Two-loop amplitude generation in OpenLoops

M. F. Zoller

in collaboration with

S. Pozzorini and N. Schär

RADCOR – LoopFest 2021
OpenLoops is a fully automated numerical tool for the \textit{tree} and \textit{one-loop} computation of \textbf{hard scattering amplitudes} required in \textbf{Monte-Carlo simulations}.

- Full NLO QCD and NLO EW corrections available
- Strong CPU performance and excellent numerical stability

Available from \url{https://gitlab.com/openloops/OpenLoops.git} or \url{https://openloops.hepforge.org}

Scattering probability densities in perturbation theory from sums of L-loop Feynman diagrams ($L=0,1$):

\begin{align*}
\mathcal{W}_{00} &= \sum_{\text{hel}} \sum_{\text{col}} |\mathcal{M}_0|^2, \\
\mathcal{W}_{01} &= \sum_{\text{hel}} \sum_{\text{col}} 2 \text{Re} \left[\mathcal{M}_0^* \mathcal{M}_1 \right], \\
\mathcal{W}_{11} &= \sum_{\text{hel}} \sum_{\text{col}} |\mathcal{M}_1|^2
\end{align*}

$\mathcal{M}_0 = \cdots + \cdots + \cdots$ \quad $\mathcal{M}_1 = \cdots + \cdots + \cdots$

\textbf{Automation at NNLO highly desirable} \rightarrow \textbf{Goal: Two-loop OpenLoops}
Outline

I. The OpenLoops algorithm at tree level and one loop

II. Requirements for two-loop automation

III. New algorithm to construct two-loop tensor coefficients in OpenLoops

IV. Numerical stability

V. Timings

VI. Summary and Outlook
I. The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from sub-trees (starting from external lines)

For example

\[\mathcal{M}_0 = \ldots \rightarrow \text{split into sub-trees} \]

Numerical recursion step:

\[w^\alpha_a = w_b \times w_c = \frac{X^\alpha_{\beta\gamma}(k_b, k_c)}{k_a^2 - m_a^2} w^\beta_b w^\gamma_c \]

universal building block from Feynman rules

Generic depiction:

\[\alpha \times \text{(sub-trees \(w_b \) and \(w_c \))} \]

\((k_i \text{ external momenta}) \)

Highly efficient: Sub-trees constructed only once for multiple tree and loop diagrams
I. The OpenLoops algorithm at one loop

High complexity in loop diagram Γ due to analytical structure in loop momentum q

$$\mathcal{M}_{1,\Gamma} = \begin{pmatrix} D_0(q) \\ D_2 \end{pmatrix} = C_{1,\Gamma} \int d^Dq \frac{S_1(q) \cdots S_N(q)}{D_0 \cdots D_{N-1}}$$

Factorisation into colour factor $C_{1,\Gamma}$ and loop segments

$$S_i(q) = \frac{1}{\beta_i} X_i^\alpha(k_i, p_i, q) w_i^\alpha$$

Scalar propagators $D_i(q) = (q + p_i)^2 - m_i^2$

Universal building block \times sub-tree(s)

Open loop diagram at $D_0 \rightarrow$ Dress chain of segments (open loop) recursively:

$$\mathcal{N}_k(q) = \prod_{i=1}^{k} S_i(q) = \mathcal{N}_{k-1}(q) S_k(q) = \sum_{r=0}^{k} \mathcal{N}^{(k)}_{\mu_1 \ldots \mu_r} q^{\mu_1} \ldots q^{\mu_r}$$

Completely generic and highly efficient algorithm

Implemented at the level of tensor integral coefficients $\mathcal{N}^{(k)}_{\mu_1 \ldots \mu_r}$
II. Requirements for NNLO automation

NNLO scattering probability density:

\[W_{\text{NNLO}}^\text{virtual} = \sum_{\text{hel}} \sum_{\text{col}} \left(2 \text{Re} \left[\mathcal{M}_0^* \mathcal{M}_2 \right] + |\mathcal{M}_1|^2 \right) \]

\[\mathcal{M}_0 = \ldots \quad \mathcal{M}_1 = \ldots \quad \mathcal{M}_2 = \ldots \]

- \(|\mathcal{M}_1|^2, W_{\text{NNLO}}^\text{real-virtual}, W_{\text{NNLO}}^\text{real-real}\) available in OpenLoops \[\text{[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.]}\]

- Amplitude of a two-loop diagram \(\Gamma\):

\[\mathcal{M}_{2,\Gamma} = \mathcal{C}_{2,\Gamma} \sum_{r_1=0}^{R_1} \sum_{r_2=0}^{R_2} N_{\mu_1 \ldots \mu_{r_1} \nu_1 \ldots \nu_{r_2}} \left(\int d^D q_1 \int d^D q_2 \frac{q_1^{\mu_1} \cdots q_1^{\mu_{r_1}} q_2^{\nu_1} \cdots q_2^{\nu_{r_2}}}{D(q_1, q_2)} \right) \]

- **Numerical construction of tensor coefficients** in four dimensions \(\rightarrow\) this talk

- Restoration of \((D - 4)\)-dimensional numerator parts and renormalisation through UV and rational counterterms \(\rightarrow\) Hantian Zhang’s talk on Friday

- Remaining tasks: Tensor integrals, treatment of IR divergences
III. New algorithm to construct two-loop tensor coefficients in OpenLoops

Amplitude of irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

$$M_{2,\Gamma} = C_{2,\Gamma} \int dq_1 \int dq_2 \frac{\mathcal{N}(q_1, q_2)}{\prod_{i=1}^{3} D(i)(q_i)} \bigg|_{q_3 \rightarrow -(q_1+q_2)}$$

Exploit factorisation of numerator

$$\mathcal{N}(q_1, q_2) = \frac{3}{\prod_{i=1}^{3}} \mathcal{N}^{(i)}(q_i) \prod_{j=0}^{1} \mathcal{V}_j(q_1, q_2)$$

- Three chains, each depending on a single loop momentum $q_i \ (i = 1, 2, 3)$
 - with chain numerators factorising into loop segments
 - Same structure as one-loop chain

- Two connecting vertices $\mathcal{V}_0, \mathcal{V}_1$

- Chain denominators $D^{(i)}(q_i) = D_{0}^{(i)}(q_i) \cdots D_{N_i-1}^{(i)}(q_i)$ where $D_{a}^{(i)}(q_i) = (q_i + p_{ia})^2 - m_{ia}^2$
 - (External momenta p_{ia} and masses m_{ia} along i-th chain)
Building blocks of two-loop amplitudes

Numerator \(\mathcal{N}(q_1, q_2) = \left\{ \prod_{i=1}^{3} \left[\mathcal{N}^{(i)}(q_i) \right]^{\beta_{N_i}^{(i)}} \right\} \left[\mathcal{V}_0(q_1, q_2) \right]^{\beta_0^{(1)}} \left[\mathcal{V}_1(q_1, q_2) \right]^{\beta_1^{(1)}} \right\} \)

can be constructed recursively, multiplying one chain segment or vertex \(\mathcal{V}_j \) per recursion step.

Observations:

- Chains have same complexity as one-loop chains
- Higher complexity in steps connecting \(\mathcal{V}_j \) due to dependence on \(q_1, q_2 \) and three open Lorentz/spinor indices \(\beta_k \)
- Each chain segment or vertex \(\mathcal{V}_j \) increases helicity d.o.f. by those of its external subtree(s) and the rank in a \(q_i \) by 0 or 1
- Number of independent tensor coefficients \(\mathcal{N}_{\mu_1 \ldots \mu_{r_1} \nu_1 \ldots \nu_{r_2}} \) increases exponentially with ranks \(r_1, r_2 \) in \(q_1, q_2 \)

Naive algorithm: Dress all chains first, then connect \(\mathcal{V}_{0,1} \), interfer with Born and sum over helicities

→ Would be inefficient due to expensive last steps
Connecting the building blocks of two-loop amplitudes

Final result: Helicity and colour-summed interference with Born $\mathcal{U}(q_1, q_2)$

$$ \sum_\h 2 \left(\sum_{\text{col}} \mathcal{M}_0^*(\h) \cdot C_{2,\Gamma} \right) \left\{ \prod_{i=1}^{\frac{N_i-1}{2}} \left(\prod_{k=0}^{h^{(i)}_k} S^{(i)}_{k_i}(q_i, h^{(i)}_k) \right) \beta^{(i)}_{N_i} \middle\middle| \phi^{(i)} \right\} \left[\mathcal{V}_0(q_1, q_2) \right]^{\beta(1)}_{N_1}^{\beta(2)}_{N_2}^{\beta(3)}_{N_3} \left[\mathcal{V}_1(q_1, q_2) \right]$$

with segment helicities $h^{(i)}_k \rightarrow$ chain helicities $h^{(i)} = \sum_{k=0}^{N_i-1} h^{(i)}_k \rightarrow$ global helicity $h = \sum_{i=1}^{N} h^{(i)}$

Algorithm will consist of N **recursion steps:**

$$ \mathcal{N}_n = \mathcal{N}_{n-1} \cdot S_n, \quad (n = 1, \ldots, N) $$

with partially dressed numerators \mathcal{N}_n and building blocks $S_n \in \{ S^{(i)}_{k_i}, \mathcal{V}_j, \mathcal{N}^{(i)}, \mathcal{M}_0^* C_{2,\Gamma} \}$.

CPU cost of step $n \sim$ number of multiplications

\rightarrow dependent on structure of S_n and number of components of \mathcal{N}_n

$= (\text{number of tensor components in } q_i) \times (\text{helicity d.o.f.}) \times 4^{(\text{number of open Lorentz/spinor indices})}$

\Rightarrow **Most efficient algorithm found through cost simulation**

of possible candidates for a wide range of QED and QCD Feynman diagrams
New two-loop algorithm

• Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)
 Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type

Example:

Order of chains and of two-loop vertices \(\mathcal{V}_0, \mathcal{V}_1 \) has major impact on efficiency
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$
- Choose order of V_0, V_1 by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

Example:

\[
\mathcal{N}_n^{(3)}(q_3, \hat{h}_n^{(3)}) = \mathcal{N}_{n-1}^{(3)}(q_3, \hat{h}_{n-1}^{(3)}) \cdot S_n^{(3)}(q_3, h_n^{(3)})
\]

with initial condition $\mathcal{N}_{-1}^{(3)} = 1$
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$
 Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

Example:

\[
\mathcal{N}_n^{(3)}(q_3, \hat{h}_n^{(3)}) = \mathcal{N}_{n-1}^{(3)}(q_3, \hat{h}_{n-1}^{(3)}) \cdot S_n^{(3)}(q_3, h_n^{(3)})
\]
with initial condition $\mathcal{N}_{-1}^{(3)} = 1$

- Shortest chain \Rightarrow Low number of helicity d.o.f. $\hat{h}_n^{(3)} = \hat{h}_{n-1}^{(3)} + h_n^{(3)}$ and low rank in q_3
- Partial chains $\mathcal{N}_n^{(3)}$ computed only once for multiple diagrams

\Rightarrow Only a small number of low-complexity steps for the full process
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$
 - Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain)

Example:

$$\mathcal{U}^{(1)}_n(q_1, \tilde{h}_n^{(1)}) = \sum_{\tilde{h}_n^{(1)}} \mathcal{U}^{(1)}_{n-1}(q_1, \tilde{h}_{n-1}) \cdot S^{(1)}_n(q_1, h_n^{(1)})$$

with

$$\mathcal{U}_n^{(1)}(h) = 2 \left(\sum_{\text{col}} \mathcal{M}_0^*(h) \right)_{\text{Born}} C_{2,\Gamma}$$
New two-loop algorithm

- Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)
- Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type
- Dress \(\mathcal{N}^{(3)} \) (shortest chain)
- Dress \(\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)} \) (longest chain)

Example:

\[
\begin{align*}
\mathcal{U}^{(1)}(q_1, \tilde{h}^{(1)}_{n}) &= \sum_{\tilde{h}^{(1)}_{n-1}} \mathcal{U}^{(1)}_{n-1}(q_1, \tilde{h}^{(1)}_{n-1}) \cdot S^{(1)}_{n}(q_1, h^{(1)}_{n}) \\
\text{with } \mathcal{U}^{(1)}_{-1}(h) &= 2 \left(\sum_{\text{col}} \mathcal{M}_0^*(h) \right) C_{2,\Gamma} \\
\end{align*}
\]

On-the-fly summation of segment helicities \(h^{(1)}_n \)

\[
\Rightarrow \text{Partial chains depend on remaining helicities of the diagram } \tilde{h}^{(1)}_n = h - \sum_{k=1}^{n} h^{(1)}_k
\]
New two-loop algorithm

- Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)
 Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type
- Dress \(\mathcal{N}^{(3)} \) (shortest chain)
- Dress \(\mathcal{U}^{(1)} \propto \mathcal{M}^*_0 \mathcal{N}^{(1)} \) (longest chain)

Example:

\[
\mathcal{U}^{(1)}(q_1, \tilde{h}_n^{(1)}) = \sum_{\tilde{h}_n^{(1)} = 1} \mathcal{U}^{(1)}_{n-1}(q_1, \tilde{h}_{n-1}^{(1)}) \cdot S^{(1)}(q_1, h_n^{(1)})
\]

with \(\mathcal{U}^{(1)}_{-1}(h) = 2 \left(\sum_{\text{col}} \mathcal{M}_0^* \left(\begin{array}{c} \text{Born} \\ \text{colour} \end{array} \right) \right) \)

On-the-fly summation of segment helicities \(h_n^{(1)} \)
\(\Rightarrow \) Partial chains depend on remaining helicities of the diagram \(\tilde{h}_n^{(1)} = h - \sum_{k=1}^{n} h_k^{(1)} \)
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$
 Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain)

Example:

\[
\mathcal{U}_n^{(1)}(q_1, \tilde{h}_n^{(1)}) = \sum_{\tilde{h}_{n-1}^{(1)}} \mathcal{U}_{n-1}^{(1)}(q_1, \tilde{h}_{n-1}^{(1)}) \cdot S_n^{(1)}(q_1, h_n^{(1)}) \quad \text{with} \quad \mathcal{U}_n^{(1)}(h) = 2 \left(\sum_{\text{col}} \mathcal{M}_0^* (h) \right)_{\text{Born}} C_{2,\Gamma}^{\text{colour}}
\]

On-the-fly summation of segment helicities $h_n^{(1)}$

\Rightarrow Partial chains depend on remaining helicities of the diagram $\tilde{h}_n^{(1)} = h - \sum_{k=1}^n h_k^{(1)}$

\Rightarrow Large portion of helicity d.o.f already summed over during dressing of longest chain
New two-loop algorithm

• Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)
 Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type
• Dress \(\mathcal{N}^{(3)} \) (shortest chain)
• Dress \(\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)} \) (longest chain)
• Connect \(\mathcal{V}_1 \) with \(\mathcal{U}^{(1)} \) and \(\mathcal{N}^{(3)} \)

Example:

\[
\mathcal{Y}(q_1, q_3, h^{(2)}) = \sum_{h^{(3)}} \mathcal{U}^{(1)}(q_1, h - h^{(1)}) \mathcal{N}^{(3)}(q_3, h^{(3)}) \mathcal{V}_1(q_1, q_3)
\]

On-the-fly summation of chain helicity \(h^{(3)} \) (and potential subtree helicity at \(\mathcal{V}_1 \))
\(\Rightarrow \) Partial diagram depends on undressed chain helicity \(h^{(2)} \)

\(\Rightarrow \) Intermediate object depends on three open indices and two loop momenta
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$

 Choose order of V_0, V_1 by vertex type

- Dress $N^{(3)}$ (shortest chain)

- Dress $U^{(1)} \propto M_0^* N^{(1)}$ (longest chain)

- Connect V_1 with $U^{(1)}$ and $N^{(3)}$

- Connect V_0 and map $q_3 \rightarrow -(q_1 + q_2)$

Example:

\[
U^{(2)}_{-1}(q_1, q_2, h^{(2)}) = \mathcal{Y}(q_1, q_3, h^{(2)}) \ V_0(q_1, q_1) \Bigg|_{q_3 \rightarrow -(q_1 + q_2)}
\]

- Partial diagram depends on undressed chain helicity $h^{(2)}$ and two open indices

- Exploit analytical q_i-structure, e.g. dependence of maximal rank R_2 in q_2 on rank $r_1 \leq R_1$ in q_1

 Example: $R_2(r_1 < 3) = 1$ and $R_2(r_1 = 4) = 0 \Rightarrow$ No simple $(R_1 = 4, R_2 = 1)$ array

⇒ Use this partial diagram as initial object for the last chain dressing
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$
- Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \to -(q_1 + q_2)$
- Connect segments of $\mathcal{N}^{(2)}$

Example:

\[U_n^{(2)}(q_1, q_2, \tilde{h}_n^{(2)}) = \sum_{\tilde{h}_n^{(2)}} U_{n-1}^{(2)}(q_1, q_2, \tilde{h}_{n-1}) S_n^{(2)}(q_2, h_n^{(2)}) \]
New two-loop algorithm

- Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)

 Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type

- Dress \(\mathcal{N}^{(3)} \) (shortest chain)

- Dress \(\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)} \) (longest chain)

- Connect \(\mathcal{V}_1 \) with \(\mathcal{U}^{(1)} \) and \(\mathcal{N}^{(3)} \)

- Connect \(\mathcal{V}_0 \) and map \(q_3 \rightarrow -(q_1 + q_2) \)

- Connect segments of \(\mathcal{N}^{(2)} \)

Example:

\[
\mathcal{U}_n^{(2)}(q_1, q_2, \tilde{h}_n^{(2)}) = \sum_{\tilde{h}_n^{(2)}} \mathcal{U}_{n-1}^{(2)}(q_1, q_2, \tilde{h}_{n-1}) S_{n}^{(2)}(q_2, h_n^{(2)})
\]

On-the-fly summation of segment helicities

\[
\tilde{h}_n^{(2)} = \sum_{k=n+1}^{N_3-1} h_k^{(2)}
\]

\[\Rightarrow\] Partial diagram depends only on helicities of remaining undressed segments
New two-loop algorithm

- Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)
 Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type
- Dress \(\mathcal{N}^{(3)} \) (shortest chain)
- Dress \(\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)} \) (longest chain)
- Connect \(\mathcal{V}_1 \) with \(\mathcal{U}^{(1)} \) and \(\mathcal{N}^{(3)} \)
- Connect \(\mathcal{V}_0 \) and map \(q_3 \to -(q_1 + q_2) \)
- Connect segments of \(\mathcal{N}^{(2)} \)

\[
\mathcal{U}_n^{(2)}(q_1, q_2, \tilde{h}_n^{(2)}) = \sum_{\tilde{h}_n^{(2)}} \mathcal{U}_{n-1}^{(2)}(q_1, q_2, \tilde{h}_{n-1}^{(2)}) S_n^{(2)}(q_2, h_n^{(2)})
\]

On-the-fly summation of segment helicities \(\tilde{h}_n^{(2)} = \frac{N_3 - 1}{\sum_{k=n+1}^{N_3} h_k^{(2)}} \)

\(\Rightarrow \) Partial diagram depends only on helicities of remaining undressed segments

\(\Rightarrow \) Lowest complexity in helicities for steps with highest rank in loop momenta
New two-loop algorithm

- Sort chains by length: $N_1 \geq N_2 \geq N_3$
 Choose order of $\mathcal{N}_0, \mathcal{N}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto M_0^* \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{N}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{N}_0 and map $q_3 \to -(q_1 + q_2)$
- Connect segments of $\mathcal{N}^{(2)}$

Example:

Exploit diagram factorisation for full process:

$$\mathcal{U}_A + \mathcal{U}_B = (\mathcal{U}_{A,n} \cdot S_{n+1} \cdots S_N) + (\mathcal{U}_{B,n} \cdot S_{n+1} \cdots S_N) = (\mathcal{U}_{A,n} + \mathcal{U}_{B,n}) \cdot S_{n+1} \cdots S_N$$

Merge partially dressed diagrams with same topology and subsequent recursion steps
New two-loop algorithm

- Sort chains by length: \(N_1 \geq N_2 \geq N_3 \)
 Choose order of \(\mathcal{V}_0, \mathcal{V}_1 \) by vertex type
- Dress \(\mathcal{N}^{(3)} \) (shortest chain)
- Dress \(\mathcal{U}^{(1)} \propto M_0^* \mathcal{N}^{(1)} \) (longest chain)
- Connect \(\mathcal{V}_1 \) with \(\mathcal{U}^{(1)} \) and \(\mathcal{N}^{(3)} \)
- Connect \(\mathcal{V}_0 \) and map \(q_3 \rightarrow -(q_1 + q_2) \)
- Connect segments of \(\mathcal{N}^{(2)} \)

Exploit diagram factorisation for full process:

\[
\mathcal{U}_A + \mathcal{U}_B = (\mathcal{U}_{A,n} \cdot S_{n+1} \cdots S_N) + (\mathcal{U}_{B,n} \cdot S_{n+1} \cdots S_N) = (\mathcal{U}_{A,n} + \mathcal{U}_{B,n}) \cdot S_{n+1} \cdots S_N
\]

Merge partially dressed diagrams with same topology and subsequent recursion steps

Highly efficient and completely generic algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM
IV. Numerical stability

Pseudo-tree test

- Cut diagram at two propagators
- Saturate indices with random wavefunctions e_1, \ldots, e_4
- Fixed values for loop momenta q_1, q_2

⇒ Compute with well-tested tree-level algorithm and with new two-loop algorithm
 → contract coefficients $\mathcal{N}_{\mu_1 \ldots \mu_r \nu_1 \ldots \nu_2}$ with fixed-value tensor integrand $\frac{q_1^{\mu_1} \ldots q_{r_1}^{\mu_1} q_1^{\nu_1} \ldots q_{r_2}^{\nu_2}}{D(q_1, q_2)}$

Test several processes in double and quadruple precision for 10^5 uniform random phase space points

Bulk of points has 14 – 16 digits agreement (all points 12 or more digits) in double precision
⇒ Implementation validated without computing two-loop tensor integrals

All points have more than 16 digits agreement in quad precision
⇒ Quad precision calculation as benchmark
IV. Numerical stability

Two-loop algorithm with fixed q_1, q_2 and pseudo wavefunctions e_1, \ldots, e_4 for 10^5 uniform random phase space points (psp). Numerical instability of double (dp) wrt quad precision (qp) calculation:

$$ A := \left| \frac{W_{02}^{(dp)} - W_{02}^{(qp)}}{\text{Min}(|W_{02}^{(dp)}|, |W_{02}^{(qp)}|)} \right| $$

Excellent numerical stability

⇒ Important for full calculation (tensor integral reduction will be main source of instabilities)
V. Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 1000 psp)

2 → 2 process: 6 – 100 ms/psp
2 → 3 process: 60 – 2500 ms/psp
(on a laptop)

Runtime ∝ number of diagrams
time/psp/diagram ∼ 150µs

Constant ratios between NNLO virtual (2l) and real-virtual (1l+g):
\[
\frac{2l \text{ (tensor coefficients)}}{1l+g \text{ (tensor coefficients)}} \sim 9
\]
\[
\frac{2l \text{ (tensor coefficients)}}{1l+g \text{ (full calculation)}} \sim 4
\]

Strong CPU performance, comparable to real-virtual corrections in OpenLoops
VI. Summary and Outlook

Numerical calculation of two-loop tensor coefficients in the OpenLoops framework

- **Exploit factorisation of diagrams**
 → **Highly efficient and completely generic recursive algorithm**

- **Fully implemented for NNLO QCD and NNLO QED corrections in the SM** (irreducible and reducible two-loop diagrams)

- **Excellent numerical precision**

- **Strong CPU performance** ($\sim 150\mu s$ per diagram and psp) due to
 - Efficient order of building blocks
 - Exploitation of analytical structure in loop momenta
 - On-the-fly helicity summation and diagram merging

Short-term and mid-term projects:

- Implementation of two-loop UV and rational counterterms
- Automation of all one-loop and two-loop ingredients in a single interface
- Tensor integral reduction and evaluation (in-house framework or external tool or mixture thereof)
Reducible two-loop diagrams

Amplitude of reducible diagram Γ_{red} (1-particle-reducible after amputation of external subtrees):

$$\mathcal{M}_{2,\Gamma_{\text{red}}} = C_{2,\Gamma_{\text{red}}} P \alpha_1 \alpha_2 \frac{2}{\prod_{i=1}^{\alpha} d_{\alpha_i^i}(q_i)} \left[\mathcal{N}^{i} (q_i) \right]^{\alpha_i}$$

Two factorised one-loop diagrams connected by a tree-like bridge P

\Rightarrow Fully implemented