Decoupage at 5 loops

Alessandro Georgoudis ENS Paris, CNRS

RADCOR-LoopFest 2021

Work based on 2104.08272
with V. Goncalves, E. Panzer, R. Pereira, A. V. Smirnov and V. A Smirnov

LABORATOIRE DE PHYSIQUE
DE L'ÉCOLE NORMALE SUPÉRIEURE

Overview

We computed massless 5-loop p-integrals in $4-2 \epsilon$ dimensions.

Overview

We computed massless 5-loop p-integrals in $4-2 \epsilon$ dimensions.

they depend on a single external momenta p, which we choose as $p^{2}=1$, as $\left(p^{2}\right)^{-\omega}$ where $\omega=\sum a_{i}-\ell d / 2$.

Overview

We computed massless 5-loop p-integrals in $4-2 \epsilon$ dimensions.

they depend on a single external momenta p, which we choose as $p^{2}=1$, as $\left(p^{2}\right)^{-\omega}$ where $\omega=\sum a_{i}-\ell d / 2$.
Then a general p -integral P can be written as

$$
P(d)=\left(p^{2}\right)^{-\omega(P)} \sum_{n \in \mathbb{Z}} c_{n}(P) \varepsilon^{j}
$$

where all the c_{n} for our case are rational numbers, $\zeta(i)$ or $\zeta(i, j)$ values.

Motivation

Motivation

- I-loop p-integrals can be used to compute I+1-loop counterterms.
- β-functions in different theories.
- They appear as boundary conditions in differential equations.
- Can be used for computing different physical quantities (structure constants, anomalous dimension, etc).

Motivation

- I-loop p-integrals can be used to compute I+1-loop counterterms.
- β-functions in different theories.
- They appear as boundary conditions in differential equations.
- Can be used for computing different physical quantities (structure constants, anomalous dimension, etc).
- Cross-check that our results for $\hat{\zeta}(i)$ and $\hat{\zeta}(i, j)$ transformation hold for all p-integrals (not only position space) and compute the missing momentum space non-planar contribution.

How?

We want to use the Glue-and-Cut method to compute the p-integrals.

Glue-and-Cut

Let us consider a vacuum integrals with $\omega=0$ and no other sub-divergences.

$$
=\int \frac{\mathrm{d}^{D} p}{p^{2}+m^{2}} \frac{P(\epsilon)}{\left(p^{2}\right)^{1+\epsilon \epsilon}}=\frac{c_{0}}{(I+1) \epsilon}+\mathrm{O}(\epsilon)
$$

The value of the p -integral is then:

By cutting different edges we can construct convergent p-integrals that have the same value at ϵ^{0} order.

We want to use the Glue-and-Cut method to compute the p-integrals.

How?

We want to use the Glue-and-Cut method to compute the p-integrals.

- Generate vacuum 6-loop graphs. Check for "convergence" of vacuum integrals, allowing also for numerators.

Vacuum integrals

We need vacuum integrals with at least 12 propagators. This is the minimal number in 4 dimensions to have $\omega=0$. Higher number of propagators can be generated by adding numerators.
For our computation we used convergent vacuum integrals with up to 2 numerators and 14 propagators.

How?

We want to use the Glue-and-Cut method to compute the p-integrals.

- Generate vacuum 6-loop graphs. Check for "convergence" of vacuum integrals, allowing also for numerators.

How?

We want to use the Glue-and-Cut method to compute the p-integrals.

- Generate vacuum 6-loop graphs. Check for "convergence" of vacuum integrals, allowing also for numerators.
- Construct all possible cuts. Map integrals to a specific p-integral family.

Cutting

We now need to cut all the possible vacuum integrals.

Cutting

We now need to cut all the possible vacuum integrals.

In order to produce p-integrals with a higher number of propagators we also have to blow up higher valence vertices.

We then need to map all the p-integrals into one of the 64 possible 3 -valent maximal topologies.

How?

We want to use the Glue-and-Cut method to compute the p-integrals.

- Generate vacuum 6-loop graphs. Check for "convergence" of vacuum integrals, allowing also for numerators.
- Construct all possible cuts. Map integrals to a specific p-integral family.

How?

We want to use the Glue-and-Cut method to compute the p-integrals.

- Generate vacuum 6-loop graphs. Check for "convergence" of vacuum integrals, allowing also for numerators.
- Construct all possible cuts. Map integrals to a specific p-integral family.
- Apply constraints and equivalence of the different cuts of the same vacuum integral.

Constraints

How can we learn something from the equivalence of finite p-Integrals?

Constraints

How can we learn something from the equivalence of finite p-Integrals? With integral by parts reductions!

- IBPs are integration of a total derivative:

$$
0=\int \frac{\mathrm{d}^{D} \ell_{1}}{\mathrm{i} \pi^{D / 2}} \cdots \frac{\mathrm{~d}^{D} \ell_{L}}{\mathrm{i} \pi^{D / 2}} \sum_{j=1}^{L} \frac{\partial}{\partial \ell_{j}^{\mu}} \frac{v_{j}^{\mu}}{D_{1}^{\nu_{1}} \cdots D_{m}^{\nu_{m}}},
$$

- They can be used to express a general integral as a combination of Master Integrals:

$$
\mathrm{I}=\sum_{i=1}^{N} d_{i} \mathrm{I}_{i}
$$

Constraints

The constraints are then:

- Degree of divergence of a I-loop 2-point integral does not exceed I. Important as IBP coefficients can have poles in 4-2 .
- Cancellation of poles as p-integrals obtain through cutting are finite.

Constraints: Example

Reduction of two-loop propagator integral

Constraints: Example

Reduction of two-loop propagator integral

The spurious pole give a constrain on two epsilon orders. Convergence of the starting integral and the insertion of the value of the trivial integral $M_{\text {Dbubble }}=\frac{1}{\epsilon^{2}}$ gives:

$$
M_{\text {Sun }}=-\frac{1}{4 \epsilon}-\frac{5}{8}-\frac{27}{16} \epsilon
$$

Constraints: Example

Reduction of two-loop propagator integral

The spurious pole give a constrain on two epsilon orders. Convergence of the starting integral and the insertion of the value of the trivial integral $M_{\text {Dbubble }}=\frac{1}{\epsilon^{2}}$ gives:

$$
M_{\text {Sun }}=-\frac{1}{4 \epsilon}-\frac{5}{8}-\frac{27}{16} \epsilon
$$

Same holds at higher loops

Constraints

The constraints are then:

- Degree of divergence of a l-loop 2-point integral does not exceed I. Important as IBP coefficients can have poles in 4-2 .
- Cancellation of poles as p-integrals obtain through cutting are finite.
- Different cuts of the same vacuum integral are the same.

Constraints

The constraints are then:

- Degree of divergence of a I-loop 2-point integral does not exceed I. Important as IBP coefficients can have poles in $4-2 \epsilon$.
- Cancellation of poles as p-integrals obtain through cutting are finite.
- Different cuts of the same vacuum integral are the same.

With this constraint we are able to relate all the coefficients of 5-loop master integrals, up to transcendental weight 9, to recursive 1-loop integrals and a product integral.

Recursive 1-loop

By recursively applying the bubble integration we can compute several integrals that appear at all loops.

$$
\int \frac{\mathrm{d}^{d} \ell}{\pi^{d / 2}} \frac{1}{\ell^{2 a}(p-\ell)^{2 b}}=\left(p^{2}\right)^{d / 2-a-b} G(a, b)
$$

with G defined as

$$
\begin{equation*}
G(a, b)=\frac{\Gamma(a+b-d / 2) \Gamma(d / 2-a) \Gamma(d / 2-b)}{\Gamma(a) \Gamma(b) \Gamma(d-a-b)} . \tag{1}
\end{equation*}
$$

Recursive 1-loop

By recursively applying the bubble integration we can compute several integrals that appear at all loops.

$$
\int \frac{\mathrm{d}^{d} \ell}{\pi^{d / 2}} \frac{1}{\ell^{2 a}(p-\ell)^{2 b}}=\left(p^{2}\right)^{d / 2-a-b} G(a, b),
$$

with G defined as

$$
\begin{equation*}
G(a, b)=\frac{\Gamma(a+b-d / 2) \Gamma(d / 2-a) \Gamma(d / 2-b)}{\Gamma(a) \Gamma(b) \Gamma(d-a-b)} . \tag{1}
\end{equation*}
$$

For example we can compute the sunset diagram at two loops:

The same recursion can be done to compute the general watermelon diagram at each loop.

Constraints

The constraints are then:

- Degree of divergence of a I-loop 2-point integral does not exceed I. Important as IBP coefficients can have poles in 4-2 .
- Cancellation of poles as p-integrals obtain through cutting are finite.
- Different cuts of the same vacuum integral are the same.

With this constraint we are able to relate all the coefficients of 5-loop master integrals, up to transcendental weight 9 , to recursive 1-loop integrals and a product integral.

Constraints

The constraints are then:

- Degree of divergence of a I-loop 2-point integral does not exceed I. Important as IBP coefficients can have poles in $4-2 \epsilon$.
- Cancellation of poles as p-integrals obtain through cutting are finite.
- Different cuts of the same vacuum integral are the same.

With this constraint we are able to relate all the coefficients of 5-loop master integrals, up to transcendental weight 9, to recursive 1-loop integrals and a product integral.

$30 / 35$

representation

There seem to exist a (ϵ dependent) redefinition of the ζ values such that the π dependent terms cancel for all the p-integrals.

$$
\begin{aligned}
\hat{\zeta}(3) & =\zeta(3)+\frac{3 \varepsilon}{2} \zeta(4)-\frac{5 \varepsilon^{3}}{2} \zeta(6)+\frac{21 \varepsilon^{5}}{2} \zeta(8), \\
\hat{\zeta}(5) & =\zeta(5)+\frac{5 \varepsilon}{2} \zeta(6)-\frac{35 \varepsilon^{3}}{4} \zeta(8), \\
\hat{\zeta}(7) & =\zeta(7)+\frac{7 \varepsilon}{2} \zeta(8), \\
\hat{\zeta}(3,5) & =\zeta(3,5)-\frac{29}{12} \zeta(8)-\frac{15 \varepsilon}{2} \zeta(4) \zeta(5), \\
\hat{\zeta}(9) & =\zeta(9) .
\end{aligned}
$$

representation

There seem to exist a (ϵ dependent) redefinition of the ζ values such that the π dependent terms cancel for all the p-integrals.

$$
\begin{aligned}
\hat{\zeta}(3) & =\zeta(3)+\frac{3 \varepsilon}{2} \zeta(4)-\frac{5 \varepsilon^{3}}{2} \zeta(6)+\frac{21 \varepsilon^{5}}{2} \zeta(8), \\
\hat{\zeta}(5) & =\zeta(5)+\frac{5 \varepsilon}{2} \zeta(6)-\frac{35 \varepsilon^{3}}{4} \zeta(8), \\
\hat{\zeta}(7) & =\zeta(7)+\frac{7 \varepsilon}{2} \zeta(8), \\
\hat{\zeta}(3,5) & =\zeta(3,5)-\frac{29}{12} \zeta(8)-\frac{15 \varepsilon}{2} \zeta(4) \zeta(5), \\
\hat{\zeta}(9) & =\zeta(9) .
\end{aligned}
$$

This type of relations, through the no- π theorem are related to some cancellations/relations of π terms in correlations functions, anomalous dimensions and β-functions.

Conclusions \& Outlook

- Using the Glue-and-Cut method we were able to compute all the 5-loop 2 point master integral. Our result are up to transcendental weight $\zeta(9)$, which is the ϵ^{0} order of the finite p -integrals.
- We have checked that our $\hat{\zeta}$ representation works also for momentum space p-integrals in the non-planar case.

Conclusions \& Outlook

- Using the Glue-and-Cut method we were able to compute all the 5-loop 2 point master integral. Our result are up to transcendental weight $\zeta(9)$, which is the ϵ^{0} order of the finite p -integrals.
- We have checked that our $\hat{\zeta}$ representation works also for momentum space p -integrals in the non-planar case.
- A major bottleneck are the IBP reductions. If one would like to push this to higher loops we need better tools.
- Would be interesting to apply the same method to different dimensions, for example $d=3$.

Thank You!

