ll}\mathrm{d}y_{ll}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{ll}s}\sum_q P_q(\cos\theta^*) \left[f_q(x_1,Q^2)f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q})\right]$

ATLAS 8 TeV measurement [1710.05167]

Observable	Central-Central	Central-Forward	lepton plane
$m_{ll}~[{ m GeV}]$	[46, 66, 80, 91, 102, 116, 150, 200]	[66,80,91,102,116,150]	
$ y_{ll} $	[0, 0.2, 0.4, 0.6, 0.8, 1, 1.2,	[1.2, 1.6, 2, 2.4, 2.8, 3.6]	y k_1
	1.4, 1.6, 1.8, 2, 2.2, 2.4]		$z \leftarrow 1 \qquad \phi \qquad \phi$
$\cos heta^*$	$\left[-1, -0.7, -0.4, 0, 0.4, 0.7, 1 ight]$	$\left[-1, -0.7, -0.4, 0, 0.4, 0.7, 1\right]$	$x p_1 p_2$
Total Bin Count:	504	150	hadron plane

Slide from T. Gehrmann at LHCP 2020

Xuan Chen (KIT)

- > $p_{T,Z}$ validation with single MC adaption for full channel
- General good agreement between FO and RadISH for qqb channel
- Large numerical error with fluctuated plateau
- Matching p_{T,Z} distribution at NNLO+N3LL accuracy with transition region at medium p_{T,Z} is fine but may not be accurate

Xuan Chen (KIT)

- N3LO differential cross sections
 - > Apply SCET+NNLOJET calculations for $y_{\gamma*}$ distribution
 - Left: with mirror statistics. Right: without mirror statistics

Xuan Chen (KIT)