TWO-PARTON SCATTERING IN THE HIGH-ENERGY LIMIT:
 CLIMBING TWO- AND THREE-REGGEON LADDERS

Leonardo Vernazza

INFN - University of Torino

RADCOR-LoopFest 2021, 21/05/2021

H2020 MSCA COFUND G.A. 754496

OUTLINE

- Factorisation of amplitudes in the high-energy limit
- Scattering amplitudes by iterated solution of the BFKL equation
- The two-Reggeon cut: imaginary amplitude
- The three-Reggeon cut: real amplitude
- JHEP 1706 (2017) 016, [arXiv:1701.05241], with S. Caron-Huot and E. Gardi
- JHEP 1803 (2018) 098, [arXiv:1711.04850], with S. Caron-Huot, E. Gardi, and J. Reichel,
- JHEP 08 (2020) 116, [arXiv:2006.01267], with S. Caron-Huot, E. Gardi and J. Reichel
- [arXiv:2012.00613], with G. Falcioni, E. Gardi and C. Milloy
- and in preparation with G. Falcioni, E. Gardi N. Maher and C. Milloy

FACTORISATION OF AMPLITUDES IN THE HIGH-ENERGY

HIGH-ENERGY LIMIT

- Very interesting theoretical problem:
- Understand the high-energy QCD asymptotics in terms of Regge poles and cuts;
- toy model for full amplitude, yet
\rightarrow retain rich dynamic in the 2D transverse plane,
\rightarrow non-trivial function spaces;

MRK in N=4 SYM:
Dixon, Pennington,
Duhr, 2012;
Del Duca, Dixon,
Pennington, Duhr, 2013;
Del Duca, Druc,
Drummond, Duhr,
Dulat, Marzucca,
Papathanasiou,
Verbeek 2019

- predict amplitudes and other observables in overlapping limits:
\rightarrow soft limit, infrared divergences.
\rightarrow See talk by N. Maher
- Relevant for phenomenology at the LHC and future colliders:
- perturbative phenomenology of forward scattering, e.g.
\rightarrow Deep inelastic scattering/saturation (small $x=$ Regge, large $Q^{2}=$ perturbative),
\rightarrow Mueller-Navelet: pp \rightarrow X+2jets, forward and backward.

See e.g. Andersen, Smillie, 2011; Andersen, Medley Smillie, 2016; Andersen, Hapola, Maier, Smillie, 2017; ...

$2 \boldsymbol{2} \boldsymbol{2}$ SCATTERING IN THE HIGH-ENERGY LIMIT

- Expansion in the strong coupling and in towers of (large) logarithms

$$
\begin{gathered}
\mathcal{M}_{i j \rightarrow i j}=\mathcal{M}^{(0)}+\frac{\alpha_{s}}{\pi} \log \frac{s}{-t} \mathcal{M}^{(1,1)}+\frac{\alpha_{s}}{\pi} \mathcal{M}^{(1,0)} \\
+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \log ^{2} \frac{s}{-t} \mathcal{M}^{(2,2)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \log \frac{s}{-t} \mathcal{M}^{(2,1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{M}^{(2,0)}+\ldots \\
\mathrm{LL}
\end{gathered}
$$

$\mathbf{2 \rightarrow 2}$ SCATTERING IN THE HIGH-ENERGY LIMIT

- LL tower: one-Reggeon exchange in the t-channel (Regge pole in the complex angular momentum plane)

$$
\frac{1}{t} \rightarrow \frac{1}{t}\left(\frac{s}{-t}\right)^{\frac{\alpha_{s} C_{A}}{\pi} \frac{r_{\Gamma}}{\epsilon}}
$$

Regge, Gribov ~ 1960;

- LL amplitude

Lipatov; Fadin,Kuraev,Lipatov 1976

$$
\mathcal{M}^{\mathrm{LL}}=e^{\frac{\alpha_{s} C_{A} L}{\pi} \frac{r_{\Gamma}}{\epsilon}} \mathcal{M}^{(0)}, \quad \quad r_{\Gamma}=e^{\epsilon \gamma_{E}} \frac{\Gamma^{2}(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}
$$

- Real amplitude at NLL: described by BFKL:

Fadin,Kuraev,Lipatov 1975-77; Balitsky,Lipatov 1978

- Beyond real NLL: compound states of multiple-Reggeon exchanges.

$2 \rightarrow \mathbf{2}$ SCATTERING IN THE HIGH-ENERGY LIMIT

- Multiple Reggeon exchange contribution in scattering amplitudes elusive, until recently.
- First evidence of violation of Regge-pole factorization in

Del Duca, Glover 2001;

- Interplay with the infrared factorization theorem investigated in

Del Duca, Duhr, Gardi, Magnea, White 2011; Del Duca, Falcioni, Magnea, LV, 2013, 2014;

- High-energy scattering via Wilson lines:

Korchemskaya, Korchemsky, 1994,1996; Balitsky 1995; Babansky, Balitsky 2002;

- Two-parton scattering from rapidity evolution of Wilson lines

Caron-Huot, 2013; Caron-Huot, Gardi, LV, 2017; Caron-Huot, Gardi, Reichel, LV, 2017, 2020; Falcioni, Gardi, Milloy, LV, 2020; Falcioni, Gardi, Maher, Milloy, LV, 2021.
\rightarrow This talk

- SCET-based formulation in

Rothstein, Stewart 2016; Ridgway, Moult, Stewart, 2019, 2020.

- Calculation of multiple Reggeon exchanges within QCD also obtained in

Fadin, Lipatov 2017; Fadin 2019, 2020.

$2 \rightarrow 2$ SCATTERING IN THE HIGH-ENERGY LIMIT

- Organizing principle: exploit symmetry under $s \leftrightarrow u$ exchange:
\rightarrow the amplitude decomposes into even $(+)$ and odd $(-)$ components under $s \leftrightarrow u$:

$$
\mathcal{M}^{(\pm)}(s, t)=\frac{1}{2}(\mathcal{M}(s, t) \pm \mathcal{M}(-s-t, t)) .
$$

- Expand the amplitude in terms of the signature-even combination of logarithms:

$$
L \equiv \log \left|\frac{s}{t}\right|-i \frac{\pi}{2}=\frac{1}{2}\left(\log \frac{-s-i 0}{-t}+\log \frac{-u-i 0}{-t}\right)
$$

$\rightarrow M^{(+)}$imaginary with even number of Reggeons
$\rightarrow M^{(-)}$real with odd number of Reggeons
NNLL

Goals:

- Calculate multiple Reggeon exchanges to high-order in perturbation theory
- Understand the highenergy asymptotics of partonic amplitudes
- Investigate implications for IR divergences
- Do multiple Reggeon exchange exponentiate?

FROM BALITSKY-JIMWLK TO AMPLITUDES

- High-energy limit = forward scattering:
\rightarrow the projectile and target are described in terms of Wilson lines:

$$
U^{\eta}\left(z_{\perp}\right)=\mathcal{P} \exp \left[i g_{s} \mathbf{T}^{a} \int_{-\infty}^{+\infty} d x^{+} A_{+}^{a}\left(x^{+}, x^{-}=0, z_{\perp}\right)\right] \equiv e^{i g_{s}} \mathbf{T}^{a} W^{a}\left(z_{\perp}\right) .
$$

- Ta group generator in parton representation

Korchemskaya, Korchemsky, 1994, 1996;
Babansky, Balitsky, 2002, Caron-Huot, 2013

- $\eta=L$ (implicit) cutoff
- Scattering states (target and projectile) are expanded in Reggeon fields W^{a} :

- Evolution in rapidity resums the high-energy log:

$$
\frac{d}{d L}\left|\psi_{i}\right\rangle=-H\left|\psi_{i}\right\rangle
$$

Balitsky-JIMWLK Hamiltonian

Known at NLO:

Balitsky Chirilli, 2013;
Kovner, Lublinsky,
Mulian, 2013, 2014, 2016

- Scattering amplitude: expectation value of Wilson lines evolved to equal rapidity:

$$
\frac{i}{2 s} \frac{1}{Z_{i} Z_{j}} \mathcal{M}_{i j \rightarrow i j}=\left\langle\psi_{j}\right| e^{-L H}\left|\psi_{i}\right\rangle
$$

$$
\text { (} Z_{i}=\text { collinear poles) }
$$

FROM BALITSKY-JIMWLK TO AMPLITUDES

- Structure of the leading-order Balitsky-JIMWLK equation:
$H\left(\begin{array}{c}W \\ (W)^{2} \\ (W)^{3} \\ (W)^{4} \\ (W)^{5} \\ \cdots\end{array}\right)=\left(\begin{array}{cccccc}H_{1 \rightarrow 1} & 0 & H_{3 \rightarrow 1} & 0 & H_{5 \rightarrow 1} & \cdots \\ 0 & H_{2 \rightarrow 2} & 0 & H_{4 \rightarrow 2} & 0 & \cdots \\ H_{1 \rightarrow 3} & 0 & H_{3 \rightarrow 3} & 0 & H_{5 \rightarrow 3} & \cdots \\ 0 & H_{2 \rightarrow 4} & 0 & H_{4 \rightarrow 4} & 0 & \cdots \\ H_{1 \rightarrow 5} & 0 & H_{3 \rightarrow 5} & 0 & H_{5 \rightarrow 5} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\end{array}\right)\left(\begin{array}{c}W \\ (W)^{2} \\ (W)^{3} \\ (W)^{4} \\ (W)^{5} \\ \cdots\end{array}\right)$

Caron-Huot, 2013, Caron-Huot, Gardi, LV, 2017

- At NLL we need $m \rightarrow m$ transition only \rightarrow the LO BFKL kernel.
- At NNLL we need the $m \rightarrow m+2$ transition from the LO B-JIMWLK kernel.
- Define the reduced amplitude: subtract single-Reggeon exchange:

$$
\frac{i}{2 s} \hat{\mathcal{M}}_{i j \rightarrow i j}=\left\langle\psi_{j}\right| e^{-\left(H-H_{1 \rightarrow 1}\right) L}\left|\psi_{i}\right\rangle \equiv\left\langle\psi_{j}\right| e^{-\hat{H} L}\left|\psi_{i}\right\rangle .
$$

THE TWO-REGGEON CUT

THE TWO-REGGEON CUT

- The amplitude takes the form of an iterated integral over the BFKL kernel:

$$
\hat{\mathcal{M}}_{\mathrm{NLL}}^{(+, \ell)}=-i \pi \frac{\left(B_{0}\right)^{\ell}}{(\ell-1)!} \int[\mathrm{D} k] \frac{p^{2}}{k^{2}(k-p)^{2}} \Omega^{(\ell-1)}(p, k) \mathbf{T}_{s-u}^{2} \mathcal{M}^{(0)}, \quad B_{0}=e^{\epsilon \gamma_{\mathrm{E}}} \frac{\Gamma^{2}(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)} .
$$

- One rung = apply once the BFKL kernel on the "target averaged wave function":

$$
\Omega^{(\ell-1)}(p, k)=\hat{H} \Omega^{(\ell-2)}(p, k), \quad \hat{H}=\left(2 C_{A}-\mathbf{T}_{t}^{2}\right) \hat{H}_{\mathrm{i}}+\left(C_{A}-\mathbf{T}_{t}^{2}\right) \hat{H}_{\mathrm{m}}
$$

- "Integration" part:

Caron-Huot, Gardi, Reichel, LV, 2017

$$
\begin{aligned}
\hat{H}_{\mathrm{i}} \Psi(p, k) & =\int\left[\mathrm{D} k^{\prime}\right] f\left(p, k, k^{\prime}\right)\left[\Psi\left(p, k^{\prime}\right)-\Psi(p, k)\right], \\
f\left(p, k^{\prime}, k\right) & =\frac{k^{\prime 2}}{k^{2}\left(k-k^{\prime}\right)^{2}}+\frac{\left(p-k^{\prime}\right)^{2}}{(p-k)^{2}\left(k-k^{\prime}\right)^{2}}-\frac{p^{2}}{k^{2}(p-k)^{2}} .
\end{aligned}
$$

- "Multiplication" part:

$$
\hat{H}_{\mathrm{m}} \Psi(p, k)=\frac{1}{2 \epsilon}\left[2-\left(\frac{p^{2}}{k^{2}}\right)^{\epsilon}-\left(\frac{p^{2}}{(p-k)^{2}}\right)^{\epsilon}\right] \Psi(p, k) .
$$

- Initial condition

$$
\Omega^{(0)}(p, k)=1
$$

THE TWO-REGGEON CUT

- Exact solution in the adjoint channel: $\Omega=1$.
- For generic color representations in dimension eigenfunctions are not known:
\rightarrow Iterative solution.
- General features:
\rightarrow target-projectile, time reversal and crossing symmetry;
\rightarrow outermost rungs are easy (multiplication);
\rightarrow first non-trivial integration at 4-loops:
Caron-Huot, 2013

$$
\begin{aligned}
\hat{\mathcal{M}}_{\mathrm{NLL}}^{(+, 4)}=i \pi & \frac{\left(B_{0}\right)^{4}}{4!}\left\{\left(C_{A}-\mathbf{T}_{t}^{2}\right)^{3}\left(\frac{1}{(2 \epsilon)^{4}}+\frac{175 \zeta_{5}}{2} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right)\right. \\
& \left.+C_{A}\left(C_{A}-\mathbf{T}_{t}^{2}\right)^{2}\left(-\frac{\zeta_{3}}{8 \epsilon}-\frac{3}{16} \zeta_{4}-\frac{167 \zeta_{5}}{8} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right)\right\} \mathbf{T}_{s-u}^{2} M^{(0)} .
\end{aligned}
$$

- Integration in $d=2-2 \epsilon$ involves Appell functions starting at 4 loops.
\rightarrow How to predict higher orders?

THE TWO-REGGEON CUT

- Observations:

1) The wavefunction $\Omega(n)(p, k)$ is finite as $\epsilon \rightarrow 0$:
\rightarrow poles can only appear from the last integration.
2) Evolution closes in the soft limit:

$$
\int_{k \rightarrow 0} \Omega^{(\ell)}(p, k)
$$

\rightarrow IR divergences occur only when a full rail goes soft!
\rightarrow Compute evolution in the (left) soft region and multiply by two.

THE TWO-REGGEON CUT

- What about the finite part?
\rightarrow Claim: the $\epsilon \rightarrow 0$ limit determined from evolution with $\epsilon=0$.
$\hat{\mathcal{M}}_{\mathrm{NLL}}^{(+)}\left(\frac{s}{-t}\right)=-i \pi\{\underbrace{\int[D k] \frac{p^{2}}{k^{2}(p-k)^{2}} \Omega_{s}(p, k) \mathbf{T}_{s-u}^{2} \mathcal{M}_{i j \rightarrow i j}^{(\text {tree })}}_{\text {compute using soft limit }}+\underbrace{\left.\lim _{\epsilon \rightarrow 0} \int[D k] \frac{p^{2}}{k^{2}(p-k)^{2}} \Omega_{h}^{(2 \mathrm{~d})}(p, k) \mathbf{T}_{s-u}^{2} \mathcal{M}_{i j \rightarrow i j}^{(\text {tree })}\right\}}_{\text {compute in } D=2}\}$
of wavefunction in D dimensions

Caron-Huot, Gardi, Reichel, LV, 2020

Recall: the wavefunction is finite, singularities are generated upon the last integration for $k \rightarrow 0$.

TWO-REGGEON CUT: SOFT APPROXIMATION

- The soft function is polynomial in $\left(p^{2} / k^{2}\right)^{\epsilon}$:

```
\(\Gamma\) functions
```

$$
\begin{gathered}
\hat{H}_{\mathrm{i}}\left(\frac{p^{2}}{k^{2}}\right)^{n \epsilon}=-\frac{1}{2 \epsilon} \frac{B_{n}(\epsilon)}{B_{0}(\epsilon)}\left(\frac{p^{2}}{k^{2}}\right)^{(n+1) \epsilon}, \\
\hat{H}_{\mathrm{m}}\left(\frac{p^{2}}{k^{2}}\right)^{n \epsilon}=\frac{1}{2 \epsilon}\left[\left(\frac{p^{2}}{k^{2}}\right)^{n \epsilon}-\left(\frac{p^{2}}{k^{2}}\right)^{(n+1) \epsilon}\right] .
\end{gathered}
$$

- Easy to compute to all orders: to $O\left(\epsilon^{-1}\right)$ the amplitude reduces to a geometric series!

$$
\left.\hat{\mathcal{M}}_{\mathrm{NLL}}^{(+, \ell)}\right|_{s}=i \pi \frac{1}{(2 \epsilon)^{\ell}} \frac{B_{0}^{\ell}(\epsilon)}{\ell!}\left(1-R(\epsilon) \frac{C_{A}}{C_{A}-\mathbf{T}_{t}^{2}}\right)^{-1}\left(C_{A}-\mathbf{T}_{t}^{2}\right)^{\ell-1} \mathbf{T}_{s-u}^{2} \mathcal{M}^{(0)}+\mathcal{O}\left(\epsilon^{0}\right),
$$

where

$$
R(\epsilon)=\frac{\Gamma^{3}(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}-1=-2 \zeta_{3} \epsilon^{3}-3 \zeta_{4} \epsilon^{4}-6 \zeta_{5} \epsilon^{5}-\left(2 \zeta_{3}^{2}+10 \zeta_{6}\right) \epsilon^{6}+\mathcal{O}\left(\epsilon^{7}\right)
$$

TWO-REGGEON CUT: D=2

- Translate the action of the BFKL kernel into a set of differential equations:

$$
z \frac{d}{d z}\left[\hat{H}_{2 \mathrm{~d}, \mathrm{i}} \Psi(z, \bar{z})\right]=\hat{H}_{2 \mathrm{~d}, \mathrm{i}}\left[z \frac{d}{d z} \Psi(z, \bar{z})\right] .
$$

- The full algorithm requires to take care of contact terms,

Brown, 2004, 2013, Schnetz, 2013

Dixon, Pennington, Duhr, 2012; Del Duca, Dixon, Pennington, Duhr, 2013; Del Duca, Druc,
Drummond, Duhr, Dulat, Marzucca, Papathanasiou,

$$
\begin{aligned}
& \Omega_{2 \mathrm{~d}}^{(1)}=\frac{1}{2} C_{2}\left(\mathcal{L}_{0}+2 \mathcal{L}_{1}\right) \\
& \Omega_{2 \mathrm{~d}}^{(2)}=\frac{1}{2} C_{2}^{2}\left(\mathcal{L}_{0,0}+2 \mathcal{L}_{0,1}+2 \mathcal{L}_{1,0}+4 \mathcal{L}_{1,1}\right)+\frac{1}{4} C_{1} C_{2}\left(-\mathcal{L}_{0,1}-\mathcal{L}_{1,0}-2 \mathcal{L}_{1,1}\right) .
\end{aligned}
$$

where $C_{1}=2 C_{A}-T_{t^{2}}, C_{2}=C_{A}-T_{t}{ }^{2}$ and, e.g.,

$$
\mathcal{L}_{0,1}(z, \bar{z})=H_{0}(z) H_{1}(\bar{z})+H_{0,1}(z)+H_{1,0}(\bar{z})
$$

TWO-REGGEON CUT: D=2

$$
\hat{\mathcal{M}}_{\mathrm{NLL}}^{(+)}\left(\frac{s}{-t}\right)=-i \pi\{\underbrace{\int[D k] \frac{p^{2}}{k^{2}(p-k)^{2}} \Omega_{s}(p, k) \mathbf{T}_{s-u}^{2} \mathcal{M}_{i j \rightarrow i j}^{(\text {tree })}}_{\begin{array}{c}
\text { compute using soft limit } \\
\text { of wavefunction in } D \text { dimensions }
\end{array}}+\underbrace{\left.\lim _{\epsilon \rightarrow 0} \int[D k] \frac{p^{2}}{k^{2}(p-k)^{2}} \Omega_{h}^{(2 \mathrm{~d})}(p, k) \mathbf{T}_{s-u}^{2} \mathcal{M}_{i j \rightarrow i j}^{(\text {tree })}\right\}}_{\text {compute in } D=2}
$$

- Two methods to perform the last integration and sum consistently soft and hard region.

$$
\begin{aligned}
& \left.\hat{\mathcal{M}}^{(1)}\right|_{\epsilon^{0}}=0,\left.\quad \hat{\mathcal{M}}^{(2)}\right|_{\epsilon^{0}}=0, \\
& \left.\hat{\mathcal{M}}^{(3)}\right|_{\epsilon^{0}}=-i \pi \frac{\left(B_{0}\right)^{3}}{2!}\left[C_{2}^{2}\left(-\frac{11}{4} \zeta_{3}\right)\right] \mathbf{T}_{s-u}^{2} \mathcal{M}^{(0)}, \\
& \left.\hat{\mathcal{M}}^{(4)}\right|_{\epsilon^{0}}=-i \pi \frac{\left(B_{0}\right)^{4}}{3!}\left[C_{1} C_{2}^{2}\left(-\frac{3}{16} \zeta_{4}\right)+C_{2}^{3}\left(\frac{3}{16} \zeta_{4}\right)\right] \mathbf{T}_{s-u}^{2} \mathcal{M}^{(0)}, \\
& \left.\hat{\mathcal{M}}^{(5)}\right|_{\epsilon^{0}}=-i \pi \frac{\left(B_{0}\right)^{5}}{4!}\left[C_{2}^{4}\left(-\frac{717}{16} \zeta_{5}\right)+C_{1} C_{2}^{3}\left(\frac{333}{16} \zeta_{5}\right)+C_{1}^{2} C_{2}^{2}\left(-\frac{5}{2} \zeta_{5}\right)\right] \mathbf{T}_{s-u}^{2} \mathcal{M}^{(0)}, \\
& \left.\hat{\mathcal{M}}^{(6)}\right|_{\epsilon^{0}}=-i \pi \frac{\left(B_{0}\right)^{6}}{5!}\left[C_{2}^{5}\left(-\frac{2879}{32} \zeta_{3}^{2}+\frac{5}{32} \zeta_{6}\right)+C_{1} C_{2}^{4}\left(\frac{2637}{32} \zeta_{3}^{2}-\frac{5}{32} \zeta_{6}\right)\right. \\
& \left.\quad+C_{1}^{2} C_{2}^{3}\left(-\frac{399}{16} \zeta_{3}^{2}\right)+C_{1}^{3} C_{2}^{2}\left(\frac{39}{16} \zeta_{3}^{2}\right)\right] \mathbf{T}_{s-u}^{2} \mathcal{M}^{(0)},
\end{aligned}
$$

REGGE VS INFRARED FACTORISATION

- Applications: 1) test (and predict) the analytic structure of infrared divergences.
- The infrared divergences of amplitudes are controlled by a renormalization group equation:

$$
\mathcal{M}_{n}\left(\left\{p_{i}\right\}, \mu, \alpha_{s}\left(\mu^{2}\right)\right)=\mathbf{Z}_{n}\left(\left\{p_{i}\right\}, \mu, \alpha_{s}\left(\mu^{2}\right)\right) \mathcal{H}_{n}\left(\left\{p_{i}\right\}, \mu, \alpha_{s}\left(\mu^{2}\right)\right),
$$

where \mathbf{Z}_{n} is given as a path-ordered exponential of the soft-anomalous dimension:
Becher, Neubert, 2009; Gardi, Magnea, 2009

$$
\mathbf{Z}_{n}\left(\left\{p_{i}\right\}, \mu, \alpha_{s}\left(\mu^{2}\right)\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \boldsymbol{\Gamma}_{n}\left(\left\{p_{i}\right\}, \lambda, \alpha_{s}\left(\lambda^{2}\right)\right)\right\}
$$

- The soft anomalous dimension for scattering of massless partons is an operator in color space given by

$$
\boldsymbol{\Gamma}_{n}\left(\left\{p_{i}\right\}, \lambda, \alpha_{s}\left(\lambda^{2}\right)\right)=\boldsymbol{\Gamma}_{n}^{\text {dip. }}\left(\left\{p_{i}\right\}, \lambda, \alpha_{s}\left(\lambda^{2}\right)\right)+\boldsymbol{\Delta}_{n}\left(\left\{\rho_{i j k l}\right\}\right) .
$$

- Given M_{n} as calculated in the high-energy limit, use IR factorisation to extract the soft anomalous dimension.
\rightarrow See talk by N. Maher

TWO-REGGEON CUT: NUMBER THEORY

- Applications: 2) number theory.

Brown,

$$
\begin{aligned}
\hat{\mathcal{M}}_{\mathrm{h}}^{(11)} & =\frac{i \pi}{8!}\left\{C_{2}^{2} C_{A}^{8}\left(-\frac{44253 g_{533}}{5120}-\frac{652795 \zeta_{3}^{2} \zeta_{5}}{2048}-\frac{81831827 \zeta_{11}}{327680}\right)\right. \\
& +C_{2}^{3} C_{A}^{7}\left(\frac{510873 g_{533}}{5120}+\frac{10645591 \zeta_{3}^{2} \zeta_{5}}{2048}+\frac{14761239427 \zeta_{11}}{1966080}\right) \\
& +\ldots+C_{2}^{8} C_{A}^{2}\left(-\frac{2158233 g_{533}}{5120}-\frac{852453151 \zeta_{3}^{2} \zeta_{5}}{2048}-\frac{1295244371839 \zeta_{11}}{655360}\right) \\
& +C_{2}^{9} C_{A}\left(\frac{6979863 g_{533}}{5120}+\frac{2225183081 \zeta_{3}^{2} \zeta_{5}}{2048}+\frac{741771390019 \zeta_{11}}{655360}\right) \\
& \left.+C_{2}^{10}\left(\frac{1094181 g_{533}}{2560}+\frac{2638860059 \zeta_{3}^{2} \zeta_{5}}{1024}+\frac{4498262900131 \zeta_{11}}{655360}\right)\right\}
\end{aligned}
$$

- Hard regions: only odd ζ_{n}, consistent with 2D wavefunction made of SVHPLs.
- Finite (hard) amplitude contains g_{533} at 11 loops:

$$
g_{5,3,3}=-\frac{4}{7} \zeta_{2}^{3} \zeta_{5}+\frac{6}{5} \zeta_{2}^{2} \zeta_{7}+45 \zeta_{2} \zeta_{9}+\zeta_{5,3,3}
$$

\rightarrow no exponentiation in terms of $\boldsymbol{\Gamma}$ functions.

TWO-REGGEON CUT: NUMERICAL STUDIES

- Applications: 3) numerical studies.
- The soft anomalous dimension has an infinite radius of convergence: entire function, free of singularities for any finite $x=\alpha_{s} / \pi L$.

Caron-Huot, Gardi,
Reichel, LV, 2017, 2020

- The finite amplitude is an alternating series, whose coefficients grows geometrically:

- Finite radius of convergence in $\alpha_{s} / \pi L$ that stabilises to $|R| \simeq 0.66$ for singlet, $|R| \simeq 0.24$ for 27 representation, by means of a Padé approximant (pole at $-|R|$).

THE THREE-REGGEON CUT

THE THREE-REGGEON CUT

- To all orders the amplitude takes the form

$$
\begin{aligned}
\frac{i}{2 s} \hat{\mathcal{M}}_{i j \rightarrow i j}^{(-), \mathrm{NNLL}} & =\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left\{r _ { \Gamma } ^ { 2 } \pi ^ { 2 } \left[\sum_{k=0}^{\infty} \frac{(-X)^{k}}{k!}\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}^{k}\left|i_{3}\right\rangle\right.\right. \\
& +\sum_{k=1}^{\infty} \frac{(-X)^{k}}{k!}\left[\left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1} \hat{H}_{3 \rightarrow 3}^{k-1}\left|i_{3}\right\rangle+\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}^{k-1} \hat{H}_{1 \rightarrow 3}\left|i_{1}\right\rangle\right] \\
& \left.\left.+\sum_{k=2}^{\infty} \frac{(-X)^{k}}{k!}\left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1} \hat{H}_{3 \rightarrow 3}^{k-2} \hat{H}_{1 \rightarrow 3}\left|i_{1}\right\rangle\right]^{\mathrm{LO}}+\left\langle j_{1} \mid i_{1}\right\rangle^{\mathrm{NNLO}}\right\}
\end{aligned}
$$

Falcioni, Gardi, Milloy, LV, 2020

- Graphically:

$\left\langle j_{3}\right|\left(\hat{H}_{3 \rightarrow 3}\right)^{k}\left|i_{3}\right\rangle$

THE THREE-REGGEON CUT

- Two and three loops:

- At four loops one needs to take into account:

$$
\begin{aligned}
\frac{i}{2 s} \hat{\mathcal{M}}^{(-, 4,2)}=\frac{r_{\Gamma}^{4} \pi^{2}}{2}[& \left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1} \hat{H}_{1 \rightarrow 3}\left|i_{1}\right\rangle+\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}^{2}\left|i_{3}\right\rangle \\
& \left.+\left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1} \hat{H}_{3 \rightarrow 3}\left|i_{3}\right\rangle+\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3} \hat{H}_{1 \rightarrow 3}\left|i_{1}\right\rangle\right]
\end{aligned}
$$

- 1) $3 \rightarrow 3$ transition: two independent contributions

- All integrals are massless 4-loops propagators: 「 functions or computed with FORCER.
- Problem: factorize the color structure in universal operators acting on the tree level amplitude, with

$$
\mathbf{T}_{s}=\mathbf{T}_{1}+\mathbf{T}_{2}, \quad \mathbf{T}_{t}=\mathbf{T}_{1}+\mathbf{T}_{4}, \quad \mathbf{T}_{u}=\mathbf{T}_{1}+\mathbf{T}_{3}
$$

THE THREE-REGGEON CUT

$\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}^{2}\left|i_{3}\right\rangle=\frac{1}{144}\left[\frac{\mathbf{C}_{33}^{(4,-4)}}{\epsilon^{4}}+\frac{2 f_{\epsilon}}{\epsilon} \mathbf{C}_{33}^{(4,-1)}+\mathcal{O}(\epsilon)\right]\left\langle j_{1} \mid i_{1}\right\rangle$,
with

$$
\begin{aligned}
& \mathbf{C}_{33}^{(4,-4)}=-6\left(6 C_{A}^{2}-17 C_{A} \mathbf{T}_{t}^{2}+6\left(\mathbf{T}_{t}^{2}\right)^{2}\right) \mathbf{C}_{33}^{(2)}-\frac{3}{4} \mathbf{T}_{s-u}^{2}\left(\mathbf{T}_{t}^{2}\right)^{2} \mathbf{T}_{s-u}^{2}+\frac{25}{144} C_{A}^{4}+\frac{1}{3} \frac{d_{A A}}{N_{A}}-3 C_{A}\left(d_{i}+d_{j}\right), \\
& \mathbf{C}_{33}^{(4,-1)}=-18\left(300 C_{A}^{2}-521 C_{A} \mathbf{T}_{t}^{2}+220\left(\mathbf{T}_{t}^{2}\right)^{2}\right) \mathbf{C}_{33}^{(2)}-101 \mathbf{C}_{33}^{(4,-4)} .
\end{aligned}
$$

- $f_{\epsilon}=\zeta_{3}+\frac{3}{2} \epsilon \zeta_{4}+\mathcal{O}\left(\epsilon^{2}\right)$ appears in every term at NNLL;
(Similar relations observed in Baikov, Chetyrkin, 2018)
- Color operators $\mathbf{T}_{\mathbf{t}}{ }^{2}$ and $\mathbf{T}_{\mathrm{s}-\mathrm{u}}{ }^{2}$ acting on $M^{(+)}$;
- Contribution of quartic Casimir.
- To all orders, terms with a single Reggeon are $\propto M^{(0)}$:

Falcioni, Gardi, Milloy, LV, 2020

$$
\begin{gathered}
\left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1} \hat{H}_{1 \rightarrow 3}\left|i_{1}\right\rangle=\frac{1}{432}\left[-\left(\frac{C_{A}^{4}}{12}+\frac{d_{A A}}{N_{A}}\right) \frac{1}{\epsilon^{4}}+\left(\frac{101}{6} C_{A}^{4}+220 \frac{d_{A A}}{N_{A}}\right) \frac{f_{\epsilon}}{\epsilon}+\mathcal{O}(\epsilon)\right]\left\langle j_{1} \mid i_{1}\right\rangle \\
\left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1} \hat{H}_{3 \rightarrow 3}\left|i_{3}\right\rangle=\frac{C_{A} d_{i}}{144}\left[\frac{1}{\epsilon^{4}}-208 \frac{f_{\epsilon}}{\epsilon}+\mathcal{O}(\epsilon)\right]\left\langle j_{1} \mid i_{1}\right\rangle
\end{gathered}
$$

THE THREE-REGGEON CUT

- The NNLL amplitude at four loops reads

Falcioni, Gardi,
Milloy, LV, 2020

$$
\hat{\mathcal{M}}^{(-, 4,2)}=\frac{r_{\Gamma}^{4} \pi^{2}}{144}\left[C_{\mathcal{M}}^{(-4)} \frac{1}{\epsilon^{4}}+C_{\mathcal{M}}^{(-1)} \frac{f_{\epsilon}}{\epsilon}+\mathcal{O}(\epsilon)\right] \mathcal{M}^{\text {Tree }}, \quad \text { with }
$$

$C_{\mathcal{M}}^{(-4)}=\frac{1}{2} \mathbf{C}_{33}^{(4,-4)}-\frac{C_{A}^{4}}{72}-\frac{1}{6} \frac{d_{A A}}{N_{A}}+\frac{1}{2} C_{A}\left(d_{i}+d_{j}\right), \quad C_{\mathcal{M}}^{(-1)}=\mathbf{C}_{33}^{(4,-1)}+\frac{101 C_{A}^{4}}{36}+\frac{110}{3} \frac{d_{A A}}{N_{A}}-104 C_{A}\left(d_{i}+d_{j}\right)$.
The result holds in every gauge theory.

- Applications: 1) extract infrared divergences. \rightarrow See talk by N. Maher
- Applications: 2) finite terms:
$\mathcal{H}^{(-, 4,2)}=\left\{\frac{C_{A}^{2}}{2}\left(\hat{\alpha}_{g}^{(2,0)}\right)^{2}+\frac{3}{16} \zeta_{4} \zeta_{2} C_{\Delta}^{(4)}\right\} \mathcal{M}^{\text {tree }}, \quad \mathbf{C}_{\Delta}^{(4,2)}=\frac{1}{4} \mathbf{T}_{t}^{2}\left[\mathbf{T}_{t}^{2},\left(\mathbf{T}_{s-u}^{2}\right)^{2}\right]+\frac{3}{4}\left[\mathbf{T}_{s-u}^{2}, \mathbf{T}_{t}^{2}\right] \mathbf{T}_{t}^{2} \mathbf{T}_{s-u}^{2}+\frac{d_{A A}}{N_{A}}-\frac{C_{A}^{4}}{24}$.
\rightarrow We can calculate it both in QCD and $\mathrm{N}=4 \mathrm{SYM}$!
- QCD:

$$
\mathcal{H}_{\mathrm{QCD}}^{(-, 4,2)}=\left\{C_{A}^{2} T_{F}^{2} n_{f}^{2} \frac{49}{1458}+C_{A}^{3} T_{F} n_{f}\left(\frac{7 \zeta_{3}}{216}-\frac{707}{2916}\right)+C_{A}^{4}\left(\frac{\zeta_{3}^{2}}{128}-\frac{101 \zeta_{3}}{864}+\frac{10201}{23328}\right)+\frac{3}{16} \zeta_{4} \zeta_{2} C_{\Delta}^{(4)}\right\} \mathcal{M}^{\text {tree }}
$$

- $N=4$ SYM (from QCD according to maximum trascendentality):

$$
\underset{\text { limit }}{\mathcal{H}_{\mathcal{N}=4}^{(-, 4,2)}=\left\{\frac{C_{A}^{4}}{128} \zeta_{3}^{2}+\frac{3}{16} \zeta_{4} \zeta_{2} C_{\Delta}^{(4)}\right\} \mathcal{M}^{\text {tree }} \dot{c}_{\text {New non-planar term, }}^{\text {proportional to } \Delta(4,2)}}
$$

Matches the large Nc limit

CONCLUSION

- Modern approach to high-energy scattering via Wilson lines:
\rightarrow new theoretical control up to NNLL.
$\rightarrow 2 \rightarrow 2$ amplitudes obtained by iteration of the Balitsky-JIMWLK Hamiltonian.
- Imaginary part at NLL obtained to all orders in the strong coupling:
\rightarrow Extracted the soft anomalous dimension to all orders;
\rightarrow Numerical studies on the convergence of the perturbative expansion.
- Real part at NNLL obtained up to four loops:
\rightarrow Extracted the corresponding term of the soft anomalous dimension;
\rightarrow Real part of the $2 \rightarrow 2$ amplitude in QCD and $\mathrm{N}=4$ SYM at four loops.

EXTRA SLIDES

TWO-REGGEON CUT: D=2

- Introduce complex variables

$$
\frac{k}{p}=\frac{z}{z-1}, \quad \frac{k^{\prime}}{p}=\frac{w}{w-1}
$$

- BFKL kernel in $D=2$:

$$
\hat{H}_{2 \mathrm{~d}}=\left(2 C_{A}-\mathbf{T}_{t}^{2}\right) \hat{H}_{2 \mathrm{~d}, \mathrm{i}}+\left(C_{A}-\mathbf{T}_{t}^{2}\right) \hat{H}_{2 \mathrm{~d}, \mathrm{~m}}
$$

- "Integration" part:

$$
\begin{aligned}
\hat{H}_{2 \mathrm{~d}, \mathrm{i}} & =\frac{1}{4 \pi} \int d^{2} w K(w, \bar{w}, z, \bar{z})[\Psi(w, \bar{w})-\Psi(z, \bar{z})] \\
K(w, \bar{w}, z, \bar{z}) & =\frac{1}{\bar{w}(z-w)}+\frac{2}{(z-w)(\bar{z}-\bar{w})}+\frac{1}{w(\bar{z}-\bar{w})}
\end{aligned}
$$

- "Multiplication" part:

$$
\hat{H}_{2 \mathrm{~d}, \mathrm{~m}}=\frac{1}{2} \log \left[\frac{z}{(1-z)^{2}} \frac{\bar{z}}{(1-\bar{z})^{2}}\right] \Psi(z, \bar{z})
$$

REGGE VS INFRARED FACTORISATION

- Early studies of constraints from soft-collinear factorisation, collinear limits, and the high-energy limit in Becher, Neubert, 2009; Dixon, Gardi, Magnea, 2009; Del Duca, Duhr, Gardi, Magnea, White, 2011; Neubert, LV, 2012;
- First evidence of "beyond dipole" contribution at four loops in Caron-Huot, 2013;
- Calculated a three loops in Almelid, Duhr, Gardi, 2015, 2016;
- Confirmed, in $2 \rightarrow 2$ scattering in N=4 SYM in Henn, Mistlberger, 2016;
- Confirmed, in the high energy limit, in Caron-Huot, Gardi, LV, 2017;

- Re-derived based on a bootstrap approach in Almelid, Duhr, Gardi, McLeod, White, 2017.

TWO-REGGEON CUT: IR SINGULARITIES

- Expand the soft anomalous dimension in the high-energy logarithm:

$$
\boldsymbol{\Gamma}\left(\alpha_{s}(\lambda)\right)=\boldsymbol{\Gamma}_{\mathrm{LL}}\left(\alpha_{s}(\lambda), L\right)+\boldsymbol{\Gamma}_{\mathrm{NLL}}\left(\alpha_{s}(\lambda), L\right)+\boldsymbol{\Gamma}_{\mathrm{NNLL}}\left(\alpha_{s}(\lambda), L\right)+\ldots
$$

- At LL gluon Reggeization fixes $\boldsymbol{\Gamma} \mathrm{L}$ from gluon trajectory:

$$
\Gamma_{\mathrm{LL}}\left(\alpha_{s}(\lambda)\right)=\frac{\alpha_{s}(\lambda)}{\pi} \frac{\gamma_{K}^{(1)}}{2} L \mathbf{T}_{t}^{2}=\frac{\alpha_{s}(\lambda)}{\pi} L \mathbf{T}_{t}^{2}
$$

- At NLL

$$
\boldsymbol{\Gamma}_{\mathrm{NLL}}=\boldsymbol{\Gamma}_{\mathrm{NLL}}^{(+)}+\boldsymbol{\Gamma}_{\mathrm{NLL}}^{(-)}
$$

- with

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{\mathrm{NLL}}^{(+)}=\frac{\alpha_{s}(\lambda)}{\pi} \sum_{i=1}^{2}\left(\frac{\gamma_{K}^{(1)}}{2} C_{i} \log \frac{-t}{\lambda^{2}}+2 \gamma_{i}^{(1)}\right)+\left(\frac{\alpha_{s}(\lambda)}{\pi}\right)^{2} \frac{\gamma_{K}^{(2)}}{2} L \mathbf{T}_{t}^{2} \\
& \boldsymbol{\Gamma}_{\mathrm{NLL}}^{(-)}=i \pi \frac{\alpha_{s}(\lambda)}{\pi} \mathbf{T}_{s-u}^{2}+O\left(\alpha_{s}^{4} L^{3}\right)
\end{aligned}
$$

TWO-REGGEON CUT: IR SINGULARITIES

- Derive an infrared-factorised representation of the reduced amplitude:

$$
\begin{aligned}
\hat{\mathcal{M}}_{\mathrm{NLL}}^{(+)}=\exp \left\{-\frac{\alpha_{s}(\mu)}{\pi} \frac{B_{0}(\epsilon)}{2 \epsilon} L \mathbf{T}_{t}^{2}\right\} & {\left[\mathbf{Z}_{\mathrm{NLL}}^{(-)}\left(\frac{s}{t}, \mu, \alpha_{s}(\mu)\right) \mathcal{H}_{\mathrm{LL}}^{(-)}\left(\left\{p_{i}\right\}, \mu, \alpha_{s}(\mu)\right)\right.} \\
& \left.+\mathbf{Z}_{\mathrm{LL}}^{(+)}\left(\frac{s}{t}, \mu, \alpha_{s}(\mu)\right) \mathcal{H}_{\mathrm{NLL}}^{(+)}\left(\left\{p_{i}\right\}, \mu, \alpha_{s}(\mu)\right)\right]
\end{aligned}
$$

No poles

- By matching we get the soft anomalous dimension to all orders:

$$
\Gamma_{\mathrm{NLL}}^{(-, \ell)}=\left.\frac{i \pi}{(\ell-1)!}\left(1-R\left(\frac{x}{2}\left(C_{A}-\mathbf{T}_{t}^{2}\right)\right) \frac{C_{A}}{C_{A}-\mathbf{T}_{t}^{2}}\right)^{-1}\right|_{x^{\ell-1}} \mathbf{T}_{s-u}^{2}
$$

with

$$
R(\epsilon)=\frac{\Gamma^{3}(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}-1=-2 \zeta_{3} \epsilon^{3}-3 \zeta_{4} \epsilon^{4}-6 \zeta_{5} \epsilon^{5}-\left(2 \zeta_{3}^{2}+10 \zeta_{6}\right) \epsilon^{6}+\ldots
$$

THE THREE-REGGEON CUT

- Outmost generators clearly associated with external particles

- At lowest order there is no ambiguity

with $\mathrm{T}_{s-u}^{2}=\left(\mathrm{T}_{s}^{2}-\mathrm{T}_{u}^{2}\right) / 2$.
- Starting at three loops one has entangled contributions, for which identities such as

are needed.

THE THREE-REGGEON CUT

- At two loops one has

Caron-Huot, Gardi, LV, 2017

$$
\left\langle j_{1} \mid i_{1}\right\rangle^{\mathrm{NNLO}}=\left(D_{i}^{(2)}+D_{j}^{(2)}+D_{i}^{(1)} D_{j}^{(1)}\right)\left\langle j_{1} \mid i_{1}\right\rangle
$$

and

$$
\left\langle j_{3} \mid i_{3}\right\rangle=-72\left(\frac{1}{\epsilon^{2}}-6 \epsilon f_{\epsilon}\right) \mathbf{C}_{33}^{(2)}\left\langle j_{1} \mid i_{1}\right\rangle, \quad f_{\epsilon} \equiv \zeta_{3}+\frac{3}{2} \epsilon \zeta_{4}+\mathcal{O}\left(\epsilon^{2}\right), \quad \mathbf{C}_{33}^{(2)} \equiv \frac{1}{24}\left(\left(\mathbf{T}_{s-u}^{2}\right)^{2}-\frac{C_{A}^{2}}{12}\right)
$$

- At three loops

$$
\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}\left|i_{3}\right\rangle=\left[\frac{1}{\epsilon^{3}}\left(C_{A}-\frac{5}{6} \mathbf{T}_{t}^{2}\right)+2 f_{\epsilon}\left(C_{A}-\frac{41}{6} \mathbf{T}_{t}^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)\right] \mathbf{C}_{33}^{(2)}\left\langle j_{1} \mid i_{1}\right\rangle
$$

and

$$
\begin{aligned}
& \left\langle j_{1}\right| \hat{H}_{3 \rightarrow 1}\left|i_{3}\right\rangle=\frac{1}{36}\left(\frac{1}{\epsilon^{3}}-70 f_{\epsilon}+\mathcal{O}\left(\epsilon^{2}\right)\right) d_{i}\left\langle j_{1} \mid i_{1}\right\rangle, \\
& d_{i} \equiv \frac{d_{A R_{i}}}{N_{R_{i}}} \frac{1}{C_{R_{i}}}, \quad d_{A R_{i}} \equiv \frac{1}{6} \sum_{\sigma \in \mathcal{S}_{3}} \operatorname{tr}\left(F^{a} F^{b} F^{c} F^{d}\right) \operatorname{tr}\left(\mathbf{T}^{a} \mathbf{T}^{\sigma(b)} \mathbf{T}^{\sigma(c)} \mathbf{T}^{\sigma(d)}\right) .
\end{aligned}
$$

THE THREE-REGGEON CUT

Falcioni, Gardi,
Milloy, LV, 2020

- Applications: 1) extract infrared divergences: from

$$
\mathcal{H}=\tilde{\mathbf{Z}}^{-1} e^{-H_{11} L} \hat{\mathcal{M}}, \quad \mathbf{Z}=\mathbf{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \boldsymbol{\Gamma}\right\}
$$

- We get

$$
\begin{array}{r}
\operatorname{Re}\left[\boldsymbol{\Delta}^{(4,2)}\right]=\frac{\zeta_{2} \zeta_{3}}{4}\left(-\frac{3}{8} \mathbf{T}_{s-u}^{2} \mathbf{T}_{t}^{2}\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s-u}^{2}\right]-\frac{9}{8}\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s-u}^{2}\right] \mathbf{T}_{t}^{2} \mathbf{T}_{s-u}^{2}\right. \\
\left.+\frac{3}{8}\left[\left(\mathbf{T}_{t}^{2}\right)^{2},\left(\mathbf{T}_{s-u}^{2}\right)^{2}\right]+\frac{d_{A A}}{N_{A}}-\frac{C_{A}^{4}}{24}\right) .
\end{array}
$$

- Manifestly non-planar (planar terms cancel in $\left(\frac{d_{A A}}{N_{A}}-\frac{C_{A}^{4}}{24}\right)$). New quartic Casimir.

