THREE-LOOP AMPLITUDES IN MASSLESS QCD

Radcor-Loopfest 2021 21/05/2021

based on work with F. Caola, A. von Manteuffel, A. Chakraborty, G. Gambuti, P. Bargiela, T. Peraro [arXiv:2011.13946, and arXiv:1906.03298 $+\underline{\text { arXiv:2012.00820 }}$ and more to come]

Lorenzo Tancredi - University of Oxford

RADIATIVE CORRECTIONS

Developments in fixed-order calculations at the center of Radcor-Loopfest

$$
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}
$$

$$
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
$$

RADIATIVE CORRECTIONS

$$
\begin{gathered}
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2} \\
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
\end{gathered}
$$

In the last 10-20 years, much effort dedicated to understand two-loop scattering amplitudes in QCD with the goal of breaking the NNLO frontier for $2 \rightarrow 2$ processes

In parallel, first impressive results for $\mathrm{N}^{3} \mathrm{LO}$ for $2 \rightarrow 1$ (Higgs and Drell-Yan)

RADIATIVE CORRECTIONS

$$
\begin{gathered}
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2} \\
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
\end{gathered}
$$

Complex 2 loop 4-point graphs + IR subtraction

Double Virtual

Real Virtual

Double Real

WHAT HAVE WE LEARNED?

phenomenology and SM physics

Standard Model Total Production Cross Section Measurements Status: July 2018

Rediscovered the SM, discovered the Higgs, and started doing precision physics

Vector bosons, top quarks, Higgs couplings, jets, heavy flavours...

WHAT HAVE WE LEARNED?

phenomenology and SM physics

Standard Model Total Production Cross Section Measurements Staus: July 2018

Rediscovered the SM, discovered the Higgs, and started doing precision physics

Vector bosons, top quarks, Higgs couplings, jets, heavy flavours...

formal developments

structure of scattering amplitudes:

- unitarity, recursion relations, spinor helicity, color ordering, IBPs, DEs,...

(a)

(b)

Special functions in PQFT:

- connections with algebraic geometry and number theory, polylogs, elliptic stuff, CYs, iterated integrals..

$$
\begin{aligned}
G\left(c_{1}, c_{2}, \ldots, c_{n}, x\right) & =\int_{0}^{x} \frac{d t_{1}}{t_{1}-c_{1}} G\left(c_{2}, \ldots, c_{n}, t_{1}\right) \\
& =\int_{0}^{x} \frac{d t_{1}}{t_{1}-c_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-c_{2}} \ldots \int_{0}^{t_{n-1}} \frac{d t_{n}}{t_{n}-c_{n}}
\end{aligned}
$$

IR divergences, factorisation in QCD , resummation, effective field theory...

BEYOND NNLO FOR 2->2 there is still a lot to learn

Just scratching the surface...!

Progress towards NNLO QCD corrections to $2 \rightarrow 3$ processes dominated this conference

See talks by: B. Page, H. Chawdhry, F. Buccioni, V
Sotnikov, N. Syrrakos, C. Papadopoulos, R. Poncelet, H.
Hartanto,...

BEYOND NNLO FOR 2->2 there is still a lot to learn

Just scratching the surface...!

Progress towards NNLO QCD corrections to $2 \rightarrow 3$ processes dominated this conference

> See talks by: B. Page, H. Chawdhry, F. Buccioni, V Sotnikov, N. Syrrakos, C. Papadopoulos, R. Poncelet, H. Hartanto,...

A bit less about $\mathrm{N}^{3} \mathrm{LO}$ for $2 \rightarrow 2$
See talks by: X Chen, D. Canko,...

BEYOND NNLO FOR 2->2 there is stlll a lot to learn

Just scratching the surface...!

Progress towards NNLO QCD corrections to $2 \rightarrow 3$ processes dominated this conference

> See talks by: B. Page, H. Chawdhry, F. Buccioni, V Sotnikov, N. Syrrakos, C. Papadopoulos, R. Poncelet, H. Hartanto,...

A bit less about $\mathrm{N}^{3} \mathrm{LO}$ for $2 \rightarrow 2$
See talks by: X Chen, D. Canko,...

IR singularities and new sources for possible factorisation breaking (di-jet / t $\bar{t} @ \mathrm{~N}^{3} \mathrm{LO} . .$.)

New challenges from pushing methods to compute scattering amplitudes from two to three loops:

Higher combinatorial complexity, new special functions and new geometries, discontinuities (bootstrap?)...

BEYOND NNLO FOR 2->2 there is stlll a lot to learn

Just scratching the surface...!

Progress towards NNLO QCD corrections to $2 \rightarrow 3$ processes dominated this conference

> See talks by: B. Page, H. Chawdhry, F. Buccioni, V Sotnikov, N. Syrrakos, C. Papadopoulos, R. Poncelet, H. Hartanto,...

A bit less about $\mathrm{N}^{3} \mathrm{LO}$ for $2 \rightarrow 2$
See talks by: X Chen, D. Canko,...

IR singularities and new sources for possible factorisation breaking (di-jet / t $\bar{t} @ \mathrm{~N}^{3} \mathrm{LO} . .$.)

New challenges from pushing methods to compute scattering amplitudes from two to three loops:

Higher combinatorial complexity, new special functions and new geometries, discontinuities (bootstrap?)..

SCATTERING AMPLITUDES AT 3 LOOPS

Some results for 3 loop amplitudes in SUSY known ($\mathrm{N}=4, \mathrm{~N}=8$ SUGRA, etc..)
[Henn, Mistlberger '19,'20]

SCATTERING AMPLITUDES AT 3 LOOPS

Some results for 3 loop amplitudes in SUSY known ($\mathrm{N}=4, \mathrm{~N}=8$ SUGRA, etc..)
[Henn, Mistlberger '19,'20]

Simplest, non-trivial place to start investigations of three loop amplitudes in QCD
$q \bar{q} \rightarrow \gamma \gamma$ non trivial for various reasons:

- Relatively large number of Feynman diagrams (~3000)
- Very non trivial IBP reduction needed (rank-6 10 propagator NPL integrals)

But still relatively simple

- Simple functions: 4 point massless @ 3 loops can be expressed in terms of HPLs
- simpler color correlations and simpler IR structure than, say, $g g \rightarrow g g$

DI-PHOTON AS OF TODAY

The production of two photons has received a lot of attention

- One- and Two-loop scattering amplitudes known for 20 years
[Anastasiou et al '00; Bern et al '00,'01,'03; Glover et al. '00,'01,'03, ...]
- NNLO inclusive and recently exclusive over final state radiation
[Catani, et al '11, '13, Campbel et al '16] [Chawdhry et al '21]
- Various degrees of sophistication (resummation, PS, etc) [Alioli, et al ' 10 ...] [Gehrmann et al '20]

Important background for Higgs + New Physics
Clean final state, high production rate, etc
Interesting theory/exp questions: (IR sensitivity cone isolation...) [Gehrmann et al '20]

TOWARDS DIPHOTON AT 3 LOOPS (and nzlo)

Consider the production of 2 photons in quark-antiquark annihilation

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{3}\right)+\gamma\left(p_{4}\right), \quad \text { with } \quad p_{i}^{2}=0
$$

$$
s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}, \quad \text { and } \quad x=-t / s \longrightarrow s>0, \quad t<0 \quad 0<x<1
$$

TOWARDS DIPHOTON AT 3 LOOPS (and nzlo)

Consider the production of 2 photons in quark-antiquark annihilation
$q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{3}\right)+\gamma\left(p_{4}\right)$, with $p_{i}^{2}=0$
$s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}, \quad$ and $\quad x=-t / s \longrightarrow s>0, \quad t<0 \quad 0<x<1$

Interesting analytic structure, no Euclidean region
[Smirnov '99; Smirnov, Veretin '00; Tausk '00]
[Anastasiou, Gehrmann, Oleari, Remiddi, Tausk '00]

THE HELICITY AMPLITUDES IN ‘THV

To compute helicity amplitudes, start from generic tensor decomposition in d-dim

$$
\mathscr{A}(s, t)=\sum_{i=1}^{5} \mathscr{F}_{i}(s, t) T_{i}
$$

$$
\begin{gathered}
T_{i}=\bar{u}\left(p_{2}\right) \Gamma_{i}^{\mu \nu} u\left(p_{1}\right) \epsilon_{3, \mu} \epsilon_{4, \nu} \\
\Gamma_{1}^{\mu \nu}=\gamma^{\mu} p_{2}^{\nu}, \quad \Gamma_{2}^{\mu \nu}=\gamma^{\nu} p_{1}^{\mu} \\
\Gamma_{3}^{\mu \nu}=\not p_{3} p_{1}^{\mu} p_{2}^{\nu}, \Gamma_{4}^{\mu \nu}=\not p_{3} g^{\mu \nu} \\
\Gamma_{5}^{\mu \nu}=\gamma^{\mu} \not p_{3} \gamma^{\nu} .
\end{gathered}
$$

THE HELICITY AMPLITUDES IN ‘THV

To compute helicity amplitudes, start from generic tensor decomposition in d-dim

$$
\mathscr{A}(s, t)=\sum_{i=1}^{5} \mathscr{F}_{i}(s, t) T_{i}
$$

$$
\begin{gathered}
T_{i}=\bar{u}\left(p_{2}\right) \Gamma_{i}^{\mu \nu} u\left(p_{1}\right) \epsilon_{3, \mu} \epsilon_{4, \nu} \\
\Gamma_{1}^{\mu \nu}=\gamma^{\mu} p_{2}^{\nu}, \quad \Gamma_{2}^{\mu \nu}=\gamma^{\nu} p_{1}^{\mu} \\
\Gamma_{3}^{\mu \nu}=\not p_{3} p_{1}^{\mu} p_{2}^{\nu}, \Gamma_{4}^{\mu \nu}=\not p_{3} g^{\mu \nu} \\
\Gamma_{5}^{\mu \nu}=\gamma^{\mu} \not p_{3} \gamma^{\nu} .
\end{gathered}
$$

Helicity amplitudes in tHV can be computed by fixing helicities on the tensors in $\mathrm{d}=4$

$$
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}}(s, t)=\sum_{i=1}^{5} \mathscr{F}_{i}(s, t)\left[T_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}
$$

THE HELICITY AMPLITUDES IN ‘THV

To compute helicity amplitudes, start from generic tensor decomposition in d-dim

$$
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}}(s, t)=\sum_{i=1}^{5} \mathscr{F}_{i}(s, t)\left[T_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}
$$

One of five tensors is not independent in $\mathrm{d}=4$

$$
\downarrow
$$

$$
\lim _{d \rightarrow 4}\left(T_{5}-\frac{u}{s} T_{1}+\frac{u}{s} T_{2}-\frac{2}{s} T_{3}+T_{4}\right)=0
$$

THE HELICITY AMPLITUDES IN ‘THV

To compute helicity amplitudes, start from generic tensor decomposition in d-dim

$$
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}}(s, t)=\sum_{i=1}^{5} \mathscr{F}_{i}(s, t)\left[T_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}
$$

One of five tensors is not independent in $\mathrm{d}=4$ evanescent tensor structure

$$
\lim _{d \rightarrow 4}\left(T_{5}-\frac{u}{s} T_{1}+\frac{u}{s} T_{2}-\frac{2}{s} T_{3}+T_{4}\right)=0
$$

$$
\begin{aligned}
& \bar{T}_{i}=T_{i}, \quad i=1, \ldots, 4, \\
& \bar{T}_{5}=T_{5}-\frac{u}{s} T_{1}+\frac{u}{s} T_{2}-\frac{2}{s} T_{3}+T_{4}
\end{aligned}
$$

PROJECTORS IN 'T HOOFT-VELTMAN

In new basis of tensors, by definition only first four contribute to hel amplitudes

$$
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}}(s, t)=\sum_{i=1}^{5} \overline{\mathscr{F}}_{i}(s, t)\left[\bar{T}_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}=\sum_{i=1}^{4} \overline{\mathscr{F}}_{i}(s, t)\left[\bar{T}_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}+\mathcal{O}(\epsilon)
$$

PROJECTORS IN 'T HOOFT-VELTMAN

In new basis of tensors, by definition only first four contribute to hel amplitudes

$$
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}}(s, t)=\sum_{i=1}^{5} \overline{\mathscr{F}}_{i}(s, t)\left[\bar{T}_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}=\sum_{i=1}^{4} \overline{\mathscr{F}}_{i}(s, t)\left[\bar{T}_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}+\mathcal{O}(\epsilon)
$$

Derive projector operators for these tensors

$$
\begin{aligned}
& \mathcal{P}_{i}=\sum_{k=1}^{5} c_{i k} \bar{T}_{k}^{\dagger} \quad \sum_{p o l} \mathcal{P}_{i} \mathcal{A}(s, t)=\overline{\mathcal{F}}_{i}(s, t) \quad M_{i j}=\sum_{p o l} \bar{T}_{i}^{\dagger} \bar{T}_{j} \quad c_{i k}=\left(M^{-1}\right)_{i k}
\end{aligned}
$$

PROJECTORS IN 'T HOOFT-VELTMAN

In new basis of tensors, by definition only first four contribute to hel amplitudes

$$
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}}(s, t)=\sum_{i=1}^{5} \overline{\mathscr{F}}_{i}(s, t)\left[\bar{T}_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}=\sum_{i=1}^{4} \overline{\mathscr{F}}_{i}(s, t)\left[\bar{T}_{i}\right]_{\lambda_{q} \lambda_{3} \lambda_{4}, d=4}+\mathcal{O}(\epsilon)
$$

Derive projector operators for these tensors

$$
\begin{gathered}
\mathcal{P}_{i}=\sum_{k=1}^{5} c_{i k} \bar{T}_{k}^{\dagger} \quad \sum_{p o l} \mathcal{P}_{i} \mathcal{A}(s, t)=\overline{\mathcal{F}}_{i}(s, t) \quad M_{i j}=\sum_{p o l} \bar{T}_{i}^{\dagger} \bar{T}_{j} \quad c_{i k}=\left(M^{-1}\right)_{i k} \\
M^{-1}=\frac{1}{(d-3)(s+u)}\left(\begin{array}{cc}
X & 0 \\
0 & -\frac{1}{2 u(d-4)}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
-\frac{u}{2 s^{2}} & 0 & -\frac{u}{2 s^{2}(s+u)} \\
0 & -\frac{u}{2 s^{2}} & \frac{1}{2 s^{2}(s+u)} \\
-\frac{u}{2 s^{2}(s+u)} & \frac{u}{2 s^{2}(s+u)} & -\frac{d^{2}+4 s^{2}+4 s u}{2 s^{2} 2(s+u)^{2}} \\
0 & \frac{2 s+u}{2 s u(s+u)} \\
2 s u+u \\
2 s u(s+u) & -\frac{1}{2 u}
\end{array}\right) \\
\begin{array}{c}
\text { evanescent tensor } \\
\text { structure }
\end{array}
\end{gathered}
$$

‘THV VS CDR

With this choice, fifth tensor required to recover CDR result starting at $\mathcal{O}(\epsilon)$

$$
\begin{aligned}
\frac{1}{N_{c}} \sum_{p o l, c o l} \mathcal{A}^{(n)} \mathcal{A}^{(m) *} & =\frac{2(s-t) t}{u} \overline{\mathcal{F}}_{4}^{(n)}\left[-s \overline{\mathcal{F}}_{1}^{(m) *}+s \overline{\mathcal{F}}_{2}^{(m) *}-s t \overline{\mathcal{F}}_{3}^{(m) *}-\frac{2 \overline{\mathcal{F}}_{4}^{(m) *}\left(-s^{2}-t^{2}+u^{2} \epsilon\right)}{(s-t)}\right] \\
& +\frac{2 s t}{u} \overline{\mathcal{F}}_{1}^{(n)}\left[-2 s(\epsilon-1) \overline{\mathcal{F}}_{1}^{(m) *}-s \overline{\mathcal{F}}_{2}^{(m) *}+s t \overline{\mathcal{F}}_{3}^{(m) *}-\overline{\mathcal{F}}_{4}^{(m) *}(s-t)\right] \\
& +\frac{2 s t}{u} \overline{\mathcal{F}}_{2}^{(n)}\left[-s \overline{\mathcal{F}}_{1}^{(m) *}-2 s(\epsilon-1) \overline{\mathcal{F}}_{2}^{(m) *}-s t \overline{\mathcal{F}}_{3}^{(m) *}+\overline{\mathcal{F}}_{4}^{(m) *}(s-t)\right] \\
& +\frac{2 s t^{2}}{u} \overline{\mathcal{F}}_{3}^{(n)}\left[s \overline{\mathcal{F}}_{1}^{(m) *}-s \overline{\mathcal{F}}_{2}^{(m) *}+s t \overline{\mathcal{F}}_{3}^{(m) *}-\overline{\mathcal{F}}_{4}^{(m) *}(s-t)\right] \\
& +4 t u \epsilon(2 \epsilon-1) \overline{\mathcal{F}}_{5}^{(m) *} \overline{\mathcal{F}}_{5}^{(n)}
\end{aligned}
$$

\mathscr{F}_{5} only contributes starting at $\mathcal{O}(\epsilon)$

‘THV VS CDR

With this choice, fifth tensor required to recover CDR result starting at $\mathcal{O}(\epsilon)$

$$
\begin{aligned}
\frac{1}{N_{c}} \sum_{p o l, c o l} \mathcal{A}^{(n)} \mathcal{A}^{(m) *} & =\frac{2(s-t) t}{u} \overline{\mathcal{F}}_{4}^{(n)}\left[-s \overline{\mathcal{F}}_{1}^{(m) *}+s \overline{\mathcal{F}}_{2}^{(m) *}-s t \overline{\mathcal{F}}_{3}^{(m) *}-\frac{2 \overline{\mathcal{F}}_{4}^{(m) *}\left(-s^{2}-t^{2}+u^{2} \epsilon\right)}{(s-t)}\right] \\
& +\frac{2 s t}{u} \overline{\mathcal{F}}_{1}^{(n)}\left[-2 s(\epsilon-1) \overline{\mathcal{F}}_{1}^{(m) *}-s \overline{\mathcal{F}}_{2}^{(m) *}+s t \overline{\mathcal{F}}_{3}^{(m) *}-\overline{\mathcal{F}}_{4}^{(m) *}(s-t)\right] \\
& +\frac{2 s t}{u} \overline{\mathcal{F}}_{2}^{(n)}\left[-s \overline{\mathcal{F}}_{1}^{(m) *}-2 s(\epsilon-1) \overline{\mathcal{F}}_{2}^{(m) *}-s t \overline{\mathcal{F}}_{3}^{(m) *}+\overline{\mathcal{F}}_{4}^{(m) *}(s-t)\right] \\
& +\frac{2 s t^{2}}{u} \overline{\mathcal{F}}_{3}^{(n)}\left[s \overline{\mathcal{F}}_{1}^{(m) *}-s \overline{\mathcal{F}}_{2}^{(m) *}+s t \overline{\mathcal{F}}_{3}^{(m) *}-\overline{\mathcal{F}}_{4}^{(m) *}(s-t)\right] \\
& +4 t u \epsilon(2 \epsilon-1) \overline{\mathcal{F}}_{5}^{(m) * \overline{\mathcal{F}}_{5}^{(n)}},
\end{aligned}
$$

THE HELICITY AMPLITUDES

Fixing the helicities on the remaining tensors, we find in spinor-helicity

$$
\begin{array}{ll}
\mathcal{A}_{L--}=\frac{2[34]^{2}}{\langle 13\rangle[23]} \alpha(x), & \mathcal{A}_{L-+}=\frac{2\langle 24\rangle[13]}{\langle 23\rangle[24]} \beta(x), \\
\mathcal{A}_{L+-}=\frac{2\langle 23\rangle[41]}{\langle 24\rangle[32]} \gamma(x), & \mathcal{A}_{L++}=\frac{2\langle 34\rangle^{2}}{\langle 31\rangle[23]} \delta(x)
\end{array}
$$

$$
\begin{array}{ll}
\alpha(x)=\frac{t}{2}\left(\overline{\mathcal{F}}_{2}-\frac{t}{2} \overline{\mathcal{F}}_{3}+\overline{\mathcal{F}}_{4}\right), & \\
\beta(x)=\frac{t}{2}\left(\frac{s}{2} \overline{\mathcal{F}}_{3}+\overline{\mathcal{F}}_{4}\right), & \alpha^{(0)}(x)=\delta^{(0)}(x)=0 \\
\gamma(x)=\frac{s t}{2 u}\left(\overline{\mathcal{F}}_{2}-\overline{\mathcal{F}}_{1}-\frac{t}{2} \overline{\mathcal{F}}_{3}-\frac{t}{s} \overline{\mathcal{F}}_{4}\right) & \beta^{(0)}(x)=\gamma^{(0)}(x)=1 \\
\delta(x)=\frac{t}{2}\left(\overline{\mathcal{F}}_{1}+\frac{t}{2} \overline{\mathcal{F}}_{3}-\overline{\mathcal{F}}_{4}\right) . &
\end{array}
$$

$$
\gamma(x)=\beta(1-x), \delta(x)=-\alpha(x), \alpha(1-x)=-\alpha(x)
$$

3LOOP INFRARED POLES afieruv eneorallisation

UV-ren helicity amplitudes and form factors can be computed as series in α_{s}

$$
\overline{\mathcal{F}}_{i}=\delta_{k l}(4 \pi \alpha) e_{q}^{2} \sum_{k=0}^{3}\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{k} \overline{\mathcal{F}}_{i}^{(k)}
$$

IR poles follow general factorisation formula [Catani '99; Becher, Neubert '13,...]

$$
\begin{aligned}
& \overline{\mathcal{F}}_{i}^{(1)}=\mathcal{I}_{1} \overline{\mathcal{F}}_{i}^{(0)}+\overline{\mathcal{F}}_{i}^{(1, \mathrm{fin})}, \\
& \overline{\mathcal{F}}_{i}^{(2)}=\mathcal{I}_{2} \overline{\mathcal{F}}_{i}^{(0)}+\mathcal{I}_{1} \overline{\mathcal{F}}_{i}^{(1)}+\overline{\mathcal{F}}_{i}^{(2, \mathrm{fin})}, \\
& \overline{\mathcal{F}}_{i}^{(3)}=\mathcal{I}_{3} \overline{\mathcal{F}}_{i}^{(0)}+\mathcal{I}_{2} \overline{\mathcal{F}}_{i}^{(1)}+\mathcal{I}_{1} \overline{\mathcal{F}}_{i}^{(2)}+\overline{\mathcal{F}}_{i}^{(3, \mathrm{fin})} \\
& \mathcal{I}_{1}=\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\Gamma_{0}}{2 \epsilon}, \\
& \mathcal{I}_{2}=-\frac{\mathcal{I}_{1}^{2}}{2}-\frac{\beta_{0}}{2 \epsilon}\left(\mathcal{I}_{1}+\frac{\Gamma_{0}^{\prime}}{8 \epsilon^{2}}\right)+\frac{\Gamma_{1}^{\prime}}{16 \epsilon^{2}}+\frac{\Gamma_{1}}{4 \epsilon}, \\
& \mathcal{I}_{3}=-\frac{\mathcal{I}_{1}^{3}}{3}-\mathcal{I}_{1} \mathcal{I}_{2}+\frac{\beta_{0}^{2} \Gamma_{0}^{\prime}}{36 \epsilon^{4}}-\frac{\beta_{0}}{3 \epsilon}\left(\mathcal{I}_{1}^{2}+2 \mathcal{I}_{2}+\frac{\Gamma_{1}^{\prime}}{12 \epsilon^{2}}\right)-\frac{\beta_{1}}{3 \epsilon}\left(\mathcal{I}_{1}+\frac{\Gamma_{0}^{\prime}}{12 \epsilon^{2}}\right)+\frac{\Gamma_{2}^{\prime}}{36 \epsilon^{2}}+\frac{\Gamma_{2}}{6 \epsilon},
\end{aligned}
$$

A LOOK AT THE RESULTS

Reduction to Master Integrals very non-trivial (10 denominators, rank 6)

- performed with Finred, private implementation by A. von Manteuffel

Helicity amplitudes in "d dimensions" (tHV) expressed in terms of 486 masters integrals

A LOOK AT THE RESULTS

Reduction to Master Integrals very non-trivial (10 denominators, rank 6)

- performed with Finred, private implementation by A. von Manteuffel

Helicity amplitudes in "d dimensions" (tHV) expressed in terms of 486 masters integrals

MIs are "simple", can be computed in terms HPLs with indices $\{0,1\}$

- BUT large number, non trivial boundary conditions and canonical basis
[Henn, Mistlberger, Smirnov, Wasser '20]

Interesting observation: when expanding in $d \sim 4$, finite remainder expressed in terms of weight 6 HPLs —> there are at most 146 such functions

Impressive generalisation of \mathbf{n} point -> boxes,triangles, bubbles and tadpoles @ 1 loop!

A LOOK AT THE RESULTS

Three-loop corrections helicity amplitudes can be written, schematically, as

$$
\begin{aligned}
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}} & =N_{f}^{2} C_{F} A_{1}(x)+N_{f}\left[C_{F} C_{A} A_{2}(x)+C_{F}^{2} A_{3}(x)\right]+N_{\gamma \gamma}\left[C_{A} C_{F} A_{4}(x)+C_{F}^{2} A_{5}(x)+C_{F} N_{f} A_{6}(x)+\frac{d_{a b c} d_{a b c}}{N_{c}} A_{7}(x)\right] \\
& +C_{A}^{2} C_{F} A_{8}(x)+C_{A} C_{F}^{2} A_{9}(x)+C_{F}^{3} A_{10}(x)
\end{aligned}
$$

Where each of the $A_{i}(x)$ is has the expansion

$$
A_{i}(x)=A_{i}^{[0]}(x)+\frac{1}{x} B_{i}^{[-1]}(x)+x B_{i}^{[1]}(x)+x^{2} B_{i}^{[2]}(x)+\frac{1}{1-x} C_{i}^{[-1]}(x)+\frac{1}{(1-x)^{2}} C_{i}^{[-2]}(x)
$$

A LOOK AT THE RESULTS

Three-loop corrections helicity amplitudes can be written, schematically, as

$$
\begin{aligned}
\mathscr{A}_{\lambda_{q} \lambda_{3} \lambda_{4}} & =N_{f}^{2} C_{F} A_{1}(x)+N_{f}\left[C_{F} C_{A} A_{2}(x)+C_{F}^{2} A_{3}(x)\right]+N_{\gamma \gamma}\left[C_{A} C_{F} A_{4}(x)+C_{F}^{2} A_{5}(x)+C_{F} N_{f} A_{6}(x)+\frac{d_{a b c} d_{a b c}}{N_{c}} A_{7}(x)\right] \\
& +C_{A}^{2} C_{F} A_{8}(x)+C_{A} C_{F}^{2} A_{9}(x)+C_{F}^{3} A_{10}(x)
\end{aligned}
$$

Where each of the $A_{i}(x)$ is has the expansion

$$
A_{i}(x)=A_{i}^{[0]}(x)+\frac{1}{x} B_{i}^{[-1]}(x)+x B_{i}^{[1]}(x)+x^{2} B_{i}^{[2]}(x)+\frac{1}{1-x} C_{i}^{[-1]}(x)+\frac{1}{(1-x)^{2}} C_{i}^{[-2]}(x)
$$

14 classical polylogs

$$
A_{i}^{[0]}(x), B_{i}^{[n]}(x), C_{i}^{[n]}(x) \longrightarrow \quad \operatorname{Li}_{\mathrm{n}}(\mathrm{r}(\mathrm{x})) \quad \begin{gathered}
\mathrm{Li}_{3,2}(x, 1), \operatorname{Li}_{3,2}(1-x, 1), \operatorname{Li}_{3,2}(1, x), \\
\operatorname{Li}_{3,3}(x, 1), \operatorname{Li}_{3,3}(1-x, 1), \operatorname{Li}_{3,3}(x /(x-1), 1), \\
\operatorname{Li}_{4,2}(x, 1), \operatorname{Li}_{4,2}(1-x, 1), \operatorname{Li}_{2,2,2}(x, 1,1),
\end{gathered}
$$

NUMERICAL RESULTS

In particular written in this second form, numerical evaluation is instantaneous

CONCLUSIONS

> In the last 20 years, impressive results for 2 and 3 loop amplitudes in QCD
> In particular, understanding $2 \rightarrow 2$ @ 2 loops crucial for LHC

- With control of IR divergences \rightarrow NNLO in QCD possible
> Interest has moved towards $2 \rightarrow 3$ @ 2 loops, impressive results both for amplitudes and pheno
$>2 \rightarrow 2$ @ 3 loops equally interesting, could help elucidate new properties of scattering amplitudes
> Calls for more for more profound understanding of pQFT to control intermediate expressions and avoid extra complexity purely d dimensional

THANK YOU FOR YOUR ATTENTION,
AND THANKS TO THE ORGANISERS FOR THE GREAT CONFERENCE!

BACK UP

3LOOP INFRARED POLES afieruv eenorallsation

All anomalous dimensions at the relevant order are known

$$
\begin{aligned}
\gamma_{c, 0} & =2 \\
\gamma_{c, 1} & =\left(\frac{67}{9}-\frac{\pi^{2}}{3}\right) C_{A}-\frac{20 n_{f} T_{R}}{9}, \\
\gamma_{c, 2} & =C_{A}^{2}\left(\frac{11 \zeta_{3}}{3}+\frac{245}{12}-\frac{67 \pi^{2}}{27}+\frac{11 \pi^{4}}{90}\right)+C_{A} n_{f} T_{R}\left(-\frac{28 \zeta_{3}}{3}-\frac{209}{27}+\frac{20 \pi^{2}}{27}\right) \\
& +C_{F} n_{f} T_{R}\left(8 \zeta_{3}-\frac{55}{6}\right)-\frac{8 n_{f}^{2} T_{R}^{2}}{27} ; \\
\gamma_{q, 0} & =-\frac{3 C_{F}}{2}, \\
\gamma_{q, 1} & =C_{A} C_{F}\left(\frac{13 \zeta_{3}}{2}-\frac{961}{216}-\frac{11 \pi^{2}}{24}\right)+C_{F}^{2}\left(-6 \zeta_{3}-\frac{3}{8}+\frac{\pi^{2}}{2}\right)+\left(\frac{65}{54}+\frac{\pi^{2}}{6}\right) C_{F} n_{f} T_{R} \\
\gamma_{q, 2} & =C_{F}^{3}\left(-\frac{17 \zeta_{3}}{2}+\frac{2 \pi^{2} \zeta_{3}}{3}+30 \zeta_{5}-\frac{29}{16}-\frac{3 \pi^{2}}{8}-\frac{\pi^{4}}{5}\right) \\
& +C_{A} C_{F}^{2}\left(-\frac{211 \zeta_{3}}{6}-\frac{\pi^{2} \zeta_{3}}{3}-15 \zeta_{5}-\frac{151}{32}+\frac{205 \pi^{2}}{72}+\frac{247 \pi^{4}}{1080}\right) \\
& +C_{A}^{2} C_{F}\left(\frac{1763 \zeta_{3}}{36}-\frac{11 \pi^{2} \zeta_{3}}{18}-17 \zeta_{5}-\frac{139345}{23328}-\frac{7163 \pi^{2}}{3888}-\frac{83 \pi^{4}}{720}\right) \\
& +C_{F}^{2} n_{f} T_{R}\left(\frac{64 \zeta_{3}}{9}+\frac{2953}{216}-\frac{13 \pi^{2}}{36}-\frac{7 \pi^{4}}{54}\right)+C_{F} n_{f}^{2} T_{R}^{2}\left(-\frac{4 \zeta_{3}}{27}+\frac{2417}{1458}-\frac{5 \pi^{2}}{27}\right) \\
& +C_{A} C_{F} n_{f} T_{R}\left(-\frac{241 \zeta_{3}}{27}-\frac{8659}{2916}+\frac{1297 \pi^{2}}{972}+\frac{11 \pi^{4}}{180}\right)
\end{aligned}
$$

MORE 2->2 @ 3 LOOPS

Similar approach works for all $2 \rightarrow 2$ massless scattering amplitudes in 3 loop QCD
Particularly interesting $q \bar{q} \rightarrow Q \bar{Q}$, where standard projector/form factor approach becomes very cumbersome since d-dimensional γ-algebra does not close

$$
\begin{aligned}
\mathcal{P}\left(A_{2}\right)= & \frac{1}{32 s_{13}^{2} s_{23}^{2} s_{12}^{2}(d-5)(d-7)(d-3)(d-4)} \times(\\
- & s_{13}\left(35 s_{23}^{2} d^{3}-55 s_{13} s_{23} d^{3}+1046 s_{13} s_{23} d^{2}-1872 s_{13}^{2} d+2432 s_{13}^{2}-454 s_{23}^{2} d^{2}\right. \\
& \left.-6040 s_{13} s_{23} d-2688 s_{23}^{2}+368 s_{13}^{2} d^{2}+1928 s_{23}^{2} d-20 s_{13}^{2} d^{3}+11136 s_{13} s_{23}\right) \mathcal{D}_{1}^{\dagger} \\
+ & 2 s_{13}\left(-2 s_{13}^{2} d^{2}-9 s_{13} s_{23} d^{2}+142 s_{13} s_{23} d-448 s_{13} s_{23}+7 s_{23}^{2} d^{2}+136 s_{23}^{2}-48 s_{13}^{2}\right. \\
& \left.+28 s_{13}^{2} d-62 s_{23}^{2} d\right) \mathcal{D}_{3}^{\dagger} \\
+ & \left(-340 s_{13}^{2} d^{3}+11008 s_{13}^{2}-740 s_{13} s_{23} d^{3}+44032 s_{13} s_{23}-260 s_{23}^{2} d^{3}-4144 s_{23}^{2} d+3712 s_{23}^{2}\right. \\
& +15 s_{13}^{2} d^{4}+2852 s_{13}^{2} d^{2}-28864 s_{13} s_{23} d+1604 s_{23}^{2} d^{2}+6944 s_{13} s_{23} d^{2}-9968 s_{13}^{2} d \\
& \left.+30 s_{13} s_{23} d^{4}+15 s_{23}^{2} d^{4}\right) \mathcal{D}_{2}^{\dagger} \\
- & s_{13} s_{23}\left(12 s_{13}+s_{23} d-4 s_{23}-s_{13} d\right) \mathcal{D}_{5}^{\dagger} \\
+ & \left(-6 s_{23}^{2} d+24 s_{13}^{2}+2 s_{13} s_{23} d^{2}-40 s_{13} s_{23} d-14 s_{13}^{2} d+s_{13}^{2} d^{2}+8 s_{23}^{2}+s_{23}^{2} d^{2}+192 s_{13} s_{23}\right) \mathcal{D}_{6}^{\dagger} \\
- & 2\left(5 s_{13}^{2} d^{3}+5 s_{23}^{2} d^{3}+10 s_{13} s_{23} d^{3}-240 s_{13} s_{23} d^{2}-100 s_{13}^{2} d^{2}-56 s_{23}^{2} d^{2}+580 s_{13}^{2} d\right. \\
& \left.\left.+1832 s_{13} s_{23} d+196 s_{23}^{2} d-208 s_{23}^{2}-800 s_{13}^{2}-4224 s_{13} s_{23}\right) \mathcal{D}_{4}^{\dagger}\right)
\end{aligned}
$$

[Glover '00]

One of 6 projectors in d dimensions, valid up to 2 loops

MORE 2->2 @ 3 LOOPS

Similar approach works for all $2 \rightarrow 2$ massless scattering amplitudes in 3 loop QCD
Particularly interesting $q \bar{q} \rightarrow Q \bar{Q}$, where standard projector/form factor approach becomes very cumbersome since d-dimensional γ-algebra does not close

$$
\begin{aligned}
\mathcal{P}\left(A_{2}\right)= & \frac{1}{32 s_{13}^{2} s_{23}^{2} s_{12}^{2}(d-5)(d-7)(d-3)(d-4)} \times(\\
- & s_{13}\left(35 s_{23}^{2} d^{3}-55 s_{13} s_{23} d^{3}+1046 s_{13} s_{23} d^{2}-1872 s_{13}^{2} d+2432 s_{13}^{2}-454 s_{23}^{2} d^{2}\right. \\
& \left.-6040 s_{13} s_{23} d-2688 s_{23}^{2}+368 s_{13}^{2} d^{2}+1928 s_{23}^{2} d-20 s_{13}^{2} d^{3}+11136 s_{13} s_{23}\right) \mathcal{D}_{1}^{\dagger} \\
+ & 2 s_{13}\left(-2 s_{13}^{2} d^{2}-9 s_{13} s_{23} d^{2}+142 s_{13} s_{23} d-448 s_{13} s_{23}+7 s_{23}^{2} d^{2}+136 s_{23}^{2}-48 s_{13}^{2}\right. \\
& \left.+28 s_{13}^{2} d-62 s_{23}^{2} d\right) \mathcal{D}_{3}^{\dagger} \\
+ & \left(-340 s_{13}^{2} d^{3}+11008 s_{13}^{2}-740 s_{13} s_{23} d^{3}+44032 s_{13} s_{23}-260 s_{23}^{2} d^{3}-4144 s_{23}^{2} d+3712 s_{23}^{2}\right. \\
& +15 s_{13}^{2} d^{4}+2852 s_{13}^{2} d^{2}-28864 s_{13} s_{23} d+1604 s_{23}^{2} d^{2}+6944 s_{13} s_{23} d^{2}-9968 s_{13}^{2} d \\
& \left.+30 s_{13} s_{23} d^{4}+15 s_{23}^{2} d^{4}\right) \mathcal{D}_{2}^{\dagger} \\
- & s_{13} s_{23}\left(12 s_{13}+s_{23} d-4 s_{23}-s_{13} d\right) \mathcal{D}_{5}^{\dagger} \\
+ & \left(-6 s_{23}^{2} d+24 s_{13}^{2}+2 s_{13} s_{23} d^{2}-40 s_{13} s_{23} d-14 s_{13}^{2} d+s_{13}^{2} d^{2}+8 s_{23}^{2}+s_{23}^{2} d^{2}+192 s_{13} s_{23}\right) \mathcal{D}_{6}^{\dagger} \\
- & 2\left(5 s_{13}^{2} d^{3}+5 s_{23}^{2} d^{3}+10 s_{13} s_{23} d^{3}-240 s_{13} s_{23} d^{2}-100 s_{13}^{2} d^{2}-56 s_{23}^{2} d^{2}+580 s_{13}^{2} d\right. \\
& \left.\left.+1832 s_{13} s_{23} d+196 s_{23}^{2} d-208 s_{23}^{2}-800 s_{13}^{2}-4224 s_{13} s_{23}\right) \mathcal{D}_{4}^{\dagger}\right)
\end{aligned}
$$

[Glover '00]

$$
\begin{gathered}
\bar{P}_{i}=\sum_{j=1}^{2}\left(M_{i j}^{(2 \times 2)}\right)^{-1} \bar{T}_{j}^{\dagger} \\
X_{i j}=\frac{1}{4 s_{12}^{2}}\left(\begin{array}{cc}
1 & \frac{s_{12}+2 s_{23}}{s_{23}\left(s_{12}+s_{23}\right)} \\
\frac{s_{12}+2 s_{23}}{s_{23}\left(s_{12}+s_{23}\right)} & \frac{(d-2) s_{12}^{2}+4 s_{23}\left(s_{12}+s_{23}\right)}{s_{23}^{2}\left(s_{12}+s_{23}\right)^{2}}
\end{array}\right) \\
\left(M^{2 \times 2}\right)_{i j}^{-1}=\frac{1}{d-3} X_{i j}
\end{gathered}
$$

Only 2 projectors at any order in $d=4$

