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Motivation

• In the high-energy region, we can use the parton model

• Partonic cross sections are obtained from QFT (applying perturbative methods)

Geometry and causality for efficient multiloop representations - G. Sborlini (DESY)

Loop contributions 

(quantum fluctuations of 

vacuum)
Real corrections 

(additional particles)

Counter-terms 

(fix the problems 

of the other two)

FINITE NUMBER 

(compare to 

experiments)

CANCELLATION 

AFTER

INTEGRATION

Appears after integration

PDFs

(non-perturbative)

Partonic cross-section

(perturbative)
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Motivation

• Loop amplitudes are a bottleneck in current high-precision computations

• Presence of singularities and thresholds prevents direct numerical implementations

• Well-known theorems (KLN) guarantee the cancellation of singularities for physical observables

• Real-radiation contributions are defined in Euclidean space (i.e. phase-space integrals)

Loop-Tree 

Duality

LOOP 

AMPLITUDES

• Virtual internal 

momenta

• Defined in Minkowski 

space-time

DUAL 

AMPLITUDES

• On-shell cut momenta

• Defined in Euclidean 

space-time

Graphical representation of

one-loop opening into trees

(original idea by Catani et al ’08)

REAL 

CONTRIBUTIONS

(AND ISR/UV 

COUNTER-TERMS)

To be 

combined

Geometry and causality for efficient multiloop representations - G. Sborlini (DESY)



5

Brief history of LTD-based methods

2008

2010-2012

2014

2017

2019

2020-2021

2015

2016

• Foundational paper: a new way to decompose loop amplitudes 

• Application of Cauchy theorem taking 

care of Feynman prescription: leads to 

a new prescription!

2018-2019

Feynman integral

Dual integral

JHEP 09 (2008) 065
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Brief history of LTD-based methods

2008

2010-2012

2014

2017

2019

2015

2016

• Towards the computation of physical observables in four space-time dimensions

• Tested on toy scalar model; local cancellation of IR divergences 

• Introduction of real-dual mappings, to achieve 

a local cancellation of IR singularities!

• Purely four-dimensional representation of cross-

sections

• First study of dual UV local counter-terms:

2018-2019

JHEP 02 (2016) 044

2020-2021
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Brief history of LTD-based methods

2008

2010-2012

2014

2017

2019

2015

2016

• Towards the computation of physical observables in four space-time dimensions

• Tested on toy scalar model; local cancellation of IR divergences 

2018-2019

• Integrand-level cancellation of IR and UV singularities!

• No need of integrated counter-terms 

• Purely four-dimensional integration (no DREG!)

FIRST APPROACH TO LOCAL REPRESENTATIONS!!

JHEP 08 (2016) 160

JHEP 10 (2016) 162

2020-2021
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Brief history of LTD-based methods

2008

2010-2012

2014

2017

2019

2015

2016

2018-2019

• Full analysis of Higgs decays at two-loop (inclusion of EW effects)

• First realization of local UV counter-terms at two-loop level

• New singular structures arise beyond one-loop

• More diagrams, more variables… starts to be cumbersome!

• Explore novel representations of the integrands

• Point towards fully local cancellations of IR/UV singularities

UNDERSTANDING SINGULARITIES IS CRUCIAL!! EXPLORE THEM!!

Locality explored at two-loops… what’s next?

JHEP 02 (2019) 143

JHEP 12 (2019) 163

2020-2021
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Brief history of LTD-based methods

2008

2010-2012

2014

2017

2019

2015

2016

2018-2019

Jan. ‘20

Jun. ‘20

Jun. ‘20

Oct. ‘20

2020-2021
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Nested residues: Details
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• Starting point: multiloop Feynman integrals and scattering amplitudes

• Iterated application of the Cauchy residue theorem to remove one DOF for each loop momenta

• Using this notation, we write any L-loop N-particle scattering amplitude:

Multiloop diagram

Notation setup

Sets of 

momenta

Loop momentum 

(integration)

Combination of 

external momenta

On-shell energy 

(complex number!)

Standard 

propagator

Loop-energy component

Feynman i0 

prescription
Loop space-vector 

(Euclidean)

with

Sets of momenta
D-dimensional loop momenta 

(Minkowski)
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Nested residues: Details
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• Starting point: multiloop Feynman integrals and scattering amplitudes

• Iterated application of the Cauchy residue theorem to remove one DOF for each loop momenta

• Observation 1: For single powers and           we get

the well-know one-loop LTD formula:

• Observation 2: The equivalence with previous LTD representation is encoded in

for the integration contour selection (“dual prescription”)

Multiloop diagram

Application of Cauchy’s theorem

Select one set “s” and 

compute the residue

Dual function (1st step)

Pole selection 

criteria!

(IMPORTANT)
Sum over all the 

elements of the set

Other sets (no 

residue computation)
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Nested residues: Details
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• Starting point: multiloop Feynman integrals and scattering amplitudes

• Iterated application of the Cauchy residue theorem to remove one DOF for each loop momenta

• Dual representation for L-loop amplitudes is obtained after the Lth residue evaluation

• Equivalent to: “Number of cuts equal number of loops”

• Sum over all possible poles is implicit: some contributions vanish inside each iteration  

Multiloop diagram

Iterated application of Cauchy’s theorem

Remaining sets (no residue evaluation)

Sum over all 

the elements of 

the rth set

rth residue 

evaluation

(r-1)th dual 

function

Depends on integration 

variables (qi)

Poles could be in-or-out 

depending on specific 

momenta…

Iterated residues

(all the poles)
Nested residues

(only physical ones)
“Displaced poles”

cancellations
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Nested residues: Displaced poles
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• Theorem: Given a generic* rational function

then:

• Physical consequences:

1. Displaced poles are associated to un-physical contributions: 

“they can not be mapped into cuts”

2. After applying C.R.T. to all the loop momenta and summing over the physical poles:

“only same-sign combinations of          remain”

Cancellation of 

displaced poles

“Aligned contributions”

Causal propagators
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Nested residues: Compact representations

• Cancellation of displaced poles leads to very compact formulae for the dual representation:

• We define the Maximal Loop Topology (MLT) as a building block to describe multi-loop amplitudes

• Important: “Any one and two-loop amplitude can be described by MLT topologies”
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Maximal 

Loop 

Topology

(2 vertices, 

L+1 lines)
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On-shell 

lines with 

reversed 

momenta

1 off-

shell line

On-shell 

linesDefined in 

Minkowski space
Defined in 

Euclidean space

REMARK: External particles can 

be attached to each momenta set

Inductive proofs of these formulae to all-

loop orders available in JHEP 02 (2021) 112
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propagators
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• It works also for (much) more complicated topologies!!!

NNNN 

Maximal 

Loop 

Topologies

(6 vertices, 

L+5 lines)
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universal 

topology

Nested residues: Compact representations

Thanks to 

factorization 

properties, the 

singular and 

causal structure is 

given in terms of 

simpler objects
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Lines = sets of 

propagators
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Manifestly Causal Representation

• The cancellation of displaced poles implies un-physical terms vanish in the final representation

• Moreover, there is a strict connection between aligned contributions and causal terms!!!

• MLT example: If we sum over all the possible cuts, we get this extremely compact result:
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with                                              and

CAUSAL PROPAGATORS
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Manifestly Causal Representation

• This is the Causal Representation and exists for any QFT amplitude!

• Advantages

1. Causal denominators have same-sign combinations of on-shell energies (positive 

numbers), thus are more stable numerically!

2. Only physical thresholds remain; spurious un-physical instabilities are removed!
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Without causal 

representation
With causal 

representation

MORE DETAILED 

EXAMPLES IN 

WJTB’s TALK!!

White lines = Numerical instabilities
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Manifestly Causal Representation

• Similarly compact representations were found for more complicated topologies!!

• Graphical interpretation in terms of entangled thresholds

1. Each causal propagator represents a threshold of the diagram

2. Each diagram contains several thresholds

3. The causal representation involves products of (compatible) thresholds
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Causal denominators (λ) 

are associated to cut lines

in the diagrams: momenta 

flow must be adjusted to 

be compatible

JHEP 01 (2021) 069, JHEP 04 (2021) 129, JHEP 04 (2021) 183 
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Geometric Algorithm for Causal Reconstruction 

• Causal representation obtained directly after summing over all the nested residues

• Is it possible to do it in other way? YES! Geometrical reconstruction & Algebraic reconstruction
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• Previous concepts

1. Diagrams are made of vertices and edges (bunches of

propagators, connecting two given vertices)

2. Edges define a basis of momenta, that lead to the “vertex

matrix” Defines the casual structure!

3. Binary partitions are given by subsets of vertices that splits

in two the original diagram Connected partitions!

Master formula

WJTB’s TALK!!

Set of entangled 

thresholds

Products of k causal 

propagators
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1. Generate causal propagators

• Causal propagators are associated to binary connected partitions of 

the diagram, namely “connected sub-blocks of the diagram”

• They encode the possible physical thresholds

• Involve a consistent (aligned) energy flow through the cut lines

2. Order of a diagram: it quantifies the complexity of a given topology

• k=1 for MLT, k=2 for NMLT and so on k = vertices - 1 

• A diagram of order k involves products of k causal propagators

3. Geometric compatibility rules: determine the entangled thresholds

a) All the edges are cut at least once

b) Causal propagators do no intersect; i.e. they are associated to 

disjoint or extended partitions of the diagram

c) All the edges involved in a causal threshold must carry momenta 

flowing in the same direction Distinction
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Geometric Algorithm for Causal Reconstruction 

More detailed explanation

arXiv:2102.05062 [hep-ph]

No

intersections
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Compatible 

causal flux
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• Example: 2-loop hexagon (7 edges, 6 vertices, 1 external leg per vertex)
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Geometric Algorithm for Causal Reconstruction 

Implemented in a Mathematica package 

https://github.com/gfsborlini/tLTD

(ongoing development, not public -yet-)

Input: vertex definition, i.e. labelling 

& momentum conservation

Vertex matrix: Basic object to 

generate the causal representation

Generate causal propagators Generate entangled thresholds 

(using selection rules)

Causal representation

(+ similar terms …)

Geometry and causality for efficient multiloop representations - G. Sborlini (DESY)

https://github.com/gfsborlini/tLTD




23

Quantum Algorithm for Causal Reconstruction

• New technology based on Grover’s algorithm to identify causal flux!

• We assign 1 qubit to each edge, and impose logical conditions to select configurations without 

closed cycles Non-cyclical configurations = Causal flux

• Important: “loop” refers to integration variables; “eloop” to loops in the graph

• Grover’s algorithm enhances the probability of the winning state by using two operators:
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NEW PAPER!!

arXiv:2105.08703 [hep-ph]

Total number of 

orderings

(n = nº of edges)

Quantum 

superposition 

of N flux 

configurations

“Winning state”

(causal flow)

Oracle operator

(changes sign of winning states)
Diffusion operator

(reflects with respect to initial state) with

States with non-

causal flow
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Quantum Algorithm for Causal Reconstruction

• Implemented with Qiskit and run in IBM Q (simulator & real QC)

• Several topologies studied!! Enhanced performance with extra-qubits 
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NEW PAPER!!

arXiv:2105.08703 [hep-ph]

The selected configurations are exactly |001>, 

|011>, |101>

The algorithm identifies the causal 

fluxes, relying on geometrical concepts!

Quantum circuit

Causal configurations
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Conclusions and outlook

• Use LTD to cleverly rewrite Feynman integrals: Minkowski to Euclidean

• Novel LTD approach based on nested residues leads to manifestly causal 

representations of multiloop scattering amplitudes!

• Very compact formulae with strong physical/conceptual motivation

• Geometrical rules select entangled thresholds. Complete reconstruction 

of multiloop amplitudes!

• Quantum algorithms to speed-up causal flux selection. Exploring new 

disruptive tools for breaking the precision frontier!!

Geometry and causality for efficient multiloop representations - G. Sborlini (DESY)
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Conclusions and outlook

• Outlook:

1. Deepen into the interpretation of entangled causal propagators

2. Find the connection between residues and graph theory

3. Generalize the use of Quantum Algorithms to speed-up calculations in HEP

4. Tackle the calculation of physical observables with this new representation

5. Test the efficiency for cross-section calculations

LoI for Snowmass 2021

(sent on 30.08.2020)

Great progress 

made since then!!!

Geometry and causality for efficient multiloop representations - G. Sborlini (DESY)
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Nested residues: Displaced poles
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• Practical (mathematical) example:

• 1st step: Apply C.R.T. in     , by promoting                       (the other x’s remain real) 

to calculate

Sum of integration 

variables (real)

Complex 

coefficients

Subset of poles with negative imaginary part

IMPORTANT! x’s are real, y’s are complex

Theta 

functions 

removed
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Nested residues: Displaced poles
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• Practical (mathematical) example:

• 2nd step: Apply C.R.T. in     , by promoting                       (the other x’s remain real) 

All the possible poles:

SIGN OF IMAGINARY PART + or - !!! 

Sum of the residues in x1 (negative imaginary part)

Theta functions 

remain!
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Nested residues: Displaced poles
A

g
u

ile
ra

-V
e
rd

u
g

o
e
t a

l (2
0
2
0
) a

rX
iv

:2
0
1
0
.1

2
9
7
1
 [h

e
p

-p
h

]

• Practical (mathematical) example:

• 3rd step: Collect the different contributions according to                    : 

Different-sign 

combinations of y’s: 

NON-TRIVIAL THETA!

Theta functions are 

trivially 1: y’s have 

negative imaginary part, 

x’s are real

Only sums of 

y’s!!!

ALIGNED 

CONTRIBUTIONS

DISPLACED 

POLES: 

VANISH!!
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Nested residues: Displaced poles
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• Theorem: Given a generic* rational function

then:

• Mathematical consequences:

1. In each iteration of C.R.T., contributions with different sign combinations of y’s vanish

2. Thus, after iterating over all integration variables, only same-sign combinations of y’s remain

Example:
Connection to QFT
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• More complicated topologies can be described by convolutions with MLT-like diagrams
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Next-to 

Maximal 

Loop 

Topology

(3 vertices, 

L+2 lines)

Next-to-

Next-to 

Maximal 

Loop 

Topology

(4 vertices, 

L+3 lines)

IMPORTANT FACTORIZATION FORMULAE

Singular and causal structure is determined by 

the corresponding sub-topologies

Inductive proofs of these formulae to all-

loop orders available in JHEP 02 (2021) 112

Nested residues: Compact representations
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Manifestly Causal representation: Further examples

• Similar formulae can be found for NMLT and NNMLT to all loop orders!
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with

with
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Manifestly Causal representation: Implementation
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• We profit from compact causal formulae for integrals with higher-powers:

• Setup of the numerical implementation:

1. Tested for MLT, NMLT and NNMLT integrals, at 3 and 4 loops

2. Arbitrary masses, and with different numbers of space-time dimensions (D=2,3,4)

3. Compared with numerical results from FIESTA 4.2 and SecDec 3.0

Causal representation available!

Is also causal by 

construction!

(derivatives preserve 

denominators)
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Manifestly Causal representation: Implementation
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• Numerical results in D=3:

3-loop

3-loop 4-loop

4-loop

NMLT

NNMLT
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Setup:

Mases:

Solid lines: LTD

Dots: FIESTA
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Manifestly Causal representation: Implementation
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• Numerical results in D=4:

3-loop

3-loop 4-loop

4-loop

NMLT

NNMLT

Setup:

Mases:

Solid lines: LTD

Dots: FIESTA
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