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NLO EW PDF fit with NNPDF: motivation

NNPDF4.0 – see Maria’s and
Michael/Shayan/Tommaso’s talk –
aims for . 1% accuracy/precision
Further improvement need previously neglected
contributions: theory uncertainties, NLO EW, . . .
NLO EW: never been done in a global (all processes)
and consistent way (correct data)
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Can include extreme phase-space regions with large
EW corrections: large M`` in Drell–Yan, large pT of
Z/W bosons, . . .→ constrain high x
These regions are going to be measured more precisely
in the future, e.g. predictions for CMS DY
L = 2.8 fb−1 @ 13TeV [CMS Collaboration]
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NLO EW in a PDF fit: What has to be done?

3 Theory: Need corrections in the form of interpolation grids: PineAPPL
interfaced with MG5_aMC@NLO, see [S. Carrazza, E.R. Nocera, C.S., M. Zaro]; now released in v3.1.0:
https://launchpad.net/mg5amcnlo
WIP: SHERPA/MCgrid [E. Bothmann et al.]
API available in C, C++, Fortran, Python, Rust

3 Data: Needs careful selection
no subtraction of FSR
no photon-initiated subtraction
proper observable definition

→ subset of NNPDF4.0’s LHC data + . . .

3 Write/test runcards for all PDF processes and . . .
7 Run them (WIP)
7 Implement changed data (WIP)
→ Run fit
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https://inspirehep.net/literature/1814432
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What is PineAPPL?

PineAPPL
A tool/library for storing PDF-independent theoretical predictions in interpolation grids [S. Carazza, E.R. Nocera, C.S., M. Zaro]

Typical setup:

MC generatorruncards

histograms Plots

1 write runcards for your process/distributions
2 MC generates histograms with PDFs baked-in
3 changing PDFs is slow—need to rerun everything

With PineAPPL:

MC generator

PineAPPL
interface

runcards

interpolation
grid (file)

histograms Plots

grids can be convolved with arbitrary PDF sets in a
matter of seconds
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Interpolation techniques and applications
Not a new idea:

APPLgrid [T. Carli et al.] or
fastNLO [T. Kluge, K. Rabbertz, M. Wobisch]

Interpolate PDFs fa(x) with kernels Li (x), x 7→ (0, 1):

fa(x) =
∞∑
i=1

f i
a Li (x)

Convolution turns into a sum:

dσ
dO =

∑
a

∫
dx fa(x)

dσa

dO (x) =
∑

a,i

f i
a Gi

Interpolation grid {Gi}∞i=1 indep. of PDFs:

Gi =
∫

dx Li (x)σa(x)

Applications of interpolation grids
input for PDF fits or
study impact of PDFs uncertainties of
observables

Why PineAPPL?
→ need support EW corrections

(any powers of α and/or αs)
performance becomes very important: more bins,
initial-states, scale variations . . .
powerful tooling (see later slides)
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Which EW corrections will be included for pp → `¯̀?
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LO:
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Z, γ
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3) O(α0
sα

4)

EW

EW
QCD

EW

NNLO QCD corrections included in PDF fits
→ include also higher-order α contributions in NNPDF 4.x

for all processes
check impact of the corrections,
be more inclusive, etc.

→ PineAPPL supports all higher-orders
O(αsα3) might become available at some point . . .
lots of progress → talks by A. Behring, A. Sankar, N. Rana, L. Buonocore, A. von Manteuffel
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Which EW corrections will be included for pp → tt̄?
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→ PineAPPL supports all higher-orders
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Which datasets do we fit? Final-state radiation (FSR) subtraction

`Born `Bare

`dressed

pre-FSR data/Born leptons: leptons “before they radiate”, calculated using shower inversion (PHOTOS), from
→ post-FSR data/dressed leptons: leptons with photons recombined around ∆Rf γ , typically ∆Rf γ = 0.1

bare leptons: non-collinear safe
dressing factors

Cdress =
dσpost-FSR/dO
dσpre-FSR/dO

can be very large, up to 50% in invariant mass distributions

pre-FSR data for comparisons with QCD-only theory predictions
→ post-FSR data for comparisons with EW corrections (up to one photon at NLO)

For some analyses post-FSR data (preferred choice) not published: double counting issue with pre-FSR data!
Often Cdress (+uncertainty) and pre-FSR dataset given ⇒ need to change systematic uncertainties!

→ NLO EW PDF dataset largely determinedy by whether dressed-lepton observables/post-FSR dataset is available
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Effects of FSR in Drell–Yan
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large distortions of the NLO
EW around the Z peak: QED
FSR
very large if bins are small
subtracted in data in pre-FSR
datasets
scale-variation band much
larger: interplay with theory
uncertainties in PDF
not described by FSR: weak
corrections for large M``

→ need full EW corrections

Experiments: please publish
(also) dressed-lepton
observables/post-FSR datasets
– we can’t use it otherwise
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Effects of FSR in Drell–Yan
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Effects of FSR in Drell–Yan
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t-channel single-top production
Not properly/easily definable at NLO EW (see also [R. Frederix, D. Pagani, I. Tsinikos]):

Analyses, e.g. [ATLAS collaboration], treat s-channels as irreducible background
will be included in NNPDF4.0
single-production at LO:

u

d̄

b

t

W+
u

b

d

t

W

but at NLO EW not (gauge-invariantly) separable:
u

γ

d

t
b

W
W+

u

γ

d

t

b
u

W+

→ ignore these datasets
probably not too important, but see [E.R. Nocera, M. Ubiali, C. Voisey]
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How can I use Madgraph5_aMC@NLO+PineAPPL?

1 Install Madgraph5_aMC@NLO: https://launchpad.net/mg5amcnlo
2 Install PineAPPL: https://github.com/N3PDF/pineappl
3 Example for generating the DY plot (next page) available at

https://github.com/N3PDF/pineappl/tree/master/examples/mg5amcnlo

only one line needs to be added in the mg5amc runcard (rhs)
No two-phase generation of the grids needed
Replaces the aMCfast [V. Bertone et al.] interface in Madgraph5_aMC@NLO v2.x
PineAPPL’s CLI allows to easily produce convolutions and plots

launch processname
[..]
set ptl = 25.0
set etal = 2.5
set mll_sf = 116
set req_acc_FO 0.001
set pineappl True
done
quit
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https://launchpad.net/mg5amcnlo
https://github.com/N3PDF/pineappl
https://github.com/N3PDF/pineappl/tree/master/examples/mg5amcnlo
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Example: DY plot
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$ pineappl --silent - lhapdf plot \
DY_14 . pineappl .lz4 \
210219 -01 -rs -nnpdf40 - baseline \
MSHT20nnlo_as118 \
CT18NNLO \
ABMP16als118_5_nnlo > plot.py

$ python3 plot.py

PDF uncertainties for
NNPDF 4.0 candidate fit
MSHT20
CT18 (only main set)
ABMP16

pull: weighted difference w.r.t.
NNPDF 4.0 in units of σ
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Summary

NLO EW corrections for PDF fits: upgrading the precision of PDF processes
PineAPPL: interpolation tool/library for storing PDF-independent theoretical predictions
https://github.com/N3PDF/pineappl

Built-in support in Madgraph5_aMC@NLO v3.1.0
data issues: FSR subtraction, photon-initiated subtraction, . . .

→ effectively determines the datasets we can use for the fit

Outlook:
We will publish grids for ATLAS/CMS/LHCb analyses (PDF processes) soon

→ PineAPPL already public and Open Source: https://n3pdf.github.io/pineappl

NLO EW PDF fit not too far away
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Interpolation grids
For PDF fitting we need PDF independent predictions. Use Lagrange interpolation,

fa(x1,Q2)fb(x2,Q2) ≈
∑
i,j,k

fa(xi ,Q2
k )fb(xj ,Q2

k )Li (x1)Lj (x2)Lk (Q2),

with Lagrange polynomials Li over the 3D grid
{

(xi , xj ,Q2
k )
}

i,j,k
. Insert into master formula:

dσ
dO =

∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2

∫ Q2
max

Q2
min

dQ2 fa(x1,Q2)fb(x2,Q2) dσab
dO (x1, x2,Q2,O)

=
∑
a,b

∑
i,j,k

∑
m,n

fa(xi ,Q2
k )fb(xj ,Q2

k )αm
s (Q2)αn dΣabijkmn

dO

where
dΣabijkmn

dO =
∫ 1

0
dx1

∫ 1

0
dx2

∫ Q2
max

Q2
min

dQ2 Li (x1)Lj (x2)Lk (Q2)
dσ(i,k)

ab
dO (x1, x2,Q2,O)

→ generate dΣabijkmn
dO once, perform PDF convolutions very quickly off-line
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Example: Σggij021/Σggij020, O(α2sα)/O(α2s ) for gg → tt̄ @ 8TeV

010203040
ya

0
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20

30

40

y b

δgg→tt̄(xa(ya), xb(yb), Q
2 = m2

t)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

no interpolation in ya, yb , or Q2

correction for ixs roughly −0.5%
ya/b(x) = − ln xa/b + 5(1− xa/b), y(1) = 0

lower left corner → production threshold
at threshold: Coulomb singularity
ya ↔ yb symmetry: initial-state symmetry of gg→ tt̄
negative correction for larger xa, xb
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Subtraction of photon–photon contribution

γ

γ

µ+

µ−

µ

γ

γ

µ+

µ−

µ

q

γ

µ+

µ−

q

µ

For ATLAS and CMS it seems to be standard procedure to subtract double-photon induced contributions:
The photon-induced process, γγ → `¯̀, is simulated at LO using Pythia 8 and the MRST2004qed PDF set.

I am not sure why this is done
This is a problem: proton contains photons, should be counted towards signal!
Size of the LO contribution can become significant in large-invariant-mass bins (3%) depending on the used
PDF—up to twice as large for pre-LUXQED photon PDFs
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Z transverse momentum
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NLO EW are artificially enhanced because of
normalisation
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scale variation is stabilised
still significant EW corrections, comparable to data
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