Two-loop amplitude generation in OpenLoops

M. F. Zoller
in collaboration with
S. Pozzorini and N. Schär

RADCOR - LoopFest 2021

OpenLoops

OpenLoops is a fully automated numerical tool for the tree and one-loop computation of hard scattering amplitudes required in Monte-Carlo simulations

- Full NLO QCD and NLO EW corrections available
- Strong CPU performance and excellent numerical stability

Available from https://gitlab.com/openloops/OpenLoops.git or https://openloops.hepforge.org

Scattering probability densities in perturbation theory from sums of L-loop Feynman diagrams ($\mathrm{L}=0,1$):

Automation at NNLO highly desirable \rightarrow Goal: Two-loop OpenLoops

Outline

I. The OpenLoops algorithm at tree level and one loop
II. Requirements for two-loop automation
III. New algorithm to construct two-loop tensor coefficients in OpenLoops
IV. Numerical stability
V. Timings
VI. Summary and Outlook

I. The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from sub-trees (starting from external lines)

For example

\rightarrow split into sub-trees

Numerical recursion step:

 $=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\text {universal building block }} w_{b}^{\beta} w_{c}^{\gamma}$ from Feynman rules

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Sub-trees constructed only once for multiple tree and loop diagrams

I. The OpenLoops algorithm at one loop

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Scalar propagators $D_{i}(q)=\left(q+p_{i}\right)^{2}-m_{i}^{2}$

Factorisation into colour factor $\mathcal{C}_{1, \Gamma}$ and loop segments

Universal building block \times sub-tree(s)

Open loop diagram at $D_{0} \rightarrow$ Dress chain of segments (open loop) recursively:

$$
\begin{aligned}
\mathcal{N}_{k}(q) & =\prod_{i=1}^{k} S_{i}(q)=\mathcal{N}_{k-1}(q) S_{k}(q)= \\
& =\sum_{r=0}^{k} \mathcal{N}_{\mu_{1} \ldots \mu_{r}}^{(k)} q^{\mu_{1}} \ldots q^{\mu_{r}} \quad \underbrace{D_{1}}_{\beta_{0}} \underbrace{w_{1}}_{D_{2}} \underbrace{w_{k+1}}_{\text {dressed segments }}
\end{aligned}
$$

Completely generic and highly efficient algorithm
Implemented at the level of tensor integral coefficients $\mathcal{N}_{\mu_{1} \ldots \mu_{r}}^{(k)}$

II. Requirements for NNLO automation

NNLO scattering probability density: $\quad \mathcal{W}_{\text {NNLO }}^{\text {virtual }}=\underset{\text { hel col }}{\sum} \sum_{\text {col }}\left(2 \operatorname{Re}\left[\mathcal{M}_{0}^{*} \mathcal{M}_{2}\right]+\left|\mathcal{M}_{1}\right|^{2}\right)$

- $\left|\mathcal{M}_{1}\right|^{2}, \mathcal{W}_{\text {NNLO }}^{\text {real-virtual }}, \mathcal{W}_{\text {NNLO }}^{\text {real-real }}$ available in OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.z.]
- Amplitude of a two-loop diagram Γ :

$$
\mathcal{M}_{2, \Gamma}=\underbrace{\mathcal{C}_{2, \Gamma}}_{\text {colour }} \sum_{r_{1}=0}^{R_{1}} \sum_{r_{2}=0}^{R_{2}} \underbrace{\mathcal{N}_{\mu_{1} \cdots \mu_{r_{1}} \nu_{1} \cdots \nu_{r_{2}}}}_{\text {tensor coefficient }} \underbrace{\int \mathrm{d}^{D} q_{1} \int \mathrm{~d}^{D} q_{2} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r_{1}}} q_{2}^{\nu_{1}} \cdots q_{2}^{\nu_{r_{2}}}}{\mathcal{D}\left(q_{1}, q_{2}\right)}}_{\text {tensor integral }}
$$

- Numerical construction of tensor coefficients in four dimensions \rightarrow this talk
- Restoration of $(D-4)$-dimensional numerator parts and renormalisation through UV and rational counterterms \rightarrow Hantian Zhang's talk on Friday
- Remaining tasks: Tensor integrals, treatment of IR divergences

III. New algorithm to construct two-loop tensor coefficients in OpenLoops

Amplitude of irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

Exploit factorisation of numerator $\mathcal{N}\left(q_{1}, q_{2}\right)=\prod_{i=1}^{3} \mathcal{N}^{(i)}\left(q_{i}\right){ }_{j=0}^{1} \mathcal{V}_{j}\left(q_{1}, q_{2}\right)$

- Three chains, each depending on a single loop momentum $q_{i}(i=1,2,3)$ with chain numerators factorising into loop segments $\mathcal{N}^{(i)}\left(q_{i}\right)=S_{0}^{(i)}\left(q_{i}\right) \cdots S_{N_{i}-1}^{(i)}\left(q_{i}\right)$
\rightarrow Same structure as one-loop chain
- Two connecting vertices $\mathcal{V}_{0}, \mathcal{V}_{1}$
- Chain denominators $\mathcal{D}^{(i)}\left(q_{i}\right)=D_{0}^{(i)}\left(q_{i}\right) \cdots D_{N_{i}-1}^{(i)}\left(q_{i}\right)$ where $\quad D_{a}^{(i)}\left(q_{i}\right)=\left(q_{i}+p_{i a}\right)^{2}-m_{i a}^{2}$ (External momenta $p_{i a}$ and masses $m_{i a}$ along i-th chain)

Building blocks of two-loop amplitudes

 can be constructed recursively, multiplying one chain segment or vertex \mathcal{V}_{j} per recursion step.

Observations:

- Chains have same complexity as one-loop chains
- Higher complexity in steps connecting \mathcal{V}_{j} due to dependence on q_{1}, q_{2} and three open Lorentz/spinor indices $\beta_{k}^{(i)}$
- Each chain segment or vertex \mathcal{V}_{j} increases helicity d.o.f.
 by those of its external subtree(s) and the rank in a q_{i} by 0 or 1
- Number of independent tensor coefficients $\mathcal{N}_{\mu_{1} \cdots \mu_{r_{1}} \nu_{1} \cdots \nu_{r_{2}}}$ increases exponentially with ranks r_{1}, r_{2} in q_{1}, q_{2}

Naive algorithm: Dress all chains first, then connect $\mathcal{V}_{0,1}$, interfer with Born and sum over helicities

Number of tensor components

$r_{2}{ }_{2}$	0	1	2	3
0	1	5	15	35
1	5	25	75	175
2	15	75	225	525
3	35	175	525	1225
4	70	350	1050	2450
5	126	630	1890	4410

\rightarrow Would be inefficient due to expensive last steps

Connecting the building blocks of two-loop amplitudes

Final result: Helicity and colour-summed interference with Born $\mathcal{U}\left(q_{1}, q_{2}\right)$
with segment helicities $h_{k}^{(i)} \rightarrow$ chain helicities $h^{(i)}=\underset{k=0}{N_{i}-1} h_{k}^{(i)} \rightarrow$ global helicity $h=\sum_{i=1}^{3} h^{(i)}$
Algorithm will consist of N recursion steps: $\mathcal{N}_{n}=\mathcal{N}_{n-1} \cdot S_{n}, \quad(n=1, \ldots, N)$
with partially dressed numerators \mathcal{N}_{n} and building blocks $S_{n} \in\left\{S_{k}^{(i)}, \mathcal{V}_{j}, \mathcal{N}^{(i)}, \mathcal{M}_{0}^{*} C_{2, \Gamma}\right\}$.
CPU cost of step $n \sim$ number of multiplications
\rightarrow dependent on structure of S_{n} and number of components of \mathcal{N}_{n}
$=\left(\right.$ number of tensor components in $\left.q_{i}\right) \times($ helicitiy d.o.f. $) \times 4^{(\text {number of open Lorentz/spinor indices) }}$
\Rightarrow Most efficient algorithm found through cost simulation of possible candidates for a wide range of QED and QCD Feynman diagrams

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type

Order of chains and of two-loop vertices $\mathcal{V}_{0}, \mathcal{V}_{1}$ has major impact on efficiency

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

$$
\mathcal{N}_{n}^{(3)}\left(q_{3}, \hat{h}_{n}^{(3)}\right)=\mathcal{N}_{n-1}^{(3)}\left(q_{3}, \hat{h}_{n-1}^{(3)}\right) \cdot S_{n}^{(3)}\left(q_{3}, h_{n}^{(3)}\right) \quad \text { with initial condition } \mathcal{N}_{-1}^{(3)}=\mathbb{1}
$$

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

$$
\mathcal{N}_{n}^{(3)}\left(q_{3}, \hat{h}_{n}^{(3)}\right)=\mathcal{N}_{n-1}^{(3)}\left(q_{3}, \hat{h}_{n-1}^{(3)}\right) \cdot S_{n}^{(3)}\left(q_{3}, h_{n}^{(3)}\right) \quad \text { with initial condition } \mathcal{N}_{-1}^{(3)}=\mathbb{1}
$$

- Shortest chain \Rightarrow Low number of helicity d.o.f. $\hat{h}_{n}^{(3)}=\hat{h}_{n-1}^{(3)}+h_{n}^{(3)}$ and low rank in q_{3}
- Partial chains $\mathcal{N}_{n}^{(3)}$ computed only once for multiple diagrams
\Rightarrow Only a small number of low-complexity steps for the full process

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\mathcal{M}_{0}^{*}(h)} \underbrace{\mathcal{M}_{\text {colour }}}_{\text {Born }}
$$

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\sum_{\text {Born }} \mathcal{M}_{0}^{*}(h)} \underbrace{C_{2, \Gamma}}_{\text {colour }})
$$

On-the-fly summation of segment helicities $h_{n}^{(1)}$
\Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_{n}^{(1)}=h-\sum_{k=1}^{n} h_{k}^{(1)}$

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\sum_{\text {Born }} \mathcal{M}_{0}^{*}(h)} \underbrace{C_{2, \Gamma}}_{\text {colour }})
$$

On-the-fly summation of segment helicities $h_{n}^{(1)}$
\Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_{n}^{(1)}=h-\sum_{k=1}^{n} h_{k}^{(1)}$

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\sum_{\text {Born }} \mathcal{M}_{0}^{*}(h)} \underbrace{C_{2, \Gamma}}_{\text {colour }})
$$

On-the-fly summation of segment helicities $h_{n}^{(1)}$
\Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_{n}^{(1)}=h-\sum_{k=1}^{n} h_{k}^{(1)}$
\Rightarrow Large portion of helicity d.o.f already summed over during dressing of longest chain

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$

Example:

$$
\mathcal{Y}\left(q_{1}, q_{3}, h^{(2)}\right)=\sum_{h^{(3)}} \mathcal{U}^{(1)}\left(q_{1}, h-h^{(1)}\right) \mathcal{N}^{(3)}\left(q_{3}, h^{(3)}\right) \mathcal{V}_{1}\left(q_{1}, q_{3}\right)
$$

On-the-fly summation of chain helicity $h^{(3)}$ (and potential subtree helicity at \mathcal{V}_{1})
\Rightarrow Partial diagram depends on undressed chain helicity $h^{(2)}$
\Rightarrow Intermediate object depends on three open indices and two loop momenta

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$

Example:

$$
\mathcal{U}_{-1}^{(2)}\left(q_{1}, q_{2}, h^{(2)}\right)=\left.\mathcal{Y}\left(q_{1}, q_{3}, h^{(2)}\right) \mathcal{V}_{0}\left(q_{1}, q_{1}\right)\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

- Partial diagram depends on undressed chain helicity $h^{(2)}$ and two open indices
- Exploit analytical q_{i}-structure, e.g. dependence of maximal rank R_{2} in q_{2} on rank $r_{1} \leq R_{1}$ in q_{1} Example: $R_{2}\left(r_{1} \leq 3\right)=1$ and $R_{2}\left(r_{1}=4\right)=0 \Rightarrow$ No simple ($R_{1}=4, R_{2}=1$) array
\Rightarrow Use this partial diagram as initial object for the last chain dressing

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

Example:

$$
n=0
$$

$$
\mathcal{U}_{n}^{(2)}\left(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}\right)=\sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(2)}\left(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}\right) S_{n}^{(2)}\left(q_{2}, h_{n}^{(2)}\right)
$$

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

$$
\mathcal{U}_{n}^{(2)}\left(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}\right)=\sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(2)}\left(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}\right) S_{n}^{(2)}\left(q_{2}, h_{n}^{(2)}\right)
$$

On-the-fly summation of segment helicities $\tilde{h}_{n}^{(2)}=\underset{k=n+1}{N_{2}-1} h_{k}^{(2)}$
\Rightarrow Partial diagram depends only on helicities of remaining undressed segments

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

$$
\mathcal{U}_{n}^{(2)}\left(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}\right)=\sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(2)}\left(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}\right) S_{n}^{(2)}\left(q_{2}, h_{n}^{(2)}\right)
$$

On-the-fly summation of segment helicities $\tilde{h}_{n}^{(2)}=\underset{k=n+1}{N_{2}-1} h_{k}^{(2)}$
\Rightarrow Partial diagram depends only on helicities of remaining undressed segments
\Rightarrow Lowest complexity in helicities for steps with highest rank in loop momenta

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

Exploit diagram factorisation for full process:

$$
\mathcal{U}_{A}+\mathcal{U}_{B}=\left(\mathcal{U}_{A, n} \cdot S_{n+1} \cdots S_{N}\right)+\left(\mathcal{U}_{B, n} \cdot S_{n+1} \cdots S_{N}\right)=\left(\mathcal{U}_{A, n}+\mathcal{U}_{B, n}\right) \cdot S_{n+1} \cdots S_{N}
$$

Merge partially dressed diagrams with same topology and subsequent recursion steps

New two-loop algorithm

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

Exploit diagram factorisation for full process:

$$
\mathcal{U}_{A}+\mathcal{U}_{B}=\left(\mathcal{U}_{A, n} \cdot S_{n+1} \cdots S_{N}\right)+\left(\mathcal{U}_{B, n} \cdot S_{n+1} \cdots S_{N}\right)=\left(\mathcal{U}_{A, n}+\mathcal{U}_{B, n}\right) \cdot S_{n+1} \cdots S_{N}
$$

Merge partially dressed diagrams with same topology and subsequent recursion steps
Highly efficient and completely generic algorithm for two-loop tensor coefficients
Fully implemented for QED and QCD corrections to the SM

IV. Numerical stability

Pseudo-tree test

- Cut diagram at two propagators
- Saturate indices with random wavefunctions e_{1}, \ldots, e_{4}
- Fixed values for loop momenta q_{1}, q_{2}

\Rightarrow Compute with well-tested tree-level algorithm and with new two-loop algorithm
\rightarrow contract coefficients $\mathcal{N}_{\mu_{1} \cdots \mu_{r_{1}} \nu_{1} \cdots \nu_{r_{2}}}$ with fixed-value tensor integrand $\frac{q_{1}^{q_{1}} \ldots q_{1}^{\mu_{1}} q_{2}^{\nu_{1}} \ldots q_{2}^{\nu_{2}}}{\mathcal{D}\left(q_{1}, q_{2}\right)}$
Test several processes in double and quadruple precision for 10^{5} uniform random phase space points
Bulk of points has $14-16$ digits agreement (all points 12 or more digits) in double precision \Rightarrow Implementation validated without computing two-loop tensor integrals

All points have more than 16 digits agreement in quad precision
\Rightarrow Quad precision calculation as benchmark

IV. Numerical stability

Two-loop algorithm with fixed q_{1}, q_{2} and pseudo wavefunctions e_{1}, \ldots, e_{4} for 10^{5} uniform random phase space points (psp). Numerical instability of double (dp) wrt quad precision (qp) calculation: $\mathcal{A}:=\frac{\left|\mathcal{W}_{02}^{(d p)}-\mathcal{W}_{02}^{(q p)}\right|}{\operatorname{Min}\left(\left|\mathcal{W}_{02}^{(d p}\right|,\left|\mathcal{W}_{02}^{(q p)}\right|\right)}$

$$
g g \rightarrow \bar{t} t
$$

$d \bar{d} \rightarrow u \bar{u} g$

Excellent numerical stability

\Rightarrow Important for full calculation (tensor integral reduction will be main source of instabilities)

V. Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ $2.6 \mathrm{GHz}, 16 \mathrm{~GB}$ RAM, 1000 psp)

Strong CPU performance, comparable to real-virtual corrections in OpenLoops

VI. Summary and Outlook

Numerical calculation of two-loop tensor coefficients in the OpenLoops framework

- Exploit factorisation of diagrams
\rightarrow Highly efficient and completely generic recursive algorithm
- Fully implemented for NNLO QCD and NNLO QED corrections in the SM (irreducible and reducible two-loop diagrams)
- Excellent numerical precision
- Strong CPU performance ($\sim 150 \mu s$ per diagram and psp) due to
- Efficient order of building blocks
- Exploitation of analytical structure in loop momenta
- On-the-fly helicity summation and diagram merging

Short-term and mid-term projects:

- Implementation of two-loop UV and rational counterterms
- Automation of all one-loop and two-loop ingredients in a single interface
- Tensor integral reduction and evaluation (in-house framework or external tool or mixture thereof)

Backup

Reducible two-loop diagrams

Amplitude of reducible diagram $\Gamma_{\text {red }}$ (1-particle-reducible after amputation of external subtrees):

Two factorised one-loop diagrams connected by a tree-like bridge P
\Rightarrow Fully implemented

