Two-loop QCD corrections to $W b \bar{b}$ production at hadron colliders

Heribertus Bayu Hartanto

based on arXiv:2102.02516
with Simon Badger and Simone Zoia

RADCOR-LoopFest XIX, FSU (Virtual)
May 19, 2021

Facilities Council

Precise prediction for the LHC

\Rightarrow QCD corrections are important at the LHC

$$
d \sigma=d \sigma^{\mathrm{LO}}+\underbrace{d \sigma^{\mathrm{NLO}}}_{10-30 \%}+\underbrace{d \sigma^{\mathrm{NNLO}}}_{1-10 \%}+\ldots
$$

NNLO frontier: 2 to 3 scattering

- pp $\rightarrow j j j: R_{3 / 2}, m_{j j j} \Rightarrow \alpha_{s}$ determination at multi-TeV range
- pp $\rightarrow \gamma \gamma j$: background to Higgs p_{T}, signal/background interference effects
- pp $\rightarrow H_{j j}$: Higgs p_{T}, background to VBF (probes Higgs coupling)
- $p p \rightarrow V_{j j}$: Vector boson $p_{T}, W^{+} / W^{-}$ratios, multiplicity scaling
- pp $\rightarrow V V j$: background for new physics

NNLO cross sections for $2 \rightarrow 3$ processes

loop amplitude $=\sum($ rational coefficients $) \times($ integral $/$ special functions $)$
finite remainder $=$ loop amplitude - poles

Massive progress in massless 2-loop 5-particle scattering

- All 2-loop 5-particle integrals are known talk by Vasily

[Papadopoulos,Tommasini,Wever(2015)] [Gehrmann,Henn,Lo Presti(2015,2018)] [Abreu,Page,Zeng(2018)]
[Abreu,Dixon,Herrmann,Page,Zeng(2018,2019)] [Chicherin,Gehrmann,Henn,Wasser,Zhang,Zoia(2018,2019)][Chicherin,Sotnikov(2020)]
- Many 2-loop 5-particle QCD amplitudes known analytically talks by Federico, Herschel, Vasily

Leading colour $\Rightarrow 5 g, 2 q 3 g, 4 q 1 g, 2 q 3 \gamma, 2 q 1 g 2 \gamma$
[Abreu,Agarwal,Badger,Brønnum-Hansen,Buccioni, Chawdhry, Czakon,Dormans,Febres Cordero, Gehrmann, HBH,Henn,Ita,Lo Presti,Mitov,Page,Peraro,Poncelet,Sotnikov,Tancredi,von Manteuffel,Zeng(2015-2021)]

$$
\text { Full colour } \Rightarrow 5 g \text { all-plus, } 2 q 1 g 2 \gamma
$$

[Badger,Chicherin,Gehrmann,Heinrich,Henn,Peraro,Wasser,Zhang,Zoia(2019)] [Agarwal,Buccioni,Tancredi,von Manteuffel(2021)]

- NNLO QCD calculations for $2 \rightarrow 3$ processes talk by Rene

$$
\begin{gathered}
p p \rightarrow \gamma \gamma \gamma[\text { Chawdhry,Czakon,Mitov,Poncelet(2019)][Kallweit,Sotnikov,Wiesemann(2020)] } \\
p p \rightarrow \gamma \gamma j \text { [Chawdhry,Czakon,Mitov,Poncelet(2021)] }
\end{gathered}
$$

Scattering with an off-shell leg

$$
p p \rightarrow H+2 j
$$

$$
p p \rightarrow W / Z+2 j
$$

$$
p p \rightarrow W / Z+\gamma j
$$

- rich potential phenomenology
- massless internal particles, focus on QCD corrections
- high algebraic and analytic complexity
\Rightarrow six independent variables
$\Rightarrow 3$ square roots

A first look: two-loop $W+4$ parton amplitudes

Numerical evaluation of leading colour $q \bar{Q} Q \bar{q}^{\prime} \bar{\nu} \ell$ and $q g g \bar{q}^{\prime} \bar{\nu} \ell$ helicity amplitudes at two loops

- Full solutions of the master integrals were not available back then
- unknown MIs are evaluated numerically using pySecDec/Fiesta

- Use momentum twistor parametrisation for $2 \rightarrow 4$ massless scattering: 8 variables
- Coefficient of master integrals are computed numerically over finite fields

Two-loop master integrals for 5-point 1-mass process

4-point sub-topologies known from $p p \rightarrow V_{1}^{*} V_{2}^{*}$
[Gehrman,Remiddi(2000)] [Henn,Melnikov,Smirnov(2014)] [Gehrmann,von Manteuffel,Tancredi(2015)]

$(3,1)$

$(6,1)$

All planar 2-loop integrals are available

[Papadopoulos, Tomassini,Wever(2015)][Papadopulos,Wever(2019)]
[Abreu,Ita,Moriello,Page,Tschernow,Zeng(2020)]
[Canko,Papadopoulos,Syrrakos(2020)][Syrrakos(2020)]

, 2

Non-planar integrals in progress talks by Ben \& Costas

Leading colour $W b \bar{b}$ amplitude

$$
\bar{d}\left(p_{1}\right)+u\left(p_{2}\right) \rightarrow b\left(p_{3}\right)+\bar{b}\left(p_{4}\right)+W^{+}\left(p_{5}\right)
$$

- colour decomposition at leading colour \rightarrow only planar contribution
- massless b quarks, $p_{3}^{2}=p_{4}^{2}=0$
- onshell W boson

$$
p_{5}^{2}=m_{W}^{2}
$$

$$
\sum_{\lambda} \varepsilon_{W}^{\mu *}\left(p_{5}, \lambda\right) \varepsilon_{W}^{\nu}\left(p_{5}, \lambda\right)=-g^{\mu \nu}+\frac{p_{5}^{\mu} p_{5}^{\nu}}{m_{W}^{2}}
$$

Invariants:

$$
\begin{array}{cll}
s_{12}=\left(p_{1}+p_{2}\right)^{2}, & s_{23}=\left(p_{2}-p_{3}\right)^{2}, & s_{34}=\left(p_{3}+p_{4}\right)^{2}, \\
s_{45}=\left(p_{4}+p_{5}\right)^{2}, & s_{15}=\left(p_{1}-p_{5}\right)^{2}, & s_{5}=p_{5}^{2}, \\
\operatorname{tr}_{5}=4 i \epsilon_{\mu \nu \rho \sigma} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\sigma} .
\end{array}
$$

Integrand construction

Feynman diagrams generated using Qgraf [Nogueira(1993)]

Mathematica+Form to process the numerator topologies and interfere with tree level

$$
M^{(2)}=\sum_{\text {spin }} A^{(0) *} A^{(2)}=M_{\text {even }}^{(2)}+\operatorname{tr}_{5} M_{\text {odd }}^{(2)}
$$

Numerators containing: $\operatorname{tr}(\cdots)$ and $\operatorname{tr}\left(\cdots \gamma_{5} \cdots \gamma_{5} \cdots\right) \Rightarrow$ anti-commuting γ_{5} prescription $\operatorname{tr}\left(\cdots \gamma_{5} \cdots\right) \Rightarrow$ Larin's prescription [Larin(1993)]

Amplitudes in terms of scalar integrals

$$
M_{k}^{(2)}(\{p\})=\sum_{i} c_{k, i}(\epsilon,\{p\}) \mathcal{I}_{k, i}(\epsilon,\{p\}), \quad k \in\{\text { even, odd }\}
$$

Integration-by-parts (IBP) reduction to master integrals

- Map each topology to a set of maximal topologies
- IBP systems for $T_{1}-T_{10}$

Entire workflow on finite fields

$$
\begin{aligned}
& M_{k}^{(2)}(\{p\}, \epsilon)= \sum_{i} c_{k, i}(\{p\}, \epsilon) \mathcal{I}_{k, i}(\{p\}, \epsilon) \\
& \downarrow \\
& M_{k}^{(2)}(\{p\}, \epsilon)= \sum_{i} d_{k, i}(\{p\}, \epsilon) \operatorname{MI}_{k, i}(\{p\}, \epsilon) \\
& k \in\{\text { even,odd }\}
\end{aligned}
$$

- IBP reduction directly to canonical MIs[Abreu,etal(2020)]
- IBP systems generated with LiteRed[Lee(2012)], solved with FiniteFlow[Peraro(2019)] using Laporta algorithm [Laporta(2000)]
- IBP tables known numerically at each value of $(\{p\}, \epsilon)$
- Numerically compute $d_{k, i}$ over finite fields

Plugging in the master integrals

(1) [Abreu,Ita,Moriello,Page,Tschernow,Zeng(2020)] talk by Ben

- planar alphabet identified (58 letters, 3 square-roots), canonical DEs derived
- Integrate DEs numerically using generalised series expansions [Moriello(2019)]
(2) [Canko,Papadopoulos,Syrrakos(2020)][Syrrakos(2020)] talks by Costas, Nikolaos
- Construct Simplified Differential Equations (SDEs) using known canonical basis
- Analytic solutions in term of Goncharov PolyLogarithms (GPLs)
(1) \Rightarrow analytically reconstructing MI coefficients is still too complicated
(2) \Rightarrow GPLs not linearly independent: no analytic pole cancellations

A basis of special functions

- use the components of the ϵ-expansion of the MIs as special functions

$$
\mathrm{MI}_{i}(s)=\sum_{w \geq 0} \epsilon^{w} \mathrm{MI}_{i}^{(w)}(s)
$$

- starting from canonical DEs[Abreu,etal(2020)] write MIs in terms of Chen's iterated integrals[Chen(1977)] for example:

$$
\mathrm{MI}_{i}^{(2)}=\left[w_{1}, w_{2}\right]_{s_{0}}+\left[w_{1}, w_{3}\right]_{s_{0}}+\cdots+\mathrm{tc}_{j}^{(2)}\left(s_{0}\right)
$$

where

$$
\left[w_{i_{1}}, \ldots, w_{i_{n}}\right]_{s_{0}}(s)=\int_{\gamma} d \log w_{i_{n}}\left(s^{\prime}\right)\left[w_{i_{1}}, \ldots, w_{i_{n-1}}\right]_{s_{0}}\left(s^{\prime}\right)
$$

- Use GPL expressions[Canko,etal(2020)][Syrrakos(2020)] + PSLQ algorithm to prepare the boundary values
- Shuffle algebra to remove products of lower-weight functions + linear algebra to extract linearly independent functions talk by Vasily

$$
\left\{\mathrm{MI}_{i}^{(w)}(s)\right\} \Longrightarrow\left\{f_{i}^{(w)}(s)\right\}
$$

Reconstructing the finite remainders

$$
\begin{aligned}
& M_{k}^{(2)}(\{p\}, \epsilon)=\sum_{i} c_{k, i}(\{p\}, \epsilon) \mathcal{I}_{k, i}(\{p\}, \epsilon) \\
& \downarrow \\
& \text { IBP reduction } \\
& M_{k}^{(2)}(\{p\}, \epsilon)=\sum_{i} d_{k, i}(\{p\}, \epsilon) \mathrm{MI}_{k, i}(\{p\}, \epsilon) \\
& \downarrow \\
& \text { map to special function basis } \\
& \downarrow \\
& \text { subtract UV/IR poles } \\
& \epsilon \text { expansion } \\
& F_{k}^{(2)}(\{p\})= \sum_{i} e_{k, i}(\{p\}) m_{k, i}(f)+\mathcal{O}(\epsilon)
\end{aligned}
$$

- Finite remainders

$$
F_{k}^{(2)}=M_{k}^{(2)}-\sum_{j=1}^{2} I^{(j)} M_{k}^{(2-j)}
$$

$I^{(L)} \rightarrow$-loop universal UV/IR poles
[Catani(1998)][Becher,Neubert(2009)][Magnea, Gardi(2009)]

- Numerically compute $e_{k, i}$ over finite fields
- Analytic pole cancellation
- Drop in polynomial complexities for $e_{k, i}$
- Reconstruct analytic expressions of $e_{k, i}$ from several numerical evaluations [Peraro(2016)]

Reconstructing the finite remainders

$$
F_{k}^{(2)}(\{p\})=\sum_{i} e_{k, i}(\{p\}) m_{k, i}(f)+\mathcal{O}(\epsilon), \quad k \in\{\text { even }, \text { odd }\}
$$

- set $s_{12}=1$
- Not all $e_{k, i}$ coefficients independent
\Rightarrow find linear relations between coefficients and reconstruct the simpler ones

$$
\sum_{i} y_{i} e_{i}=0, \quad y_{i} \in \mathbb{Q}
$$

\Rightarrow allow to supply known/candidate coefficients \tilde{e}_{j}

$$
\sum_{i} y_{i} e_{i}+\sum_{j} \tilde{y}_{j} \tilde{e}_{j}=0, \quad y_{i}, \tilde{y}_{j} \in \mathbb{Q}
$$

- guess the denominator \rightarrow from letters [Abreu,etal(2019)][Abreu,etal(2020)]
- partial fraction in one variable (s_{23}) and reconstruct in the remaining variables ($s_{34}, s_{45}, s_{15}, s_{5}$)

$$
\Rightarrow \sim 4 \text { times speed up } \quad \Rightarrow 2 \text { prime fields needed }
$$

- Reconstructed analytic expressions are simplified using MultivariateApart[Heler,von Manteuffel(2021)]

Numerical evaluation

- Only 19 linear combinations of $f_{i}^{(4)}$ appear in the two-loop finite remainder
\Rightarrow define a new basis $g_{i}^{(w)}$

$$
\left\{f_{i}^{(w)}(s)\right\} \Longrightarrow\left\{g_{i}^{(w)}(s)\right\}
$$

- Apply generalised series expansion method directly to the $g_{i}^{(w)}$ basis

$$
\vec{g}=\left(\begin{array}{c}
\epsilon^{4} g_{i}^{(4)} \\
\epsilon^{3} g_{i}^{(3)} \\
\epsilon^{2} g_{i}^{(2)} \\
\epsilon g_{i}^{(1)} \\
1
\end{array}\right)
$$

$$
d \vec{g}=\epsilon d \tilde{B} \cdot \vec{g}
$$

- Much simpler than the DEs for the master integrals
- Use generalised series expansion approach [Moriello(2019)] as implemented in DIFFEXP [Hidding(2020)] talk by Martijn

Numerical evaluation

Evaluation on a univariate slice of the physical phase space

$$
\begin{aligned}
p_{1} & =\frac{\sqrt{s}}{2}(1,0,0,1) \\
p_{2} & =\frac{\sqrt{s}}{2}(1,0,0,-1) \\
p_{3} & =\frac{x_{1} \sqrt{s}}{2}(1,1,0,0) \\
p_{4} & =\frac{x_{2} \sqrt{s}}{2}(1, \cos \theta,-\sin \phi \sin \theta,-\cos \phi \sin \theta) \\
p_{5} & =\sqrt{s}(1,0,0,0)-p_{3}-p_{4} \\
s & =1, m_{W}^{2}=0.1, \phi=0.1, x_{1}=0.6
\end{aligned}
$$

- 1100 points \rightarrow average $260 \mathrm{~s} /$ point
- Reasonable evaluation time with basic DiffExp setup
- further optimisation is possible

[Abreu,etal(2020)][Becchetti,etal(2020)]

Summary

\checkmark First analytic result for 2-loop 5-point amplitude with one massive leg \Rightarrow leading colour $u \bar{d} \rightarrow W^{+} b \bar{b}$
\checkmark Basis of special functions for leading colour 5-particle amplitudes with 1 off-shell leg up to 2 loops
X Include W-boson decay
X Application to other processes
x Full colour (need non-planar integrals)

Summary

\checkmark First analytic result for 2-loop 5-point amplitude with one massive leg \Rightarrow leading colour $u \bar{d} \rightarrow W^{+} b \bar{b}$
\checkmark Basis of special functions for leading colour 5-particle amplitudes with 1 off-shell leg up to 2 loops
X Include W-boson decay
X Application to other processes
x Full colour (need non-planar integrals)

THANK YOU!!!

