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Physics motivation

• Precise understanding of top quark. 

• Analytic form of 2-loop         amplitudes is important. What 
are the mathematical properties?  

• How complicated is the use of these amplitudes, i.e. 
numerical evaluation, stability etc?
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• Fully differential NNLO predictions for      production available 
for comparison with experimental data. [Bärnreuther, Czakon, Mitov, ’12]

[Czakon, Mitov, ’12][Czakon, Fiedler, Mitov,  ’13] [Czakon, Heymes, Mitov, ’15]. 

• Complete 2-loop amplitudes have been computed only 
numerically [Czakon, ’08] [Bärnreuther, Czakon, Fiedler, ’13] [Chen, Czakon, Poncelet, ’17] . 

• More complicated class of special functions begin to appear 
with amplitudes containing internal masses. 

• These functions have been identified to involve integrals over 
elliptic curves [Adams, E.C., Weinzierl, ’17] [Bogner, Schweitzer, Weinzierl, ’17] [Broedel, 

Duhr, Dulat, Marzucca, Penante, Tancredi, ’19] [Abreu, Becchetti, Duhr, Marzucca, ’19].

State of the art
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• We discuss a set of helicity amplitudes for top-quark pair 
production in the leading colour approximation. 

• A compact helicity amplitudes obtained by sampling Feynman 
diagrams with finite field arithmetic [Peraro, ’19]. 

• The helicity amplitudes contain complete information about top 
quark decays in the narrow width approximation. 

• One 2-loop integral topology containing two elliptic curves 
previously unknown presented. 

• Numerical evaluation of the amplitudes presented.

Highlights
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The setup 
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(L)(1t̄, 2t, 3g, 4g) + (3 $ 4)

�

A(1)(1t̄, 2t, 3g, 4g) = NcA
(1),1 +NlA

(1),Nl +NhA
(1),Nh ,

A(2)(1t̄, 2t, 3g, 4g) = N2
cA

(2),1 +NcNlA
(2),Nl +NcNhA

(2),Nh

+N2
l A

(2),N2
l +NlNhA

(2),NlNh +N2
hA

(2),N2
h



 

Solutions of all 1- and 2- loop MIs 
appearing in these can be expressed in 

terms of multiple polylogarithms [Bonciani, 
Ferroglia, Gehrmann, von Manteuffel, Studerus, ’13] 

[Mastrolia, Passera, Primo, Schubert, ’17]. 

For this 2-loop amplitude, 
MIs also involve elliptic 
generalisations & beyond 
[Adams, E.C., Weinzierl  , ’17,’18].

A(2),Nh
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Amplitude Reduction
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See also Bayu’s talk
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After colour ordering and helicity amplitude processing:

Suitable for IBP:

In terms of Master Integrals (MIs):

In terms of special functions:



Multiple polylogarithms (MPLs) [Goncharov, ’11]: 
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Iterated integrals

K. T. Chen, ’77
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Elliptic polylogarithms [Adams, Bogner, Weinzierl, ’14,’15] [Bloch, Vanhove, ’13] [Broedel, 
Duhr, Dulat, Tancredi, ’17] [Brown, Levin,’11]  

Dependence of iterated integrals on elliptic curves enter through the 
appearance of elliptic periods in the integration kernels in  
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Vladimir’s talk
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Canonical form for DEs

Find a basis that brings DEs to canonical form [Henn, ’13]. 

For algebraic cases (involving roots), transformation to a canonical form 
may involve:  algebraic functions in kinematic variables, period of the 
elliptic curve and their derivatives [Adams, Weinzierl, ’18]. 

For example, 
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MIs of topbox solved using DEs & expressed as iterated integrals in [Adams, E.C., 
Weinzierl, ’18]. 

DE system simplifies for                as well as for  

• For                MIs expressible in terms of MPLs. 

• For                MIs expressible in terms of iterated integrals of kernels of sunrise.
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New integrals

Feynman diagram contributing to         

leads to new MIs. 

Two integrals previously missing: 

Canonical DEs for these MIs: 

This family is also associated to elliptic curves due to sub-sectors from 
topbox. 

A(2),Nh

J21 = �✏4(1� y)M21,

J22 = �✏4
(1� x)2(1� y)

x
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Results
All four orders of      : 

The kernels are given by: 

Results for      given by:                                                                          
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Path decomposition formula,  

where 0-fold integrals are defined by 

Numerical evaluation

Z
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Need to make sure singularities of the kernels taken into account. 

Properties of integrals often make evident which path to choose.                                     

(see also Martijn’s talk)
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Use the properties of iterated integrals.

Series expand the kernels around some points to compute iterated integrations.



For Euclidean region,  

we may choose 

Series expand the kernels along b. 

Use path decomposition formula iteratively for points far away.

Euclidean region
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a := dy = 0, b := dx = 0
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We check the results in this region by comparing the numerical results for the 
squared matrix element against an independent computation.



Physical region

Analytic continuation of integrals around physical branch points needed. 

Use multiple (1-dimensional) path segments and use series expansion of 
integrands on each. 

We evaluate at the point 

take the path shown, using the path decomposition formula recursively.
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• We were able to analytically continue all the integrals associated with 
elliptic curves a and b to the physical region. 

• For the MIs containing curve c, we use             and                                    

• We compared the finite remainder of the squared matrix element at the 
physical point  against [Bärnreuther, Czakon, Fiedler, ’13] and found good 
agreement.

FIESTA pySecDec.
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Results for the physical region



Lessons

• The choice of number of path segments and their sizes is important. 

• Analytic continuation of integrals depending on multiple elliptic curves 
not straightforward. 

• Numerical evaluation in other regions needs automation. 

• Stable and efficient evaluation over the whole physical scattering regions 
still needs work.
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Summary & Outlook

• First analytic results of 2-loop        amplitude with top quark loops. 

• New integrals containing elliptic curves found and evaluated. 

• Explored an approach for a direct numerical evaluation of iterated 
integrals with highly nontrivial kernels. 

• Complications involved in analytic continuation of integrals with multiple 
elliptic curves studied. 

• Construction of a nicer basis of transcendental function to remove some 
observed redundancy is under examination.
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Thanks!


