Universität Zürich ${ }^{\text {UZH }}$

Two-Loop Rational Terms

Hantian Zhang

in collaboration with Jean-Nicolas Lang, Stefano Pozzorini and Max Zoller

> based on
> JHEP 05 (2020) 077 [2001.11388]
> JHEP $10(2020) 016$ [2007.03713]
> $[2106 . X X X X]$

RADCOR \& LoopFest 2021

Motivation: automated two-loop calculations

- Higher-order calculations are usually performed in $D=4-2 \varepsilon$ dimensions to regularise divergences in Feynman integrals, but D-dim vectors cannot be implemented in a numerical program
- Automated one-loop numerical algorithms usually construct numerators of loop integrands in 4-dim, and the extension to two-loop amplitudes is under development [see Max Zoller's talk]
- Rational counterterms reconstruct missing terms originating from $(D-4)$-dim part of loop numerator
\Rightarrow one loop: rational terms of type R_{2} [Ossola, Papadopoulos, Pittau]
\Rightarrow in this talk:
- General structure of two-loop rational counterterms
- Extension to generic renormalisation schemes
- New techniques for calculations in spontanesouly broken gauge theories

Introduction to one-loop rational terms

Amplitude of an one-loop diagram γ in $D=4-2 \varepsilon$ dimensions

$$
\overline{\mathcal{A}}_{1, \gamma}=\mu^{2 \varepsilon} \int \mathrm{~d} \bar{q}_{1} \frac{\overline{\mathcal{N}}\left(\bar{q}_{1}\right)}{D_{0}\left(\bar{q}_{1}\right) \cdots D_{N-1}\left(\bar{q}_{1}\right)} \quad \text { with } \quad D_{k}\left(\bar{q}_{1}\right)=\left(\bar{q}_{1}+p_{k}\right)^{2}-m_{k}^{2}
$$

Rational term emerges by splitting D-dim numerator into 4 -dim and ε-dim parts

$$
\overline{\mathcal{N}}\left(\bar{q}_{1}\right)=\mathcal{N}\left(q_{1}\right)+\tilde{\mathcal{N}}\left(\bar{q}_{1}\right) \quad \text { with } \quad\left\{\begin{aligned}
\bar{q} & =q+\tilde{q} \\
\bar{\gamma}^{\bar{\mu}} & =\gamma^{\mu}+\tilde{\gamma}^{\tilde{\mu}} \\
\bar{g}^{\mu \bar{\nu}} & =g^{\mu \nu}+\tilde{g}^{\mu \tilde{\nu}}
\end{aligned}\right.
$$

leads to

$$
\overline{\mathcal{A}}_{1, \gamma}=\underbrace{\mathcal{A}_{1, \gamma}}_{\begin{array}{c}
\text { computed } \\
\text { numerically }
\end{array}}+\underbrace{\delta \mathcal{R}_{1, \gamma}}_{\begin{array}{c}
\text { computed } \\
\text { analytically }
\end{array}}
$$

- $\delta \mathcal{R}_{1, \gamma}$ from interplay between $\varepsilon-\operatorname{dim} \tilde{\mathcal{N}}$ and $\frac{1}{\varepsilon}$ UV poles \Rightarrow require technique to extract UV poles

Tadpole decomposition [Chetyrkin, Misiak, Münz]

The UV divergence can be captured by massive tadpole decomposition of denominators

$$
\frac{1}{D_{k}\left(\bar{q}_{1}\right)}=\underbrace{\frac{1}{\bar{q}_{1}^{2}-M^{2}}}_{\begin{array}{c}
\text { leading } U V \text { tadpole } \\
\mathcal{O}\left(1 / \bar{q}_{1}^{2}\right)
\end{array}}+\underbrace{\frac{\Delta_{k}\left(\bar{q}_{1}, p_{k}\right)}{\bar{q}_{1}^{2}-M^{2}} \frac{1}{D_{k}\left(\bar{q}_{1}\right)}}_{\begin{array}{c}
\text { subleading } \cup V \text { term } \\
\mathcal{O}\left(1 / \bar{q}_{1}^{3}\right)
\end{array}}
$$

with

$$
\Delta_{k}\left(\bar{q}_{1}, p_{k}\right)=-p_{k}^{2}-2 \bar{q}_{1} \cdot p_{k}+m_{k}^{2}-M^{2}
$$

Apply recursively to obtain tadpole expansion (\mathbf{S}_{X}) up to order $\left(1 / \bar{q}_{1}\right)^{X+2}$

$$
\frac{1}{D_{k}\left(\bar{q}_{1}\right)}=\underbrace{\sum_{\sigma=0}^{X} \text { UV-div. tadpoles }}_{\mathbf{S}_{X}\left(1 / D_{k}\right)}+\text { UV-finite remainder }
$$

Rational terms from UV divergences

- Use tadpole expansions to fully isolate UV divergent part

$$
\overline{\mathcal{A}}_{1, \gamma}=\underbrace{\int \mathrm{d} \bar{q}_{1} \sum_{\sigma=0}^{X} \frac{\left(\mathcal{N}\left(q_{1}\right)+\tilde{\mathcal{N}}\left(\tilde{q}_{1}\right)\right) \Delta^{(\sigma)}}{\left(\bar{q}_{1}^{2}-M^{2}\right)^{N+\sigma}}}_{\text {UV-divergent tadpoles } \mathbf{S}_{X} \overline{\mathcal{A}}_{1, \gamma}}+\text { UV-finite remainder }
$$

- Extract full UV part with numerator split into 4 -dim and ε-dim

$$
\mathbf{S}_{X} \overline{\mathcal{A}}_{1, \gamma}=\underbrace{-\delta Z_{1, \gamma}}_{\frac{1}{\varepsilon} \text { MS pole }}+\underbrace{\delta \mathcal{R}_{1, \gamma}}_{\begin{array}{c}
\text { finite } \\
\text { rational term }
\end{array}}+\text { finite part }
$$

- $\delta \mathcal{R}_{1, \gamma}$ and $\delta Z_{1, \gamma}$ from same UV divergence $\Rightarrow \delta \mathcal{R}_{1, \gamma}$ local counterterm like $\delta Z_{1, \gamma}$

Renormalisation of irreducible two-loop diagrams

Renormalisation of D-dim amplitude of diagram Γ with R-operation [BPHZ; Caswell and Kennedy]

$$
\mathbf{R} \overline{\mathcal{A}}_{2, \Gamma}=\overline{\mathcal{A}}_{2, \Gamma}+\sum_{\gamma} \underbrace{\delta Z_{1, \gamma}}_{\begin{array}{c}
\text { sub-div. } \\
\text { subtraction }
\end{array}} \cdot \overline{\mathcal{A}}_{1, \Gamma / \gamma}+\underbrace{\delta Z_{2, \Gamma}}_{\begin{array}{c}
\text { local two-loop } \\
\text { div. subtraction }
\end{array}}
$$

- At 1 PI vertex function level ($\Gamma=$ set of diagrams), $\delta Z_{1, \gamma}$ and $\delta Z_{2, \Gamma}$ are local counterterms that can be implemented in the Lagrangian

Example: single QED diagram

where $D_{\mathrm{n}}=$ numerator dimension

Structure of two-loop UV rational terms [Pozzorini, Zhang, Zoller]

Master formula for renormalisation of amplitude in $D_{\mathrm{n}}=4$ numerator dimension

$$
\mathbf{R} \overline{\mathcal{A}}_{2, \Gamma}=[\mathcal{A}_{2, \Gamma}+\sum_{\gamma} \underbrace{\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right)}_{\begin{array}{c}
\text { sub-divergence subtraction } \\
\text { + rational part reconstruction }
\end{array}} \cdot \mathcal{A}_{1, \Gamma / \gamma}+\underbrace{\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, \Gamma}\right)}_{\begin{array}{c}
\text { local two-loop divergence } \\
\text { subtraction + reconstruction }
\end{array}}]_{D_{\mathrm{n}}=4}+\mathcal{O}(\varepsilon)
$$

- $\delta \tilde{Z}_{1, \gamma}$ is a new one-loop counterterm $\propto \tilde{q}^{2} / \varepsilon \equiv \mathcal{O}(1)$ that arises from quadratically divergent one-loop subdiagrams in $D_{\mathrm{n}}=4$ (see backup slides)
- $\delta \mathcal{R}_{2, \Gamma}$ originates from local two-loop divergence \Rightarrow process-independent local couterterm (proof in [2001.11388])

Example: single QED diagram

Derivation of two-loop rational terms

Rational terms can be derived once and for all by reverting the master formula, and its calculations can be simplified into massive tadpole integrals by tadpole expansion S

$$
\begin{aligned}
\delta \mathcal{R}_{2, \Gamma}= & \mathbf{S}\left[\overline{\mathcal{A}}_{2, \Gamma}+\sum_{\gamma} \delta Z_{1, \gamma} \cdot \overline{\mathcal{A}}_{1, \Gamma / \gamma}\right]_{D_{\mathrm{n}}=D} \\
& -\mathbf{S}\left[\mathcal{A}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right) \cdot \mathcal{A}_{1, \Gamma / \gamma_{i}}\right]_{D_{\mathrm{n}}=4}
\end{aligned}
$$

- Full set of $\delta \mathcal{R}_{2, \Gamma}$ rational terms for QED presented in [2001.11388]

Extension to generic renormalisation schemes [Lang, Pozzorini, Zhang, Zoller]

In a scheme Y with arbitrary finite renormalisations, we write renormalisation constants (RCs) as

$$
\mathcal{Z}_{\chi}^{(Y)}=1+\left.\sum_{k=1}^{\infty} \underbrace{\left(t_{Y}^{\varepsilon}\right)^{k}}_{\text {scale factor }}(\underbrace{\delta \mathcal{Z}_{k, \chi}^{(\mathrm{MS})}}_{\text {MS pole }}+\underbrace{\delta \mathcal{Z}_{k, \chi}^{(\Delta Y)}}_{\text {finite part }})\right|_{\alpha=\alpha_{Y}\left(\mu_{R}\right)} \text { for } \chi=\left\{\begin{array}{c}
\text { parameter } \theta_{i} \\
\text { field } \psi_{j}
\end{array}\right.
$$

Renormalised 1PI vertex function in scheme Y

$$
\begin{aligned}
& \mathbf{R}^{(Y)} \overline{\mathcal{A}}_{1, \Gamma}=\mathcal{A}_{1, \Gamma}+\delta Z_{1, \Gamma}^{(Y)}+\delta \mathcal{R}_{1, \Gamma}^{(Y)} \\
& \mathbf{R}^{(Y)} \overline{\mathcal{A}}_{2, \Gamma}=\mathcal{A}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}^{(Y)}+\delta \tilde{Z}_{1, \gamma}^{(Y)}+\delta \mathcal{R}_{1, \gamma}^{(Y)}\right) \cdot \mathcal{A}_{1, \Gamma / \gamma}+\delta Z_{2, \Gamma}^{(Y)}+\delta \mathcal{R}_{2, \Gamma}^{(Y)}
\end{aligned}
$$

- UV counterterms $\delta Z_{i, \gamma}^{(Y)}$ are fully controlled by RCs at the level of Lagrangian
- One-loop $\delta \mathcal{R}_{1, \gamma}^{(Y)}$ and $\delta \tilde{Z}_{1, \gamma}^{(Y)}$ contain only trivial scheme dependence through scale factor t_{Y}^{ε}

$$
\delta \mathcal{R}_{1, \gamma}^{(Y)}=t_{Y}^{\varepsilon} \delta \mathcal{R}_{1, \gamma}^{(\mathrm{MS})}, \quad \delta \tilde{Z}_{1, \gamma}^{(Y)}=t_{Y}^{\varepsilon} \delta \tilde{Z}_{1, \gamma}^{(\mathrm{MS})}, \quad \text { e.g. } t_{\overline{\mathrm{MS}}}^{\varepsilon}=\left(4 \pi e^{-\gamma} \frac{\mu_{0}^{2}}{\mu_{R}^{2}}\right)^{\varepsilon}
$$

Renormalisation scheme dependence of $\delta \mathcal{R}_{2, \Gamma}^{(Y)}$

Universal scheme dependence of $\delta \mathcal{R}_{2, \Gamma}^{(Y)}$ can be written as (set $t_{Y}^{\varepsilon}=1$)

$$
\delta \mathcal{R}_{2, \Gamma}^{(Y)}=\delta \mathcal{R}_{2, \Gamma}^{(\mathrm{MS})}+D_{1}^{(\Delta Y)} \delta \mathcal{R}_{1, \Gamma}^{(\mathrm{MS})}+\delta \mathcal{K}_{2, \Gamma}^{(\Delta Y)}
$$

- It contains finite multiplicative renormalisation of one-loop rational term

$$
D_{1}^{(\Delta Y)} \delta \mathcal{R}_{1, \Gamma}^{(\mathrm{MS})}=\left(\sum_{i} \delta \mathcal{Z}_{1, \theta_{i}}^{(\Delta Y)} \theta_{i} \frac{\partial}{\partial \theta_{i}}+\sum_{j} \frac{1}{2} \delta \mathcal{Z}_{1, \psi_{j}}^{(\Delta Y)}\right) \delta \mathcal{R}_{1, \Gamma}^{(\mathrm{MS})}
$$

- and additional $\delta \mathcal{K}_{2, \Gamma}^{(\Delta Y)}$ term originates from non-commutativity of finite renormalisation $\left(D_{1}^{(\Delta Y)}\right)$ and 4-dim projection of loop numerators $\left(\mathbf{P}_{4}\right)$

$$
\delta \mathcal{K}_{2, \Gamma}^{(\Delta Y)}=\left[D_{1}^{(\Delta Y)}, \mathbf{P}_{4}\right] \overline{\mathcal{A}}_{1, \Gamma} \neq 0
$$

which can be controlled through a new kind of process-independent one-loop counterterms (see [2007.03713] for further details)

Results of two-loop QCD rational counterterms

Example: Triple-gluon function in renormalisation scheme Y

$$
=g_{\mathrm{s}} f^{a_{1} a_{2} a_{3}} V^{\mu_{1}, \mu_{2}, \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)\left\{\sum_{k=1}^{2}\left(\frac{\alpha_{\mathrm{s}} t_{Y}^{\varepsilon}}{4 \pi}\right)^{k} \delta \hat{\mathcal{R}}_{k, \mathrm{ggg}}^{(Y)}\right\},
$$

with $V^{\mu_{1}, \mu_{2}, \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)=g^{\mu_{1} \mu_{2}}\left(p_{1}-p_{2}\right)^{\mu_{3}}+g^{\mu_{2} \mu_{3}}\left(p_{2}-p_{3}\right)^{\mu_{1}}+g^{\mu_{3} \mu_{1}}\left(p_{3}-p_{1}\right)^{\mu_{2}}$, and rational terms $\delta \hat{\mathcal{R}}_{1, \mathrm{ggg}}^{(Y)}=-\frac{11}{12} C_{\mathrm{A}}-\frac{4}{3} T_{\mathrm{F}} n_{\mathrm{f}}$, $\delta \hat{\mathcal{R}}_{2, \mathrm{ggg}}^{(Y)}=-\left[\frac{11}{48} C_{\mathrm{A}}^{2}+T_{\mathrm{F}} n_{\mathrm{f}}\left(\frac{23}{6} C_{\mathrm{A}}-\frac{8}{3} C_{\mathrm{F}}\right)\right] \varepsilon^{-1}+T_{\mathrm{F}} n_{\mathrm{f}}\left(\frac{25}{9} C_{\mathrm{A}}-\frac{119}{36} C_{\mathrm{F}}\right)+\frac{145}{288} C_{\mathrm{A}}^{2}$

$$
-\left(\frac{11}{8} C_{\mathrm{A}}+2 T_{\mathrm{F}} n_{\mathrm{f}}\right) \delta \hat{\mathcal{Z}}_{1, \alpha_{\mathrm{s}}}^{(Y)}-\left(\frac{13}{4} C_{\mathrm{A}}+2 T_{\mathrm{F}} n_{\mathrm{f}}\right) \delta \hat{\mathcal{Z}}_{1, A}^{(Y)}+\frac{5}{4} C_{\mathrm{A}} \delta \hat{\mathcal{Z}}_{1, \mathrm{gp}}^{(Y)}-\frac{C_{\mathrm{A}}}{24} \delta \hat{\mathcal{Z}}_{1, u}^{(Y)}+\frac{4}{3} T_{\mathrm{F}} \sum_{f \in \mathcal{F}} \delta \hat{\mathcal{Z}}_{1, f}^{(Y)} .
$$

renormalisation scheme dependence \Rightarrow applicable to any scheme

- Compact results of QCD rational counterterms derived once and for all in a generic scheme [2007.03713]

Rational Terms in

Spontaneously Broken Gauge Theories

[Lang, Pozzorini, Zhang, Zoller: 2106.XXXX]

Idea: reduce the complexity of $\delta \mathcal{R}_{2}$ calculations in the full Standard Model by exploiting the symmetric phase and vev-expansion

Symmetry breaking \& vev-expansion

Consider a spontaneously broken theory with Higgs field H, and vev v that generates masses

UV divergent part of D-dim amplitudes in broken phase can be related to massless symmetric phase (YM) via vev-expansion

Diagrammatic vev-expansion of a loop propagator $\bar{G}_{a}\left(\bar{q}, m_{a}\right)$ up to $\mathcal{O}\left(v^{2}\right)$

$$
\mathbf{V}_{[0,2]} \bar{G}_{a}\left(\bar{q}, m_{a}\right)=\underbrace{[\because+}_{\text {turn physical mass dependence into series of vev-insertions in symmetric phase }}
$$

Vev-expansion in $D_{\mathbf{n}}=4$ dimensions

In $D_{\mathrm{n}}=4$, the naive relation between broken and symmetric phases is violated

$$
\mathbf{V}_{[0, X]} \mathcal{A}_{l, \Gamma}=\sum_{k=0}^{X} \mathcal{A}_{l, \Gamma v^{k}}^{\mathrm{YM}}+\underbrace{\Delta \mathbf{V}_{[0, X]} \mathcal{A}_{l, \Gamma}}_{\begin{array}{l}
\text { extra } \\
\text { of loop propagators in } D_{\mathrm{n}}=4
\end{array}}
$$

while $\Delta \mathbf{V}_{[0, X]} \mathcal{A}_{l, \Gamma}$ part can be described through auxiliary \tilde{v}-counterterm insertions at the level of loop propagators

$$
\mathbf{V}_{[0,2]} G_{a}=[.
$$

In SM, \tilde{v}-counterterm insertions are only needed for fermion propagators

$$
\stackrel{\tilde{\otimes}}{ }=\operatorname{im}_{f} \frac{\tilde{q}^{2}}{\bar{q}^{4}}, \quad \stackrel{\tilde{\otimes}}{\underline{Q}}=-i m_{f}^{2} \frac{\phi \tilde{q}^{2}}{\bar{q}^{6}}
$$

Rational terms with vev- \& \tilde{v}-insertions

Vev-expansion for l-loop amplitudes in $D_{\mathrm{n}}=4$ reads

$$
\mathbf{V}_{[0, X]} \mathcal{A}_{l, \Gamma}=\underbrace{\sum_{k=0}^{X}\left(\sum_{j=0}^{k} \mathcal{A}_{l, \Gamma v^{j} \tilde{v}^{k-j}}^{\mathrm{YM}}\right)}_{\begin{array}{c}
\text { vev \& } \tilde{v} \text {-CT insertions of } \mathcal{O}\left(v^{k}\right) \\
\text { in symmetric phase }
\end{array}}
$$

Rational terms at l-loops in broken phase can be related to their symmetric counterparts

$$
\delta \mathcal{R}_{l, \Gamma}=\sum_{k=0}^{X}\left(\sum_{j=0}^{k} \delta \mathcal{R}_{l, \Gamma v}^{\mathrm{YM}} \tilde{v}^{k-j}\right)
$$

- Simplified calculations of rational terms in SM based on massless symmetric phase.
- For renormalisation scheme dependence including gauge fixing and mixing effects, tadpoles and vev renormalisations, please see upcoming paper [2106.XXXX]

Results for two-loop rational counterterms of $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ in SM

Example 1: Higgs-gluon three-point function

Broken Phase Symmetric Phase

with $m_{f}=\lambda_{f} v / \sqrt{2}$ and

$$
\begin{aligned}
& \delta \hat{\mathcal{R}}_{1, \mathrm{gg} H}=-2 T_{\mathrm{F}} \sum_{f \in \mathcal{F}} \lambda_{f}^{2} \\
& \delta \hat{\mathcal{R}}_{2, \mathrm{gg} H}=-T_{\mathrm{F}} \sum_{f \in \mathcal{F}}\left[\left(\frac{1}{2} C_{\mathrm{A}}+6 C_{\mathrm{F}}\right) \varepsilon^{-1}+\frac{19}{12} C_{\mathrm{A}}-7 C_{\mathrm{F}}\right] \lambda_{f}^{2}-2 T_{\mathrm{F}} \sum_{f \in \mathcal{F}}\left[\delta \hat{\mathcal{Z}}_{1, \alpha_{\mathrm{s}}}+\delta \hat{\mathcal{Z}}_{1, A}+2 \delta \hat{\mathcal{Z}}_{1, \lambda_{f}}\right] \lambda_{f}^{2}
\end{aligned}
$$

Results for two-loop rational counterterms of $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ in SM

Example 2: Gluon-vector-boson four-point function

$$
=\mathrm{i} \quad \underbrace{\left\{\sum_{k=1}^{2}\left(\frac{\alpha_{\mathrm{s}} t_{Y}^{\varepsilon}}{4 \pi}\right)^{k}\left[\sum_{\beta=\mathrm{I}, \mathrm{II}}\left(\mathcal{V}_{\beta}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \delta \hat{\mathcal{R}}_{k, \mathrm{gg} V_{1} V_{2}}^{(\mathrm{A} \beta)}\right)\right]\right\}, ., ~, ~}_{{N_{\mathrm{gen}}}^{\delta_{a_{3} a_{4}}} \sum_{2} \frac{1}{2} \operatorname{Tr}\left[\mathrm{I}^{\left.b_{1} I^{b_{2}}\right]}\right.}
$$

with $\mathcal{V}_{\mathrm{I}}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{4}}, \mathcal{V}_{\mathrm{II}}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=g^{\mu_{1} \mu_{3}} g^{\mu_{2} \mu_{4}}+g^{\mu_{1} \mu_{4}} g^{\mu_{2} \mu_{3}}$, and

$$
\begin{aligned}
& \delta \hat{\mathcal{R}}_{1, \mathrm{gg} V_{1} V_{2}}^{(\mathrm{AI})}=\frac{2}{3} T_{\mathrm{F}}, \\
& \delta \hat{\mathcal{R}}_{2, \mathrm{gg} V_{1} V_{2}}^{(\mathrm{AI})}=-T_{\mathrm{F}}\left(\frac{1}{12} C_{\mathrm{A}}+\frac{3}{2} C_{\mathrm{F}}\right)+\frac{2}{3} T_{\mathrm{F}}\left(\delta \hat{\mathcal{Z}}_{1, \alpha_{\mathrm{s}}}^{(Y)}+\delta \hat{\mathcal{Z}}_{1, G}^{(Y)}\right)
\end{aligned}
$$

Similarly for $\delta \hat{\mathcal{R}}_{k, \mathrm{gg} V_{1} V_{2}}^{(\mathrm{AII})}$ terms.

- γ_{5} in Korner-Kreimer-Schilcher (KKS) scheme (anticommuting + reading-point prescription)
- Full set of $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ rational terms of $f \bar{f} S, f \bar{f} V, g g S, g g V, g g g V, g g S_{1} S_{2}, g g V_{1} V_{2}$ vertices in SM will appear in [2106. XXXX]

Summary

- Renormalised D-dim two-loop amplitude can be constructed by amplitude with 4-dim numerator + rational counterterms in a generic renormalisation scheme Y

$$
\mathbf{R}^{(Y)} \overline{\mathcal{A}}_{2, \Gamma}=\mathcal{A}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}^{(Y)}+\delta \tilde{Z}_{1, \gamma}^{(Y)}+\delta \mathcal{R}_{1, \gamma}^{(Y)}\right) \cdot \mathcal{A}_{1, \Gamma / \gamma}+\delta Z_{2, \Gamma}^{(Y)}+\delta \mathcal{R}_{2, \Gamma}^{(Y)}
$$

\Rightarrow an important step towards two-loop automation

- We have presented a generic method to compute $\delta \mathcal{R}_{2, \Gamma}$ from one-scale tadpoles, and shown that $\delta \mathcal{R}_{2, \Gamma}$ are process-independent local counterterms
- Full set of rational terms at two loops in QED [2001.11388] and pure QCD [2007.03713]
- New vev-expansion technique that relates rational terms in broken and symmetric phases \Rightarrow calculation of rational terms in SM strongly simplified
- Full set of $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ rational terms at two loops in the SM [2106.XXXX]

Outlook

- Study of two-loop rational terms of IR origin (ongoing)
- Rational terms in full SM with EW corrections

Backup

B.1. $\delta \tilde{Z}_{1, \gamma}$ from subdivergences in two-loop diagram

- Subdivergence originates from the UV divergent one-loop subdiagram
\Rightarrow needs to be firstly subtracted in renormalisation procedure
- Subdiagram has D-dim external loop momenta

One-loop subdiagram with D-dim external $\bar{q}_{2}=q_{2}+\tilde{q}_{2}$:

$$
D_{k}\left(\bar{q}_{1}, \bar{q}_{2}\right)=\underbrace{D_{k}\left(\bar{q}_{1}, q_{2}\right)}_{4-\operatorname{dim} q_{2}}+\underbrace{\left(2 \bar{q}_{1} \cdot \tilde{q}_{2}+\tilde{q}_{2}^{2}\right)}_{\varepsilon-\operatorname{dim} \tilde{q}_{2}}
$$

\Rightarrow additional ε-dim terms show up in tadpole expansion

$$
\begin{aligned}
& \frac{1}{\left(\bar{q}_{1}+q_{2}+\tilde{q}_{2}\right)^{2}}=\frac{1}{\bar{q}_{1}^{2}-M^{2}}+\frac{-\left(q_{2}+\tilde{q}_{2}\right)^{2}-2 \bar{q}_{1} \cdot\left(q_{2}+\tilde{q}_{2}\right)-M^{2}}{\left(\bar{q}_{1}^{2}-M^{2}\right)^{2}}+\ldots \\
& \Rightarrow \text { extra quadratic pole term } \delta \tilde{Z}_{1, \gamma}^{\alpha}\left(\tilde{q}_{2}\right) \propto \frac{\tilde{q}_{2}^{2}}{\varepsilon} \text { in 4-dim numerator case }
\end{aligned}
$$

$$
\overline{\mathbf{K}} \mathcal{A}_{1, \gamma}^{\alpha}\left(\bar{q}_{2}\right)=\underbrace{-\delta Z_{1, \gamma}^{\alpha}\left(q_{2}\right)}_{\frac{1}{\varepsilon} \text { MS pole }} \underbrace{-\delta \tilde{Z}_{1, \gamma}^{\alpha}\left(\tilde{q}_{2}\right)}_{\text {extra pole of } \mathcal{O}(1)}
$$

B.2. Renormalised one-loop subdiagrams

Subtract poles and rational terms in both D - and 4-dim, we can identify amplitudes with

$$
\underbrace{\overline{\mathcal{A}}_{1, \gamma}^{\bar{\alpha}}\left(\bar{q}_{2}\right)-\overline{\mathbf{K}} \overline{\mathcal{A}}_{1, \gamma}^{\bar{\alpha}}\left(\bar{q}_{2}\right)}_{D \text {-dim full subtraction }}=\underbrace{\mathcal{A}_{1, \gamma}^{\alpha}\left(\bar{q}_{2}\right)-\overline{\mathbf{K}} \mathcal{A}_{1, \gamma}^{\alpha}\left(\bar{q}_{2}\right)}_{\text {4-dim full subtraction }}+\mathcal{O}(\varepsilon, \tilde{q})
$$

Recall

$$
\begin{aligned}
& \overline{\mathbf{K}} \overline{\mathcal{A}}_{1, \gamma}^{\bar{\alpha}}\left(\bar{q}_{2}\right)=-\delta Z_{1, \gamma}^{\bar{\alpha}}\left(\bar{q}_{2}\right)+\delta \mathcal{R}_{1, \gamma}^{\alpha}\left(q_{2}\right)+\mathcal{O}(\varepsilon) \\
& \overline{\mathbf{K}} \mathcal{A}_{1, \gamma}^{\alpha}\left(\bar{q}_{2}\right)=-\delta Z_{1, \gamma}^{\alpha}\left(q_{2}\right)-\delta \tilde{Z}_{1, \gamma}^{\alpha}\left(\tilde{q}_{2}\right)
\end{aligned}
$$

\Rightarrow Renormalised one-loop sub-amplitude

B.3. One-loop subdiagram example: photon self-energy

Let $D_{\mathrm{n}} \in\{D, 4\}$ be the dimension of numerator, we have

$$
D_{\mathrm{n}}=D \Rightarrow \overline{\mathbf{K}} \int \mathrm{~d} \bar{q}_{1} \frac{-\operatorname{Tr}\left[\bar{\gamma}^{\bar{\alpha}_{1}} \bar{q}_{1} \bar{\gamma}^{\bar{\alpha}_{2}}\left(\phi_{1}+\phi_{2}\right)\right]}{\bar{q}_{1}^{2}\left(\bar{q}_{1}+\bar{q}_{2}\right)^{2}}=\frac{1}{\varepsilon}(\underbrace{-\frac{4}{3}\left(\bar{q}_{2}^{2} g^{\bar{\alpha}_{1} \bar{\alpha}_{2}}-\bar{q}_{2}^{\bar{\alpha}_{1}} \bar{q}_{2}^{\bar{\alpha}_{2}}\right)}_{-\delta Z_{1, \gamma}\left(\bar{q}_{2}\right)} \underbrace{+\frac{2 \varepsilon}{3} \bar{q}_{2}^{2} g^{\bar{\alpha}_{1} \bar{\alpha}_{2}}}_{\delta \mathcal{R}_{1, \gamma}\left(q_{2}\right)+\mathcal{O}(\varepsilon)})
$$

and

$$
D_{\mathrm{n}}=4 \Rightarrow \mathbf{K} \int \mathrm{~d} \bar{q}_{1} \frac{-\operatorname{Tr}\left[\gamma^{\alpha_{1}} \phi_{1} \gamma^{\alpha_{2}}\left(g_{1}+q_{2}\right)\right]}{\bar{q}_{1}^{2}\left(\bar{q}_{1}+q_{2}+\tilde{q}_{2}\right)^{2}}=\frac{1}{\varepsilon}(\underbrace{-\frac{4}{3}\left(q_{2}^{2} g^{\alpha_{1} \alpha_{2}}-q_{2}^{\alpha_{1}} q_{2}^{\alpha_{2}}\right)}_{-\delta Z_{1, \gamma}\left(q_{2}\right)} \underbrace{-\frac{2}{\tilde{q}_{2}^{2}} g^{\alpha_{1} \alpha_{2}}}_{-\delta \tilde{Z}_{1, \gamma}\left(\tilde{q}_{2}\right)})
$$

\Rightarrow Renormalised photon self-energy insertion:

