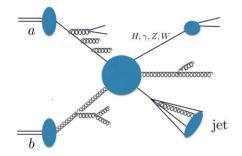
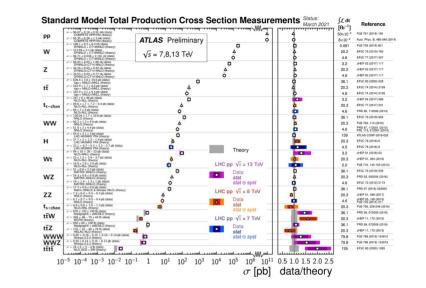
A consistent framework for the regularization of chiral theories in 4D: a two-loop study

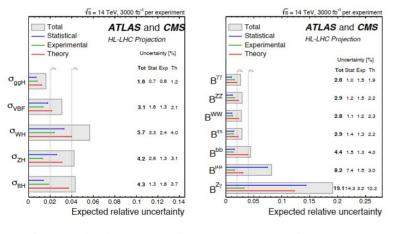
Adriano Cherchiglia

RADCOR-LoopFest 2021

Motivation







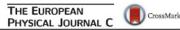
 $d\sigma = \sum_{a} \int dx_a \int dx_b f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \times d\hat{\sigma}_{ab}(x_a, x_b, Q^2, \alpha_s(\mu_R^2))$

Partonic higher loop corrections

Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134v2

Motivation

Eur. Phys. J. C (2017) 77:471 DOI 10.1140/epjc/s10052-017-5023-2



Regular Article - Theoretical Physics

To *d*, or not to *d*: recent developments and comparisons of regularization schemes

C. Gnendiger^{1,a}, A. Signer^{1,2}, D. Stöckinger³, A. Broggio⁴, A. L. Cherchiglia⁵, F. Driencourt-Mangin⁶, A. R. Fazio⁷, B. Hiller⁸, P. Mastrolia^{9,10}, T. Peraro¹¹, R. Pittau¹², G. M. Pruna¹, G. Rodrigo⁶, M. Sampaio¹³, G. Sborlini^{6,14,15}, W. J. Torres Bobadilla^{6,9,10}, F. Tramontano^{16,17}, Y. Ulrich^{1,2}, A. Visconti^{1,2}

- 1 Paul Scherrer Institut, 5232 Villigen, PSI, Switzerland
- ² Physik-Institut, Universität Zürich, 8057 Zürich, Switzerland
- ³ Institut für Kern- und Teilchenphysik, TU Dresden, 01062 Dresden, Germany
- ⁴ Physik Department T31, Technische Universität München, 85748 Garching, Germany
- ⁵ Centro de Ciências Naturais e Humanas, UFABC, 09210-170 Santo André, Brazil
- ⁶ Insituto de Física Corpuscular, UVEG–CSIC, Universitat de València, 46980 Paterna, Spain ⁷ Departamento de Física. Universidad Nacional de Colombia. Bogotá D.C., Colombia
- ⁸ CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
- ⁹ Dipartimento di Fisica ed Astronomia. Università di Padova. 35131 Padua. Italy
- ¹⁰ INFN, Sezione di Padova, 35131 Padua, Italy
- ¹¹ Higgs Centre for Theoretical Physics. The University of Edinburgh, Edinburgh EH9 3FD, UK
- 12 Dep. de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, 18071 Granada, Spain
- 13 Departamento de Física, ICEX, UFMG, 30161-970 Belo Horizonte, Brazil
- 14 Dipartimento di Fisica, Università di Milano, 20133 Milan, Italy
- 15 INFN, Sezione di Milano, 20133 Milan, Italy
- ¹⁶ Dipartimento di Fisica, Università di Napoli, 80126 Naples, Italy
- 17 INFN, Sezione di Napoli, 80126 Naples, Italy

Eur. Phys. J. C (2021) 81:250 https://doi.org/10.1140/epjc/s10052-021-08996-y

Review

May the four be with you: novel IR-subtraction methods to tackle NNLO calculations

W. J. Torres Bobadilla^{1,2,a}, G. F. R. Sborlini³, P. Banerjee⁴, S. Catani⁵, A. L. Cherchiglia⁶, L. Cieri⁵, P. K. Dhani^{5,7}, F. Driencourt-Mangin², T. Engel^{4,8}, G. Ferrera⁹, C. Gnendiger⁴, R. J. Hernández-Pinto¹⁰, B. Hiller¹¹, G. Pelliccioli¹², J. Pires¹³, R. Pittau¹⁴, M. Rocco¹⁵, G. Rodrigo², M. Sampaio⁶, A. Signer^{4,8}, C. Signorile-Signorile^{16,17}, D. Stöckinger¹⁸, F. Tramontano¹⁹, Y. Ulrich^{4,8,20}

¹ Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 Munich, Germany ² Instituto de Física Corpuscular, UVEG-CSIC, 46980 Paterna, Spain ³ Deutsches Elektronensynchrotron DESY, 15738 Zeuthen, Germany 4 Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland ⁵ INFN, Sezione di Firenze, 50019 Sesto Fiorentino, Italy 6 CCNH, Universidade Federal do ABC, Santo André 09210-580, Brazil 7 INFN, Sezione di Genova, 16146 Genoa, Italy 8 Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland ⁹ Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, 20133 Milan, Italy ¹⁰ Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, 80000 Culiacán, Mexico ¹¹ CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal ¹² Institut f
ür Theoretische Physik und Astrophysik, Universit
ät W
ürzburg, 97074 W
ürzburg, Germany 13 Laboratório de Instrumentação e Física de Partículas LIP, 1649-003 Lisbon, Portugal 14 Dep. de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, 18071 Granada, Spain 15 Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca, 20126 Milan, Italy ¹⁶ Institut fur Theoretische Teilchenphysik, Karlsruher Institut fur Technologie, 76128 Karlsruhe, Germany 17 Dipartimento di Fisica and Arnold-Regge Center, Università di Torino and INFN, 10125 Torin, Italy 18 Institut für Kern- und Teilchenphysik, TU Dresden, 01062 Dresden, Germany 19 Università di Napoli and INFN, Sezione di Napoli, 80126 Naples, Italy 20 Institute for Particle Physics Phenomenology, Durham DH1 3LE, UK

Regularization methods in 4D

- Implicit Regularization Mod. Phys. Lett. A 13, 1597 (1998) Four-Dimensional Regularization JHEP 1211, 151(2012)
 - Four-Dimensional Unsubtraction

JHEP 1608 (2016) 160

- tailored to extract UV divergences
- complies with BPHZ (unitarity, locality, Lorentz invariance)
 A. C, Sampaio, Nemes (2011)
- complies with abellian gauge invariance to all-orders
 Ferreira, A.C, Nemes, Hiller, Sampaio (2012)
 Vieira, A.C, Sampaio(2016)
- non-abelian gauge invariance working examples
 A. C, Arias-Perdomo, Vieira, Sampaio, Hiller (2020)
- IR divergences under study (1 and 2 loop)

Eur. Phys. J. C (2017) 77:471 Eur. Phys. J. C (2021) 81:250

Implicit Regularization - non-abelian

A. C, Arias-Perdomo, Vieira, Sampaio, Hiller (2020)

$$\int \frac{d^4k}{(2\pi)^4} \frac{d^4q}{(2\pi)^4} G(k,q,p) \qquad \qquad \int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - \lambda^2)^2} (k \to q) \\ \int \frac{d^4k}{(2\pi)^4} \frac{d^4q}{(2\pi)^4} \frac{1}{(k^2 - \lambda^2)^2} \ln\left(-\frac{k^2 - \lambda^2}{\lambda^2}\right) (k \to q) \\ \int \frac{d^4k}{(2\pi)^4} \frac{d^4q}{(2\pi)^4} \frac{1}{(k^2 - \lambda^2)^2} \frac{1}{(q^2 - \lambda^2)^2}$$

Implicit Regularization - non-abelian

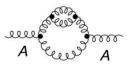
A. C, Arias-Perdomo, Vieira, Sampaio, Hiller (2020)

Implicit Regularization - non-abelian

A. C, Arias-Perdomo, Vieira, Sampaio, Hiller (2020)

Background field method

$$\beta = -g_s \left[\left(11 - \frac{2}{3}n_f \right) \left(\frac{g_s}{4\pi} \right)^2 + \left(102 - \frac{38}{3}n_f \right) \left(\frac{g_s}{4\pi} \right)^4 \right]$$



- (UV part) comply with non-abelian gauge invariance
- Connection with dimensional methods (own subtraction scheme)

Viglioni, **A.C**, Vieira, Hiller, Sampaio (2016) Bruque, **A.C**, Pérez-Victoria (2018)

 $\{\gamma_{\mu},\gamma_5\}=0$

Example – 2D (euclidean space)

$$\operatorname{tr}(\{\gamma_5,\gamma_\mu\}\gamma_\nu\gamma_\rho\gamma_\sigma) = \operatorname{tr}(\gamma_5\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma) + \operatorname{tr}(\gamma_\mu\gamma_5\gamma_\nu\gamma_\rho\gamma_\sigma) = -4\left(g_{\mu\nu}\epsilon_{\rho\sigma} - g_{\mu\rho}\epsilon_{\nu\sigma} + g_{\mu\sigma}\epsilon_{\nu\rho}\right)$$

 $\left[\left(\operatorname{tr}(\gamma_5\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}) + \operatorname{tr}(\gamma_{\mu}\gamma_5\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma})\right)I^{\mu\sigma}\right]_R = 4\pi\epsilon_{\rho\nu} \neq 0$

Viglioni, **A.C**, Vieira, Hiller, Sampaio (2016) Bruque, **A.C**, Pérez-Victoria (2018)

 $\{\gamma_{\mu},\gamma_5\}=0$

Example – 2D (euclidean space)

Even in 4D methods, chiral theories must be dealt with care!

$$\left[\left(\operatorname{tr}(\gamma_5\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}) + \operatorname{tr}(\gamma_{\mu}\gamma_5\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma})\right)I^{\mu\sigma}\right]_R = -4\left[\left(g_{\mu\nu}\epsilon_{\rho\sigma} - g_{\mu\rho}\epsilon_{\nu\sigma} + g_{\mu\sigma}\epsilon_{\nu\rho}\right)I^{\mu\sigma}\right]_R$$

$$g_{\mu\sigma}[I^{\mu\sigma}]_R = g_{\mu\sigma} \left[\int d^2k \frac{k^{\mu}k^{\sigma}}{(k^2 + m^2)^2} \right] \neq \left[\int d^2k \frac{k^2}{(k^2 + m^2)^2} \right] = [g_{\mu\sigma}I^{\mu\sigma}]_R$$

Viglioni, **A.C**, Vieira, Hiller, Sampaio (2016) Bruque, **A.C**, Pérez-Victoria (2018)

 $\begin{array}{ll} QnS = GnS \oplus X & QdS = GnS \oplus Q(-2\epsilon)S \\ & \mathsf{IReg} & \mathsf{DReg} \end{array}$ $g_{\mu\sigma}[I^{\mu\sigma}]_R \neq [g_{\mu\sigma}I^{\mu\sigma}]_R & QnS = QdS \oplus Q(2\epsilon)S = GnS \oplus Q(-2\epsilon)S \oplus Q(2\epsilon)S \\ & \mathsf{DRed} \end{array}$

One-loop examples – need symmetry-restoring conterterms

 $\gamma_5 \in GnS$

Bélusca-Maïto, Ilakovac, Mađor-Božinović, Stöckinger (2020) 10 / 25

A.C, To appear

- Toward two-loop level
 - abelian left-model

$$GnS \longrightarrow \mathcal{L}_0 = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}_L \partial \!\!\!/ \psi_L + e\bar{\psi}_L A \!\!\!/ \psi_L$$

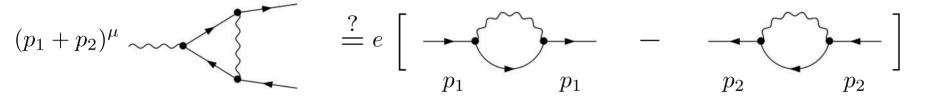
$$QnS = GnS \oplus X \longrightarrow \mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi + e\bar{\psi}_L A\!\!/\psi_L$$

gauge breaking term $i\left(\bar{\psi}_L \partial\!\!\!/\psi_R + \bar{\psi}_R \partial\!\!\!/\psi_L\right)_{11/25}$

A.C, To appear

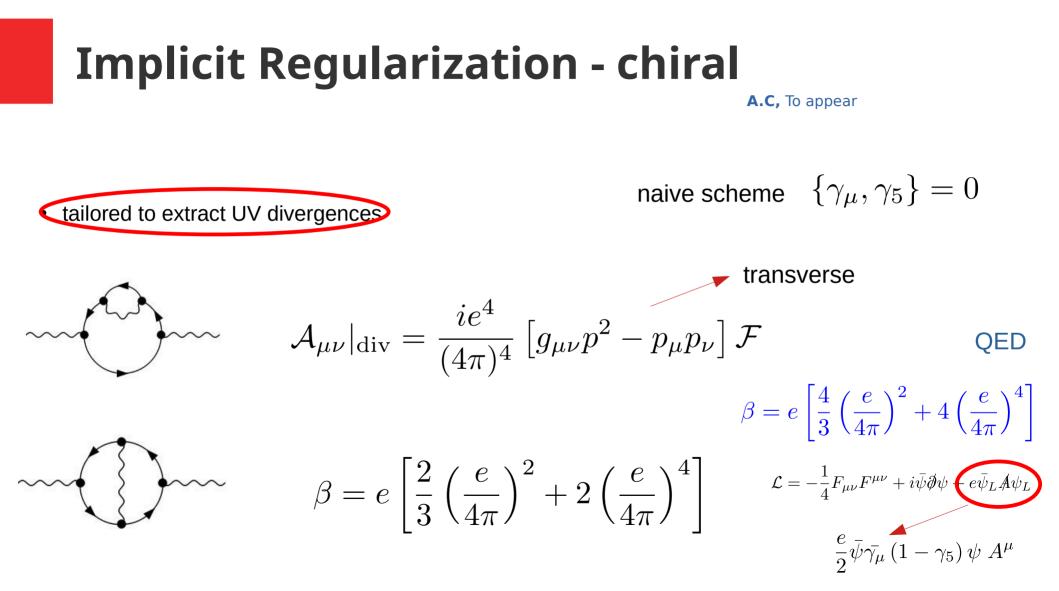
$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi + e\bar{\psi}_L A\!\!\!/\psi_L$$

A.C, To appear



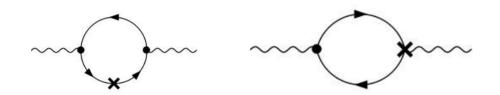
$$(p_1 + p_2)_{\mu} \Gamma^{\mu}(p_1, p_2) = e \left[\Sigma(p_1) - \Sigma(-p_2) \right] - \frac{e^3}{(4\pi)^2} (p_1 + p_2)_{\mu} \bar{\gamma}^{\mu} P_L$$

$$GnS$$



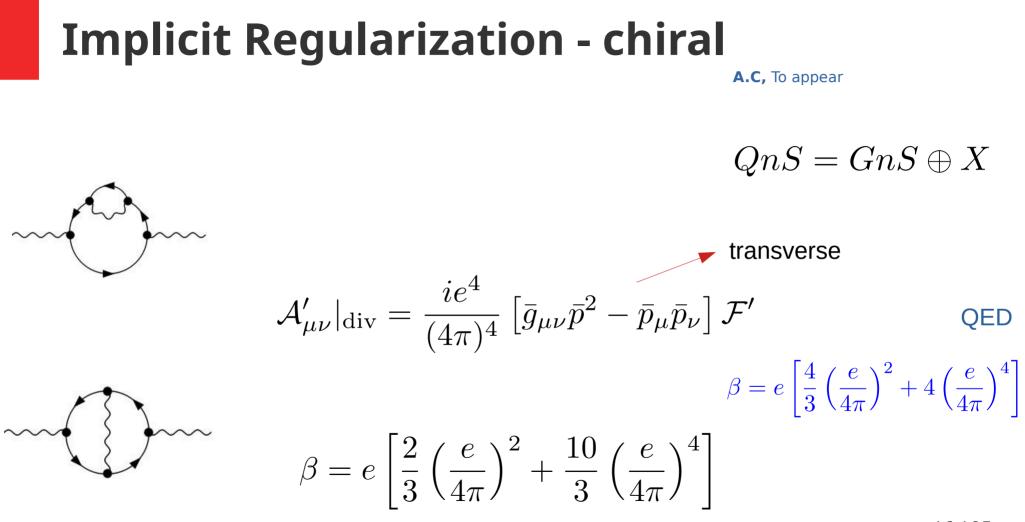
A.C, To appear

naive scheme
$$\{\gamma_{\mu},\gamma_{5}\}=0$$



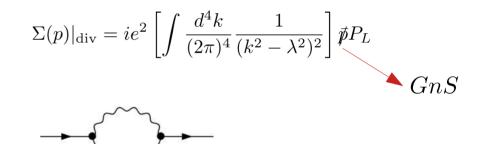
UV countertems cancel (subdivergences)

$$\beta = e \left[\frac{2}{3} \left(\frac{e}{4\pi} \right)^2 + 2 \left(\frac{e}{4\pi} \right)^4 \right]$$



16 / 25

A.C, To appear



 $\mathcal{L} = -\frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi + e\bar{\psi}_L A\!\!\!/\psi_L$

QnS

17/25

 UV countertems DO NOT cancel (subdivergences)

····· ·····

A.C, To appear

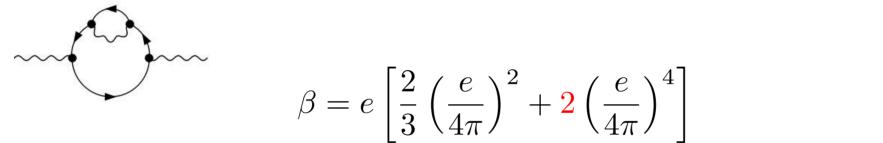
$$QnS = GnS \oplus X$$

• Finite restoring-symmetry countertems

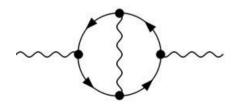
$$(p_1 + p_2)_{\mu} \Gamma^{\mu}(p_1, p_2) = e \left[\Sigma(p_1) - \Sigma(-p_2) \right] - \frac{e^3}{(4\pi)^2} (p_1 + p_2)_{\mu} \bar{\gamma}^{\mu} P_L$$

$$GnS$$
18/25

A.C, To appear



QED



Same result of naive scheme

 $\beta = e \left[\frac{4}{3} \left(\frac{e}{4\pi} \right)^2 + 4 \left(\frac{e}{4\pi} \right)^4 \right]$ $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi} \partial \psi \left(e \bar{\psi}_L A \psi_L \right)$ $\frac{e}{2} \bar{\psi} A (1 - \gamma_5) \psi \quad 19 / 25$

Implicit Regularization – chiral + non-abelian

A.C, To appear

naive scheme $\{\gamma_{\mu}, \gamma_{5}\} = 0$

- Non-abelian Left-Model analysis
- SM gauge coupling $\,\beta\,$ function up to two-loop order $\,\checkmark\,$
- $QnS = GnS \oplus X$

- Non-abelian Left-Model analysis
- SM gauge coupling eta function up to two-loop order $\$

Conclusions

- Given the prospects for future years, it is a necessity to increase precision of electroweak radiative corrections;
- It is well-known that the treatment of chiral theories is tricky in dimensional methods;
- Regularization methods in 4D share similar problems. However, the setup may be simpler;
- Step forward 2-loop analysis:
 - simple abelian chiral model as a working example
 - > non-abelian chiral theories:
 - analysis in the naive scheme completed
 - amplitude obtained, counterterms ongoing

$$\frac{1}{(k-p_i)^2 - \mu^2} = \sum_{j=0}^{n_i^{(k)} - 1} \frac{(-1)^j (p_i^2 - 2p_i \cdot k)^j}{(k^2 - \mu^2)^{j+1}} + \frac{(-1)^{n_i^{(k)}} (p_i^2 - 2p_i \cdot k)^{n_i^{(k)}}}{(k^2 - \mu^2)^{n_i^{(k)}} \left[(k-p_i)^2 - \mu^2\right]},$$

$$I_{\log}^{\nu_1 \cdots \nu_{2r}}(\mu^2) \equiv \int_k \frac{k^{\nu_1} \cdots k^{\nu_{2r}}}{(k^2 - \mu^2)^{r+2}} \int_k \frac{\partial}{\partial k_\mu} \frac{k^\nu}{(k^2 - \mu^2)^n} = 4 \left[\frac{g_{\mu\nu}}{4} I_{\log}(\mu^2) - I_{\log}^{\mu\nu}(\mu^2) \right] = 0,$$

$$I_{\log}(\mu^2) = I_{\log}(\lambda^2) + \frac{i}{(4\pi)^2} \ln \frac{\lambda^2}{\mu^2}$$

 $QnS \qquad g_{\mu\sigma}[I^{\mu\sigma}]_R \neq [g_{\mu\sigma}I^{\mu\sigma}]_R$ $GnS \qquad \bar{g}_{\mu\sigma}[I^{\mu\sigma}]_R = [\bar{g}_{\mu\sigma}I^{\mu\sigma}]_R$

$$i\Pi_{\mu\nu}(p) = (-)(-ie)^2 \int_k \operatorname{Tr}\left\{\gamma_\mu \frac{i}{(\not\!k)} \gamma_\nu \frac{i}{(\not\!k-\not\!p)}\right\}.$$

$$i\Pi_{\mu\nu}(p) = (-e^2) \operatorname{Tr} \left\{ \gamma_{\mu} \gamma_{\alpha} \gamma_{\nu} \gamma_{\beta} (I_{\alpha\beta} - I_{\alpha} p_{\beta}) \right\} \quad \text{where} \quad I_{\alpha_1 \cdots \alpha_n} = \int_k \frac{k_{\alpha_1} \cdots k_{\alpha_n}}{k^2 (k-p)^2}.$$

$$i\frac{\Pi_{\mu\nu}}{(-e^2)} = \frac{4}{3} \left[I_{\log}(\lambda^2) - b\ln\left(-\frac{p^2}{\lambda^2}\right) + \frac{5}{3}b \right] (g_{\mu\nu}p^2 - p_{\mu}p_{\nu}) + \frac{2b}{3}g_{\mu\nu}$$

$$\int_{k} \frac{k^2}{k^2 (k-p)^2} = \int_{k} \frac{1}{(k-p)^2} = 0 \neq g^{\alpha\beta} \int_{k} \frac{k_{\alpha} k_{\beta}}{k^2 (k-p)^2} = -\frac{bp^2}{6}$$

$$f_{\mu\nu} = \int d^2k \, \frac{\partial}{\partial k_{\mu}} \frac{k_{\nu}}{k^2 + m^2} = \int d^2k \, \left(\frac{\delta_{\mu\nu}}{k^2 + m^2} - 2\frac{k_{\mu}k_{\nu}}{(k^2 + m^2)^2}\right)$$

$$[I_{\mu\nu}]^{R} = \frac{1}{2}\delta_{\mu\nu}\left[\int d^{2}k \,\frac{1}{k^{2} + m^{2}}\right]^{R} = \frac{1}{2}\delta_{\mu\nu}\left(\left[\int d^{2}k \,\frac{k^{2}}{(k^{2} + m^{2})^{2}}\right]^{R} + \left[\int d^{2}k \,\frac{m^{2}}{(k^{2} + m^{2})^{2}}\right]^{R}\right) = \frac{1}{2}\delta_{\mu\nu}\left([I_{\alpha\alpha}]^{R} + \pi\right)$$

$$[I_{\mu\nu}]^{R} = \left[\int d^{d}k \, \frac{k_{\mu}k_{\nu}}{(k^{2}+m^{2})^{2}}\right]^{S} = \left[\int d^{d}k \, \frac{1}{d}\delta_{\mu\nu}\frac{k^{2}}{(k^{2}+m^{2})^{2}}\right]^{S} = \left[\int d^{d}k \, \left(\frac{1}{2} + \frac{\varepsilon}{4} + O(\varepsilon^{2})\right)\delta_{\mu\nu}\frac{k^{2}}{(k^{2}+m^{2})^{2}}\right]^{S}$$

$$= \left[\frac{1}{2}\delta_{\mu\nu}\int d^dk\,\frac{k^2}{(k^2+m^2)^2} + \left(\frac{\varepsilon}{4} + O(\varepsilon^2)\right)\delta_{\mu\nu}\left(2\pi\frac{1}{\varepsilon} + O(\varepsilon^0)\right)\right]^S = \frac{1}{2}\delta_{\mu\nu}\left(\left[I_{\alpha\alpha}\right]^R + \pi\right),$$

25 / 25