Precision studies for Drell-Yan processes at NNLO

Sven-Olaf Moch

Universität Hamburg

RADCOR-LoopFest 2021, Florida State University, Tallahassee (via Zoom), May 19, 2021

Based on work done in collaboration with:

 Precision studies for Drell-Yan processes at NNLO Sergey Alekhin, Adam Kardos, S. M. and Zoltan Trócsányi arXiv:2104.02400 W- and Z-boson cross sections

Status (I)

Data

- High precision experimental data from LHC ATLAS, CMS, LHCb and Tevatron
 D0 useful for determinations of parton distributions
 - statistically significant NDP = 172 in ABMP16
- Differential distributions in decay leption pseudo-rapidity extend kinematics to forward region
 - sensitivity to light quark flavors at $x \simeq 10^{-4}$
 - leading order kinematics with: $\sigma(W^+) \simeq u(x_2)\bar{d}(x_1)$ and $\sigma(W^-) \simeq d(x_2)\bar{u}(x_1)$; $\sigma(Z) \simeq Q_u^2 u(x_2)\bar{u}(x_1) + Q_d^2 d(x_2)\bar{d}(x_1)$
 - cf. DIS: $\sigma(\text{DIS}) \simeq q_u^2 u(x) + q_d^2 d(x)$

Status (II)

Theory

- Complete NNLO QCD corrections with fully differential kinematics to match experimental cuts —> solved problem
 - combination of squared matrix elements with three different multiplicities of partons in final state
 - subtraction scheme to cancel of soft and collinear singularities upon integration over their phase space
- Public codes at NNLO including the leptonic decay
 - FEWZ (v3.1) (sector decomp.)
 - DYNNLO (v1.5) (q_T slicing)
 - MATRIX (v1.0.4) (q_T slicing)
 - MCFM at NNLO (N-jettiness slicing)

Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams '16

• Also:

- (SHERPA-NNLO-FO (q_T slicing)
- (DYTURBO (q_T slicing, based on DYNNLO (v1.5))

Camarda, Boonekamp, Bozzi et al. '19)

Catani, Grazzini '07

Höche, Li, Prestel '14

Grazzini, Kallweit, Wiesemann '17

Gavin, Li, Petriello, Quackenbush '12

Regularization

Subtraction

- removes all $\frac{1}{\epsilon^k}$ singularities in $d = 4 2\epsilon$ analytically; $k \leq 4$ at NNLO
 - Antenna subtraction Gehrmann-De Ridder, Gehrmann, Glover '05
 - Colourful subtraction
 - Sector subtraction

Del Duca, Somogyi, Trocsanyi '05

Czakon '10; Boughezal, Melnikov, Petriello '11; Czakon, Heymes '14

- Projection to Born Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15
- Local analytic sector subtraction

Magnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli, Uccirati '18

Slicing

- Cuts imposed in phase space; singularities $\ln^{k}(\text{some cut})$ need to cancel numerically; $k \leq 4$ at NNLO
 - q_T -subtraction

Catani. Grazzini '07

N-jettiness subtraction

Boughezal, Focke, Liu, Petriello '15; Gaunt, Stahlhofen, Tackmann, Walsh '15

Theory issues

• Differences at NNLO between DYNNLO and FEWZ up to $\mathcal{O}(1\%)$ or more

Benchmark computations

Benchmarking DYNNLO

• Deviations of DYNNLO (q_T slicing) at NNLO

- up to $\mathcal{O}(1\%)$ for W^+ -production
- few per mill for W^- and Z-production
- up to $\mathcal{O}(2-3\%)$ for forward Z-production, $\mathcal{O}(10\%)$ in first bin

Benchmarking MCFM

- Substantial deviations of MCFM at NNLO (N-jettiness slicing)
- Variation of τ_{cut} (smallest value $\tau_{cut} = 4 \cdot 10^{-4}$ at computational limits)
 - up to $\mathcal{O}(3\%)$ for W^+ -production
 - up to $\mathcal{O}(2\%)$ for W^- and Z-production
 - up to $\mathcal{O}(2-3\%)$ for forward Z-production, $\mathcal{O}(20\%)$ in first bin

Benchmarking MATRIX

• Findings for MATRIX similar to DYNNLO (both based on q_T slicing)

- up to $\mathcal{O}(1\%)$ for W^+ -production
- few per mill for W^- and Z-production
- up to $\mathcal{O}(1-2\%)$ for forward Z-production, $\mathcal{O}(5\%)$ in first bin
- Variation of $r_{\rm cut}$ has similar effect as smaller $au_{\rm cut}$ in MCFM

Slicing methods (I)

- W- and Z-boson production with decay to leptonic final state L
 - gauge boson mass $q^2 = Q^2$

 $a(p_a) + b(p_b) \rightarrow V(q) + X(k_i) \rightarrow L(q) + X(k_i)$

• Slicing parameter τ for q_T -subtraction defined with $\vec{k}_{T,i}$ (transverse momenta of hadronic final states) Catani, Grazzini '07

$$au = q_T^2/Q^2 = \left(\sum_i \vec{k}_{T,i}\right)^2/Q^2$$

• Slicing parameter au for leptonic 0-jettiness \mathcal{T}_0 Boughezal, Focke, Liu, Petriello '15; Gaunt, Stahlhofen, Tackmann, Walsh '15 $au = \mathcal{T}_0/Q = \sum_i \min \{2p_a \cdot k_i, 2p_b \cdot k_i\}/Q^2$

Slicing methods (II)

- Definitions of τ vanish at Born level and resolve additional radiation in infrared-safe manner
- Phase space integration for cross section with cut for slicing $au_{
 m cut}$

$$\sigma = \int d\tau \, \frac{d\sigma}{d\tau} = \int^{\tau_{\rm cut}} d\tau \, \frac{d\sigma}{d\tau} + \int_{\tau_{\rm cut}} d\tau \, \frac{d\sigma}{d\tau} = \sigma(\tau_{\rm cut}) + \int_{\tau_{\rm cut}} d\tau \, \frac{d\sigma}{d\tau}$$

- Dependence of $d\sigma/d\tau$ on τ predicted from universal QCD factorization in soft and collinear limits
 - power corrections proportional to τ^{p-1} with p > 0 are integrable

$$\frac{d\sigma}{d\tau} \sim \delta(\tau) + \sum_{i} \left[\frac{\ln^{i}\tau}{\tau}\right]_{+} + \sum_{j} \tau^{p-1} \ln^{j}\tau + \mathcal{O}(\tau^{p})$$

• Analytical result for $\sigma(au_{
m cut})$

$$\sigma(\tau_{\rm cut}) \sim 1 + \sum_{i} \ln^{i+1} \tau_{\rm cut} + \sum_{j} \tau_{\rm cut}^{p} \ln^{j} \tau_{\rm cut} + \mathcal{O}(\tau_{\rm cut}^{p+1})$$

• Subtraction scheme implemented via global subtraction term $\sigma^{
m sub}(au_{
m cut})$

$$\sigma = \sigma^{\rm sub}(\tau_{\rm cut}) + \int_{\tau_{\rm cut}} d\tau \, \frac{d\sigma}{d\tau} + \Delta \sigma^{\rm sub}(\tau_{\rm cut})$$

Power corrections (I)

- Residual power corrections are numerically sizable $\Delta \sigma^{\text{sub}}(\tau_{\text{cut}}) = \sigma(\tau_{\text{cut}}) \sigma^{\text{sub}}(\tau_{\text{cut}})$
 - difference between $\sigma(\tau_{\rm cut})$ and global subtraction term $\sigma^{\rm sub}(\tau_{\rm cut})$

Scaling behavior of power corrections

- Exponent p in power corrections τ_{cut}^p in $\sigma(\tau_{cut})$
- Stable gauge boson V
 - positive integer values for exponent p = 1, 2, 3, ...
 - power corrections scale as $au=q_T^2/Q^2$ or \mathcal{T}_0/Q
- Decay of V to leptonic final state L
 - *p_T*-cuts on leptons in decay change power counting of power corrections
 Ebert, Tackmann '19
 - half-integers values p = 1/2, 1, 3/2, ... for exponent p
 - power corrections scale as $\sqrt{\tau} = q_T/Q$ or $\sqrt{\mathcal{T}_0/Q}$

Cuts on leptons in decay (I)

- Experimental data has cuts on p_T of leptons
 - ATLAS data with $p_T^l \ge 20 \text{GeV}$ for decay of Z-boson (or $p_T^{l/\nu} \ge 25 \text{GeV}$ for W-boson)
- p_T -cuts break azimuthal symmetry in phase space integration
 - recall e.g. Drell-Yan process with $L(q) \rightarrow l^{-}(p_1) + l^{+}(p_2)$

 $a(p_a) + b(p_b) \rightarrow V(q) + X(k_i) \rightarrow l^-(p_1) + l^+(p_2) + X(k_i)$

• Leptonic final state phase space Φ_L

$$\Phi_L(q_T) = \frac{1}{4\pi^2} \int_0^{\pi} d\phi \int_{-\infty}^{\infty} d\Delta y \, \frac{p_{T1}^2}{Q^2}$$

- ϕ (azimuthal angle) and Δy (difference in rapidity between l^- and l^+)
- Lepton p_T -cuts $p_{T1}, p_{T2} \ge p_T^{\min}$ induce power corrections of order $\vec{k}_{T,i}$ for hadronic final state $X(k_i)$

Cuts on leptons in decay (II)

- p_T -cuts restrict phase space to $\min \{p_{T1}, p_{T2}\} \ge p_T^{\min}$
 - $(p_{T1})^2 = p_T^2$
 - $(p_{T2})^2 = (q_T + p_{T1})^2 = p_T^2 2p_T q_T \cos \phi + q_T^2$
- Azimuthal integration for small q_T under condition

$$\min \{p_T, p_T^2 - 2p_T q_T \cos \phi\} = \begin{cases} p_T^2, & \cos \phi \le 0\\ & & \\ p_T^2 - 2p_T q_T \cos \phi, & \cos \phi > 0 \end{cases}$$

• Leptonic phase space $d\Phi_L$ after integration yields

$$d\Phi_L = \pi \sqrt{1 - (2p_T^{\min})^2/Q^2} - \frac{4}{\sqrt{1 - (2p_T^{\min})^2/Q^2}} \frac{p_T^{\min} q_T}{Q^2}$$

- η_l -cuts impose additional restriction on azimuthal angle ϕ
 - value ϕ^* for boundary of phase space depends on gauge-boson rapdity *Y* and on $\Delta y = \eta_1 \eta_2$

$$\cos \phi^* = \frac{Q}{2q_T} \frac{\sinh(2Y)}{\sinh(2Y + \Delta y)} + \mathcal{O}(q_T/Q)$$

Lepton decay phase space (I)

- Plot of $|1 \Phi_L(q_T)/\Phi_L(0)|$ for W^{\pm} -production with cuts in ATLAS data
 - deviations of $\Phi_L(q_T)$ from Born level leading power results for $q_T = 0$
- Pseudo-rapidity distributions for W^{\pm} -production fix η_l
- p_T -cuts lead to linear power corrections in q_T
- MATRIX technical cutoff $r_{\rm cut}^{\rm min} = 0.15\%$ indicated by vertical dashed line

W-production with MATRIX

- Linear power corrections in q_T in leptonic phase space $d\Phi_L$ present in all η_l bins
- Deviations of MATRIX from FEWZ uniform across all η_l bins
 - up to $\mathcal{O}(1\%)$ for W^+ -production
 - few per mill for W^- -production

Lepton decay phase space (II)

- Plot of $|1 \Phi_L(q_T)/\Phi_L(0)|$ for central Z-production with ATLAS cuts
- Power corrections depend on gauge boson pseudo-rapidity η_{ll}
- Small η_{ll} : cuts on p_T dominate and lead to linear power corrections in q_T
- Large η_{ll} : cuts on pseudo-rapidities η_{l_1} , η_{l_2} dominate
 - azimuthal symmetry is restored for small q_T , when $|\cos \phi^*| \ge 1$
 - transition between linear and quadratic behavior around $\eta_{ll}\simeq 1.2$

Central Z-production with MCFM

- Deviations of MCFM from FEWZ display particular pattern as function of pseudo-rapidity η_{ll}
 - consistent with appearance/disappearance of linear power corrections in q_T in leptonic phase space $d\Phi_L$

Lepton decay phase space (III)

- Plot of $|1 \Phi_L(q_T)/\Phi_L(0)|$ for forward Z-production with ATLAS cuts
- Cuts on pseudo-rapidities $|\eta_{l_1}| \le 2.5 \le |\eta_{l_2}| \le 4.9$ do no overlap
- p_T -cuts lead to linear power corrections in q_T
- Size of linear power corrections depend on pseudo-rapidity η_{ll}
 - power corrections for small and large η_{ll} are order of magnitude larger than for W^{\pm} -production

Forward Z-production with MATRIX

• Linear power corrections in q_T in leptonic phase space $d\Phi_L$ present in all η_{ll} bins

• $d\Phi_L(\eta_{ll} = 1.3) \gg d\Phi_L(\eta_{ll} = 3.6) \gg d\Phi_L(\eta_{ll} = 2.4)$

• Size of deviations of MATRIX from FEWZ display same pattern as function of pseudo-rapidity η_{ll}

Summary

$W\pm$ - and Z-boson production at the LHC

- Currently available public codes with short-comings
 - Iong run times
 - problems with precision (short-comings of slicing methods)
- Sizable differences between public codes
 - differences at least similar, sometimes larger than sizes of NNLO corrections
- Linear power corrections from cuts on final state momenta affect precision of NNLO results

Upshot

 Need for fast and precise public code for differential distribution at NNLO (per mill level accuracy)