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ZZ production at the LHC
• Significant contribution to off-shell Higgs production through interference [Kauer, Passarino 

(2012)]

• Constrain Higgs width [Caola, Melnikov (2013)]


• Measuring anomalous  coupling; importance of longitudinal modes [Azatov, Grojean, Paul, 
Salvioni (2016)], [Cao, Yan, Yuan, Zhang (2020)]


• Important channel for BSM searches


•  formally NNLO at LHC

• High gluon luminosity => large contribution


• Provides of the total NNLO correction [Cascioli, German, Grazzini, Kallweit, Maierhöfer, von 
Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]


• Increase of to the full NNLO result from  at NLO [Grazzini, Kallweit, Wiesemann, 
Yook (2018)]

ttZ

gg → ZZ

∼ 60 %

5 % gg → ZZ
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Status of the calculation
 :


• Known exactly at 1-loop [Glover, van der Bij (1988)]

• Massless internal fermions at 2-loops [von Manteuffel, Tancredi (2015)], [Caola, Henn, Melnikov, Smirnov, Smirnov (2015)]

• Large top-mass approximation at 2-loops [Dowling, Melnikov (2015)], [Caola, Dowling, Melnikov, Röntsch, Tancredi (2016)] with Padé 

approximants [Campbell, Ellis, Czakon, Kirchner (2016)]


• Expansion around  threshold with Padé approximants [Gröber, Maier, Raum (2019)]

• Small top-mass expansion with Padé approximants [Davies, Mishima, Steinhauser, Wellman (2020)] (See Go Mishima’s talk)

• 2-loop amplitudes with full top-mass dependence [Agarwal, Jones, von Manteuffel (2020)], [Brønnum-Hansen, Wang (2021)]

Other similar gluon-induced calculations involving massive internal loops :

• HH production at 2-loops with full top-mass dependence [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke (2016)] and in 

small top-mass expansion [Davies, Mishima, Steinhauser, Wellmann (2018)] (See Joshua Davies’ talk)

• ZH amplitudes at 2-loops with full top-mass dependence [Chen, Heinrich, Jones, Kerner, Klappert, Schlenk (2020)] and in small 

and large top-mass regions [Davies, Mishima, Steinhauser (2020)] (See Matthias Kerner’s talk)

• WW amplitudes at 2-loop with 3rd generation quarks [Brønnum-Hansen, Wang (2020)] (See Chen-Yu Wang’s talk, also 

for ZZ)

gg → ZZ

tt
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Multiloop calculations
Recipe for a multi-loop amplitude:

1. Generation of unreduced amplitude

2. IBP reduction

• Major bottleneck for processes with many scales and/or legs

• Significant progress with syzygy based approaches and finite-field methods


3. Insertion of IBP identities into the amplitude

• Significant blow-up for intermediate results and final reduced amplitude 

• Numerical instabilities in final coefficients

• Use of multivariate partial fractioning to tame the computational complexity and improve 

numerical performance

4. Evaluation of master integrals

• Internal masses => Functions beyond multiple polylogarithms

• Use of numerical methods instead, improved with the use of finite integrals
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Syzygies
• Integration-By-Parts reduction to reduce all the integrals to a basis set 

• Generate linear relations between integrals [Chetyrkin & Tkachov (1981)] 

• Systematically construct and reduce a linear system to a basis set of master integrals -> Laporta’s 

algorithm [Laporta (2000)] . Public codes available AIR, FIRE6, Kira, LiteRed, Reduze 2, etc.

• In Baikov representation [Baikov (1996)] :


• Require:

• No dimension-shifting terms

• No integrals with doubled propagators 

0 = ∫ (
L

∏
i
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N

∑
i

∂
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L
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N

∑
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−
νi fi
zi ) P(d−L−E−1)/2

Dimension shifting term Doubled propagators
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Syzygies
Disadvantages:

• Such integrals don’t appear in amplitudes

• Significantly larger linear system to reduce for the appearance of auxiliary integrals


Avoiding doubled propagators:

• Generating vectors using Groebner basis [Gluza, Kajda, Kosower (2010)]

• Linear algebra based approach [Schabinger (2011)]

• Differential geometry [Zhang (2014)]
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fi
∂P
∂zi

∼ P

       Dimension shifting term

• Explicit solutions known [Boehm, Georgoudis, Larsen, Schulze, Zhang (2017)] 

[Abreu, Cordero, Ita, Page, Zeng (2017)] 

• Polynomials of degree 1 in Baikov parameters

• Straightforward to write

fi ∼ zi

Doubled propagator term

• Trivial to write explicit solutions 
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Syzygies
• Simultaneous solution for the two constraints highly non-trivial

• Compute module intersection of the two syzygy modules

• Conventional approaches insufficient [Larsen, Zhang (2015)] [Boehm, Georgoudis, Larsen, Schoenemann, Zhang (2018)]


• Syzygies for top-level topologies inaccessible 


• Developed a new linear algebra approach based on finite fields [Agarwal, Jones, von Manteuffel (2020)]

• Map the problem of module intersection to row reduction of a matrix; Finred - finite field based solver for 

the linear algebra


• Solutions produced up to a requested degree in 

• Much faster for our purpose than the Groebner basis approach; can run in a highly distributed manner

• Able to generate the required syzygies for this calculation


• Use Finred - finite field based solver, to compute the required IBP reductions

• Also use this approach for the 2-loop amplitudes for diphoton+jet production [Agarwal, Buccioni, von Manteuffel, Tancredi 

(2021)], [Agarwal, Buccioni, von Manteuffel, Tancredi (2021)] (see Federico Buccioni’s talk)

zi
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Syzygies

• Total size of syzygies 


• Largest syzygy 


• Up to  integrals


• 2 scales   (  set to numbers)

• Extremely complicated due to internal masses


∼ 2GB
∼ 230MB

s = 4
s, t mt, mZ
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• Total size of syzygies 


• Largest syzygy 


• Up to  integrals


• 4 scales  ( )

 


∼ 1GB
∼ 40MB

s = 5
s23, s34, s45, s51 s12 = 1



Finite integrals
• Feynman integrals often have UV and IR divergences

• Sector decomposition standard method to resolve IR poles [Binoth, Heinrich (2000)] [Bogner, Weinzierl (2007)]

Public codes: Fiesta4, pySecDec, etc.


Why use finite integrals instead?

• Much better behaved numerically

• Require fewer orders in epsilon expansion in general


• Poles drop out into the coefficients => Easier to take  limit


Constructing finite integrals:

• Dimension shifted integrals [Bern, Dixon, Kosower (1992)]

• Existence of a finite basis [Panzer (2014)] [von Manteuffel, Panzer, Schabinger (2014)]

• Reduze 2 to find such integrals, usually involving doubled propagators (dots) and dimension shifts

d → 4
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Finite integrals
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k2 − m2
t

Divergent integral in d = 4 − 2ϵ

Finite integral in d = 6 − 2ϵ Finite integral in  with a dotd = 6 − 2ϵ

Divergent integral in  with a numeratord = 4 − 2ϵ



Finite integrals
However:

• Integrals with dots and dimension-shifts often hard to reduce e.g. need reductions for integrals with 4 dots for 

the required finite integrals


• Higher dots implies higher powers of  polynomial in the denominator => worse contour deformation which 
leads to numerical instabilities


Alternate approach - combining divergent integrals into finite linear combinations. Advantages:

• Integrals often already appearing in the amplitude => avoid computing extra reductions


• More “natural”  representation

• Finite at the integrand level i.e. integrand free of non-integrable divergences


• In general a highly non-trivial task to find these numerators


• Algorithmically construct finite linear combinations in  from a list of seed integrals [Agarwal, Jones, von Manteuffel 
(2020)]


• Arbitrary integrals with numerators, dots, dimension shifts, subsector integrals etc allowed as seed integrals

ℱ

d = 4

d = 4
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Finite integrals
Integrand 


• Combine over a common denominator using the general formula for Feynman parametric 
representation [Agarwal, Jones, von Manteuffel (2020)]


• Constrain  requiring absence of non-integrable divergences in the integrand

= a1
1

D1 . . . DN
+ a2

DN+1

D1 . . . DN
+ a3

Dj

D1 . . . Dj . . . DN
+ . . .

ai
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Corner integral Numerator integral Subsector integral
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 : Parent sector

 Current integral propagators

 : Numerators

 : Pinched propagators
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𝒩t :
𝒩∖T
𝒩Δt
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Finite integrals
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Integral Rel. err. Timing 
(s)

~2*10^-3 45

~4*10^-2 63

~8*10^-6 55

~8*10^-4 60

Linear Combination ~1*10^-4 18

(6 − 2ϵ)

(6 − 2ϵ)

∼
1
ℱ

∼
1

ℱ2

∼
1

ℱ3



Finite integrals
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Integral Rel. err. Timing 
(s)

~2*10^-3 45

~4*10^-2 63

~8*10^-6 55

~8*10^-4 60

Linear Combination ~1*10^-4 18

(6 − 2ϵ)

(6 − 2ϵ)

∼
1
ℱ

∼
1

ℱ2

∼
1

ℱ3

Naively expected to be much worse



Multivariate partial fractioning
• All unreduced integrals expressed in terms of the optimised finite basis

• Need to insert these identities into the amplitude to obtain the “reduced” 

amplitude

• Resulting coefficients are coefficients in kinematics and d


Challenges:

• This is computationally very difficult; IBPs size of over 200 GB

• Intermediate steps require TB of disk space and computationally very 

expensive

• Numerical performance issues due to presence of spurious poles
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Multivariate partial fractioning
• Certain choices lead to spurious poles with denominators depending on 

both kinematics and ; want to avoid such poles, e.g.




In  this becomes : 


• Spurious poles lead to numerical instabilities

• Choose d-factoring basis to avoid such denominators [Smirnov, Smirnov (2020)], 

[Usovitsch(2020)]

• Employ multivariate partial fractioning

d
1

1250 − 500 d − 9000 t + 3600 d t + 16200 t2 − 6480 d t2 − 4050 s + 1575 d s + 19440 s t − 8100 d s t − 52488 s t2 + 20412 d s t2 − 29160 s2 t + 11664 d s2 t

d → 4 1
−125 + 375 s + 900 t − 2160 s t + 2916 s2 t − 1620 t2 + 4860 s t2
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Multivariate partial fractioning
• Multivariateapart [Heller, von Manteuffel (2021)]. Also see [Pak (2011)], [Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov (2019)], 

[Boehm, Wittman, Wu, Xu, Zhang (2020)], [Bendle, Böhm, Heymann, Ma, Rahn, Ristau, Wittmann, Wu, Zhang (2021)].


• Use Singular to perform partial fractioning using a Groebner basis to prevent new denominators from 
appearing. E.g. naive partial fractioning in Mathematica:





• Instead use a Groebner basis approach; Find relations between all appearing denominators to reduce 
them to simpler ones


• Unique decomposition for a chosen ordering of denominator polynomials

• Handle nasty degree 6 denominators:











1
25 − 270 t + 324 s t

1
−5 + 18 t + 9 s

=
−1

(5 + 18 t)(−5 + 36 t)(−5 + 18 t + 9 s)
+

36 t
(5 + 18 t)(−5 + 36 t)(25 − 270 t + 324 s t)

105625 − 468000 t − 797850 t2 + 3863700 t3 + 2001105 t4 − 5904900 t5 + 2125764 t6 − 3676500 s + 17309700 s t
−19260180 s t2 + 25850340 s t3 − 35901792 s t4 + 8503056 s t5 + 25891650 s2 − 73614420 s2 t2 − 75149694 s2 t3

+12754584 s2 t4 − 50490540 s3 + 80752788 s3 t − 60466176 s3 t2 + 8503056 s3 t3 + 29452329 s4 − 18187092 s4 t
+2125764 s4 t2

New denominators
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Multivariate partial fractioning
• Drastic simplification of coefficients after partial fractioning


Intermediate size: O(TB)

Size after partial fractioning : < 1 MB per coefficient


E.g. Complexity reduces significantly for one of the hardest coefficients in the 
amplitude


coefficient = 





After partial fractioning, worst term = {20, 15, 9}

Total number of terms after partial fractioning = 10842

num(s, t, d)
den(s, t, d)

{deg(num, s) + deg(den, s), deg(num, t) + deg(den, t), deg(num, d) + deg(den, d)} = {107,117,38}
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Multivariate partial fractioning
• Partial fraction in  to separate the poles


• Set . Allowed since the basis is finite 

Factorised form:                     ~16 terms


Partial fractioned:        2 terms


• Prevents proliferation of terms

• Partial fraction in kinematics to arrive at final form

• Resulting coefficients smaller than 1MB in size. Total size of all coefficients 

 MB

• Very fast numerical evaluation

d
d = 4

1
(−1 + d)(−3 + d)2(−4 + d)(−7 + 2d)

= (
1
3

+
2ϵ
9

)(1 + 2ϵ)2(
−1
2ϵ

)(1 + 4ϵ)

1
3(−4 + d)

+
5

4(−3 + d)
+

1
2(−3 + d)2

+
1

60(−1 + d)
+

−16
5(−7 + 2d)

=
−1
6ϵ

+
−13

9

O(100)
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Results

1 2 3 4 5p
s/mt

0.94

0.96

0.98

1.00

1.02

1.04

1.06

V
(2

)
ex

p
/V

(2
)

ex
ac

t

Exact

1/m12
t

m32
t , m4

z

Padé
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Comparison of  dependence of the unpolarised interference with expansion results at fixed . 
Exact results from [Agarwal, Jones, von Manteuffel (2020)] . Expansion and Padé results from [Davies, Mishima, 

Steinhauser, Wellmann (2020)]. Error bars for the exact result are plotted but they are too small to be visible.

s cos θ = − 0.1286
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Results
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Comparison of  dependence of the unpolarised interference with 
expansion results at fixed energy  GeV. Exact results from 
[Agarwal, Jones, von Manteuffel (2020)]. Expansion and Padé results 

from [Davies, Mishima, Steinhauser, Wellmann (2020)].
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Comparison of  dependence of the unpolarised interference with 
expansion results at fixed energy  GeV. Exact results from 
[Agarwal, Jones, von Manteuffel (2020)]. Expansion and Padé results 

from [Davies, Mishima, Steinhauser, Wellmann (2020)].
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IR scheme dependence
• For previous results, “ ” subtraction scheme


• Transformation between Catani’s original scheme and  scheme


                                


                                                


• For interference terms, 1-loop result multiplied by   => Leads to a very 
different qualitative behaviour 


• Relative comparisons highly dependent on IR scheme

qT

qT

A(2),fin,Catani
i = A(2),fin,qT

i + ΔI1A
(1),fin
i

ΔI1 = −
1
2

π2CA + iπβ0 ∼ 15

∼ 30
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IR scheme dependence

Catani's Scheme  schemeqT
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von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, Steinhauser, Wellmann (2020)].

s cos θ = − 0.1286
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Conclusions
• Results for two-loop corrections for  with full top mass 

dependence

• Use of syzygies and finite field methods for IBP reduction including 

presenting our new algorithm for constructing syzygies 
• Method of finite integrals with new general approach to construct finite 

integrals 
• Multivariate partial fractioning to drastically simplify amplitude coefficients

• IR scheme dependence of qualitative comparisons between the exact 

calculation and expansion results

gg → ZZ
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