Electroweak Corrections for off-shell W^+W^- Scattering

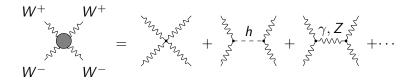
Ansgar Denner, Robert Franken, Timo Schmidt

Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität Würzburg

RADCOR & LoopFest 20 May 2021

Table of contents

Motivation and introduction


2 Differences to other VBS processes

3 Setup and (preliminary) results

What is Vector Boson Scattering?

- interesting field to check the validity of
 - the standard model in general
 - especially electroweak symmetry breaking

- exact cancellation of unitarity-violating high-energy behaviour of longitudinal modes
- very sensitive to BSM physics
- need of precise SM predictions

Previous work

- 2006: corrections $\mathcal{O}(\alpha_{S}^{1}\alpha^{6})$ in VBS approximation [Jäger, Oleari, Zeppenfeld; arXiv:hep-ph/0603177]
- 2011/12: corrections $\mathcal{O}(\alpha_{S}^{3}\alpha^{4})$ [Melia, Melnikow, Röntsch, Zanderighi; arXiv:1104.2327] [Greiner et al.; arXiv:1202.6004]
- 2013/16: corrections $\mathcal{O}(\alpha_5^1 \alpha^6)$ + parton shower [Jäger, Zanderighi; arXiv:1301.1695] [Rauch, Plätzer; arXiv:1605.07851]
- \Rightarrow no electroewak corrections yet

▲母▶▲∃▶▲∃▶ ∃|= ののの

Opposite sign WW scattering

- experimentally interesting
 - high cross section (> 10× larger) compared to other VBS processes $\sigma_{W^+W^-}\sim 10\,{\rm fb}$
 - but also large background from (misidentified) $t\bar{t}$ production $\sigma_{t\bar{t}}\sim 1\,\rm{nb}~{\rm [ATLAS;~arXiv:1910.08819]}$
 - not measured yet, measurements are forthcoming
- \bullet includes EW Higgs production via VBF and Higgs decay to W bosons
 - problematic: we cannot cut it out via physical cuts
 - interesting process also for Higgs physics

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (♪

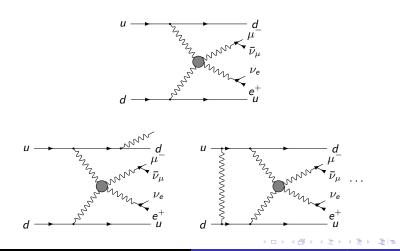
Details of the calculation

$$pp
ightarrow e^+ \mu^-
u_e ar{
u}_\mu jj + X$$

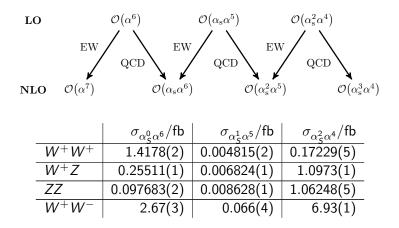
- Monte Carlo integration with BBMC (in-house Monte Carlo)
- calculation of matrix elements with RECOLA [Actis, Denner, Hofer, Lang, Scharf, Uccirati; arXiv:1605.01090] and COLLIER [Denner, Dittmaier, Hofer; arXiv:1604.06792]
 - complex-mass scheme [Denner, Dittmaier, Roth, Wackeroth; arXiv:hep-ph/9904472]
 - dimensional regularisation for IR singularities
 - renormalisation in on-shell scheme
- NLO calculation using Catani-Seymour dipoles [Catani, Seymour;

arXiv:hep-ph/9605323], [Dittmaier, Kabelschacht, Kasprzik; arXiv:0802.1405]

- input:
 - pdf set NNPDF3.1luxQED [Bertone,Carrazza,Hartland,Rojo; arXiv:1712.07053]


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ

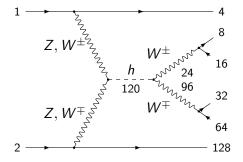
- running of α_S from pdfs
- determination of α in G_{μ} scheme


Motivation and introduction

Differences to other VBS processes Setup and (preliminary) results Summary & outlook

Signal diagrams

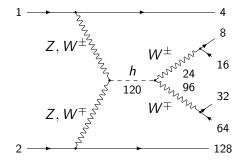
Process structure



[Biedermann, Denner, Pellen; arXiv:1708.00268], [Denner, Dittmaier, Maierhöfer, Pellen, Schwan;

arXiv:1904.00882], [Denner, Franken, Pellen, Schmidt; arXiv:2009.00411], [Denner, Franken, Schmidt; in prep.] = 🕞 🖉 🤈

The Higgs resonance (I)

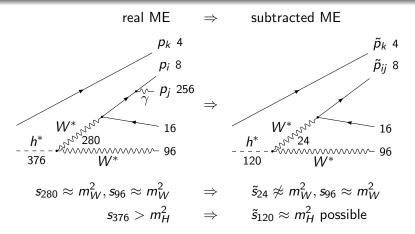

• first appearance in the fiducial phase space region:

with its very sharp resonance peak

• problem of our Monte Carlo: mapping of invariants in fixed order back-to-front $s_{24} \rightarrow s_{96} \rightarrow s_{120}$

The Higgs resonance (II)

• both W bosons mapped resonant \Rightarrow h almost never resonant


$$egin{aligned} s_{16} &= (p_8 + p_{16})^2 pprox m_W^2, \quad s_{96} &= (p_{32} + p_{64})^2 pprox m_W^2 \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{24}} + \sqrt{s_{96}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{12}} + \sqrt{s_{12}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{12}} + \sqrt{s_{12}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{12}} + \sqrt{s_{12}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{12}} + \sqrt{s_{12}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{12}} + \sqrt{s_{12}})^2 &> m_H^2 \ ext{mostly} \ \Rightarrow \quad s_{120} &> (\sqrt{s_{12}} + \sqrt{s_{12}})^2 &> (\sqrt{s_{12}}$$

The Higgs resonance (III)

- problem enhanced at NLO in Catani-Seymour algorithm:
 - used to subtract divergencies in collinear and soft regions
 - redistributes momenta of emitter p_i, emissus p_j and some spectator p_k to a reduced n - 1 particle PS with momenta p̃_{ij}, p̃_k
 - normally no severe impact on "non-dangerous" PSP
 - ... but it may shift the momenta in the reduced PS to the Higgs resonance
 - \Rightarrow real ME and subtracted ME do not match
- Monte Carlo signature: events with extremely large weights ⇒ unstable integration

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

The Higgs resonance (IV)

depending on the combination of momenta of emitter, emissus and spectator, formerly non-resonant particles can become resonant

Solution

- introduction of additional integration channels
- 3 steps:
 - determine all (free) s-channel invariants back to front
 - separate massive and massless s-channel invariants
 - do a cyclic permutation of massive s-channel invariants

 $(s_{96} \rightarrow s_{280} \rightarrow s_{376}), (s_{280} \rightarrow s_{376} \rightarrow s_{96}), (s_{376} \rightarrow s_{96} \rightarrow s_{280})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク

- for every possibly resonant propagator: at least 1 integration channel that maps this propagator first
- let the channel weight optimisation do the rest
 ⇒ dominant integration channels with resonant Higgs

General setup

- simulate pp collider at $\sqrt{s} = 13 \,\mathrm{TeV}$
- only light jets; b-jet veto
- cluster jets with anti-kT algorithm [Cacciari, Salam, Soyez; arXiv:0802.1189], resolution parameter R = 0.4
- consider only particles with |y| < 5 for recombination
- recombination $j\gamma
 ightarrow j, \ell\gamma
 ightarrow \ell$, resolution parameter R=0.4

• use scales
$$\mu_{
m F}=\mu_{
m R}=\sqrt{\pmb{p}_{
m T,j_1}\pmb{p}_{
m T,j_2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ

Two experimental cut setups

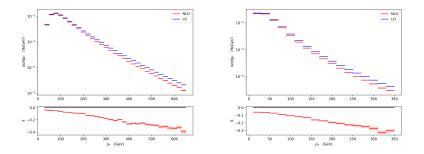
	"VBS setup"	"Higgs setup"
inspired by	[CMS; priv. conv.]	[CMS; arXiv:1806.05246]
$p_{\mathrm{T},\ell\ell}$	$> 30 \mathrm{GeV}$	$> 30 \mathrm{GeV}$
$p_{\mathrm{T},j1}, p_{\mathrm{T},j2}$	$> 30 { m GeV}$	$> 30{ m GeV}$
$p_{\mathrm{T},\ell 1}$	$> 25 { m GeV}$	$> 25{ m GeV}$
$p_{\mathrm{T},\ell 2}$	$> 13 { m GeV}$	$> 10{ m GeV}$
$p_{\mathrm{T,miss}}$	$> 20 { m GeV}$	$> 20{ m GeV}$
$\Delta R_{i\ell}$	> 0.4	> 0.4
$\Delta R_{\ell\ell}$	_	> 0.4
$m_{\ell\ell}$	$> 50 { m GeV}$	$> 12{ m GeV}$
$ y_{\ell} $	< 2.4	< 2.4
y _i	< 4.5	< 4.7
M _{ii}	$> 300 { m GeV}$	$>400{ m GeV}$
$ \Delta y_{jj} $	> 2.5	> 3.5
$m_{\mathrm{T},4\ell}$	_	\in [60 GeV, 125 GeV]
$ z_{\ell ii}^* $	-	< 0.5
jet veto: $p_{T,j3}$	_	$< 30{ m GeV}$

15/22 Ansgar Denner, **Robert Franken**, Timo Schmidt Electroweak Corrections for off-shell W^+W^- Scattering

三日 のへの

Two experimental cut setups

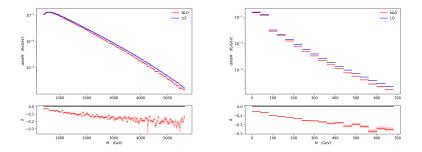
	"VBS setup"	"Higgs setup"
inspired by	[CMS; priv. conv.]	[CMS; arXiv:1806.05246]
$p_{\mathrm{T},\ell\ell}$	$> 30{ m GeV}$	$> 30{ m GeV}$
$p_{\mathrm{T},j1}, p_{\mathrm{T},j2}$	$> 30{ m GeV}$	$> 30{ m GeV}$
$p_{\mathrm{T},\ell 1}$	$> 25{ m GeV}$	$> 25{ m GeV}$
$p_{\mathrm{T},\ell 2}$	$> 13{ m GeV}$	$> 10{ m GeV}$
$p_{\mathrm{T,miss}}$	$> 20{ m GeV}$	$> 20{ m GeV}$
$\Delta R_{j\ell}$	> 0.4	> 0.4
$\Delta R_{\ell\ell}$		> 0.4
$m_{\ell\ell}$	$> 50{ m GeV}$	$> 12{ m GeV}$
$ y_{\ell} $	< 2.4	< 2.4
$ y_i $	< 4.5	< 4.7
M _{ii}	$> 300{ m GeV}$	$>400{ m GeV}$
$ \Delta y_{jj} $	> 2.5	> 3.5
$m_{\mathrm{T,4}\ell}$	—	\in [60 GeV, 125 GeV]
$ z_{\ell ii}^* $	—	< 0.5
jet veto: $p_{T,j3}$	—	$< 30{ m GeV}$


16/22 Ansgar Denner, **Robert Franken**, Timo Schmidt Electroweak Corrections for off-shell W^+W^- Scattering

三日 のへの

Differential distributions (I) – preliminary

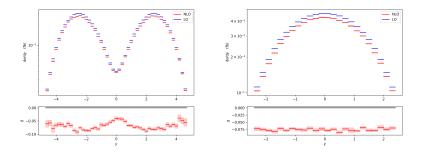
(a) p_{T,j_1}


 typical VBS signature: large corrections (up to -40%) at high energies due to Sudakov logarithms

Differential distributions (II) – preliminary

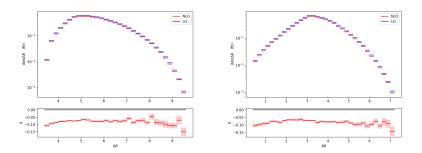
(a) $M_{j_1j_2}$

EL OQO



 same behaviour of the corrections, but: bulk of the cross section at low lepton invariant masses

Differential distributions (III) – preliminary


- small jet rapidities very suppressed
- corrections in lepton rapidity almost constant

Differential distributions (IV) – preliminary

(a) $\Delta R_{j_1j_2}$

315

• again typical VBS signatures: clearly separated particles

Electroweak corrections in different VBS processes

	$\sigma_{lpha^6}/{ m fb}$	$\delta\sigma_{lpha^7}/{ m fb}$	$\delta\sigma_{lpha^7}/\sigma_{lpha^6}$
W^+W^+	1.4178(2)	-0.2169(3)	-15.3%
W^+Z	0.25511(1)	-0.04091(2)	-16.0%
ZZ	0.097683(2)	-0.015573(5)	-15.9%
W^+W^- (Higgs setup)	1.5322(2)	-0.115(3)	-7.5%

[Biedermann, Denner, Pellen; arXiv:1708.00268], [Denner, Dittmaier, Maierhöfer, Pellen, Schwan;

arXiv:1904.00882], [Denner, Franken, Pellen, Schmidt; arXiv:2009.00411], [Denner, Franken, Schmidt; in prep.]

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

Summary & outlook

- W^+W^- scattering is "different" from other VBS processes
- Higgs resonance plays an important role
 - has severe impact on the behaviour of NLO cross sections
 - different setups for Higgs and VBS
- we plan to investigate a further setup in which we eliminate the Higgs resonance
- checks against other Monte Carlos (MoCaNLO) ongoing
- \bullet better statistics, additional setups and other orders in α_{S} coming soon

Stay tuned ;-)

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

/3 Ansgar Denner, Robert Franken, Timo Schmidt Electroweak Corrections for off-shell W⁺W⁻ Scattering

SM input parameters

$$\begin{split} m_W^{\rm OS} &= 80.379\,{\rm GeV} & \Gamma_W^{\rm OS} &= 2.085\,{\rm GeV} \\ m_Z^{\rm OS} &= 91.1876\,{\rm GeV} & \Gamma_Z^{\rm OS} &= 2.4952\,{\rm GeV} \\ m_h &= 125.0\,{\rm GeV} & \Gamma_h &= 4.07\cdot10^{-3}\,{\rm GeV} \\ G_\mu &= 1.16638\cdot10^{-5}\,{\rm GeV}^{-2} & \alpha_5(m_Z^2) &= 0.118 \end{split}$$

三日 のへの

• • = • • = •

Definition of non-standard cut variables

$$egin{aligned} & z_{\ell j j}^{*} = rac{y_{\ell} - rac{y_{j_{1}} + y_{j_{2}}}{2}}{y_{j_{1}} - y_{j_{2}}} \ & m_{\mathrm{T}, 4\ell} = \sqrt{2 p_{\mathrm{T}, \ell \ell} p_{\mathrm{T}, \mathrm{miss}} [1 - \cos \Delta \phi_{\Sigma_{\ell \ell} \Sigma_{
u
u}}]} \end{aligned}$$

ショク エーニー