The pion-photon transition form factor at two loops in QCD

Tobias Huber
Universität Siegen

J. Gao, Y. Ji, Y.-M. Wang, TH in preparation

RADCOR-LoopFest 2021, FSU, Tallahassee, FL, May 20th, 2021

Intro / motivation

- Pion-photon transition form factor: theoretically (one of) the simplest hadronic matrix elements

$$
\langle\pi(p)| j_{\mu}^{\mathrm{em}}\left|\gamma\left(p^{\prime}\right)\right\rangle=g_{\mathrm{em}}^{2} \epsilon_{\mu \nu \alpha \beta} q^{\alpha} p^{\beta} \epsilon^{\nu}\left(p^{\prime}\right) F_{\gamma^{*} \gamma \rightarrow \pi^{0}}\left(Q^{2}\right)
$$

- Ideally suited for
- precision studies of the partonic landscape of composite hadrons
- investigating the factorization properties of hard exclusive QCD reactions
- First studies date back half a century (before QCD!)
[Cornwall'66; Gross,Treiman'71; Brodsky,Kinoshita,Terazawa'71]
- Later one-loop and subleading power-corrections
[del Aguila,Chase'81; Braaten'83; Kadantseva,Mikhailov,Radyushkin'86; Shen,Wang'17]
- Also with connections to
- HLbL contribution to $(g-2)_{\mu}$ in the dispersive framework (double-virtual FF)
- exclusive B-meson decays such as $B \rightarrow \pi \ell \nu$ or $B \rightarrow \pi \pi$ (pion LCDA)

Intro / motivation

- Experimental measurements in $e^{+} e^{-}$collisions

- Status of experimental measurements
[figures from Wang'18]
- Asymptotic limit (dashed line)

$$
\lim _{Q^{2} \rightarrow \infty} Q^{2} F_{\gamma^{*} \gamma \rightarrow \pi^{0}}\left(Q^{2}\right)=\sqrt{2} f_{\pi}
$$

- Scaling violation?

The pion-photon transition form factor

- Pion-photon transition form factor $F_{\gamma^{*} \gamma \rightarrow \pi^{0}}$
- extracted from matrix element of e.m. current $j_{\mu}^{\mathrm{em}}=\sum_{q} g_{\mathrm{em}} Q_{q} \bar{q} \gamma_{\mu} q$ between on-shell photon of momentum p^{\prime} and pion of momentum p

$$
\langle\pi(p)| j_{\mu}^{\mathrm{em}}\left|\gamma\left(p^{\prime}\right)\right\rangle=g_{\mathrm{em}}^{2} \epsilon_{\mu \nu \alpha \beta} q^{\alpha} p^{\beta} \epsilon^{\nu}\left(p^{\prime}\right) F_{\gamma^{*} \gamma \rightarrow \pi^{0}}\left(Q^{2}\right)
$$

- Have $q=p-p^{\prime}$ and $Q^{2}=-q^{2}$
- Kinematics at leading power

$$
p_{\mu}^{\prime}=\left(n p^{\prime}\right) \frac{\bar{n}_{\mu}}{2} \quad p_{\mu}=(\bar{n} p) \frac{n_{\mu}}{2} \quad\left(n p^{\prime}\right) \sim(\bar{n} p) \sim \mathcal{O}\left(\sqrt{Q^{2}}\right)
$$

- Goal: Establish QCD factorization formula for $F_{\gamma^{*} \gamma \rightarrow \pi^{0}}\left(Q^{2}\right)$ at leading power

The pion-photon transition form factor

- Consider four-point QCD matrix element (x : momentum fraction, $\bar{x} \equiv 1-x$)

$$
\Pi_{\mu}=\langle q(x p) \bar{q}(\bar{x} p)| j_{\mu}^{\mathrm{em}}\left|\gamma\left(p^{\prime}\right)\right\rangle
$$

- Allows to derive factorization formula for $F_{\gamma^{*} \gamma \rightarrow \pi^{0}}$ at leading power

$$
F_{\gamma^{*} \gamma \rightarrow \pi^{0}}^{\mathrm{LP}}\left(Q^{2}\right)=\frac{\left(Q_{u}^{2}-Q_{d}^{2}\right) f_{\pi}}{\sqrt{2} Q^{2}} \int_{0}^{1} d x T_{2}(x) \phi_{\pi}(x, \mu)
$$

- $T_{2}(x)$: hard function, computable in perturbation theory
- $\phi_{\pi}(x, \mu)$: Leading twist pion light-cone distribution amplitude (LCDA)

$$
\langle\pi(p)| \bar{\xi}(y) W_{c}(y, 0) \gamma_{\mu} \gamma_{5} \xi(0)|0\rangle=-i f_{\pi} p_{\mu} \int_{0}^{1} d u e^{i u p \cdot y} \phi_{\pi}(u, \mu)+\mathcal{O}\left(y^{2}\right)
$$

Matching onto SCET

- Goal: Extract hard function $T_{2}^{(L)}$ at given loop-order L.
- Introduce SCET operator basis: $\quad\left\{O_{1}^{\mu \nu}(x), O_{2}^{\mu \nu}(x), O_{E}^{\mu \nu}(x)\right\}$

$$
O_{j}^{\mu \nu}(x)=\frac{\bar{n} \cdot p}{2 \pi} \int d \tau e^{i x \tau \bar{n} \cdot p} \bar{\xi}(\tau \bar{n}) W_{c}(\tau \bar{n}, 0) \Gamma_{j}^{\mu \nu} \xi(0),
$$

- Dirac structures

$$
\begin{aligned}
\Gamma_{1, \mu \nu} & =g_{\mu \nu}^{\perp} \not \overrightarrow{ }, \quad \Gamma_{2, \mu \nu}=i \epsilon_{\mu \nu}^{\perp} \not \ddot{h} \gamma_{5}, \\
\Gamma_{E, \mu \nu} & =\ddot{h}\left(\frac{1}{2}\left[\gamma_{\mu, \perp}, \gamma_{\nu, \perp}\right]-i \epsilon_{\mu \nu}^{\perp} \gamma_{5}\right) .
\end{aligned}
$$

- For our calculation $O_{2}^{\mu \nu}(x)$ is the relevant operator
- $O_{E}^{\mu \nu}(x)$ is evanescent
- $O_{1}^{\mu \nu}(x)$ cannot couple to a collinear pion state (parity). Relevant for DVCS.

Matching onto SCET

- Start with

$$
\begin{equation*}
\left\langle j^{\mathrm{em}}\right\rangle=\sum_{a=1,2, E} T_{a}\left\langle O_{a}\right\rangle \tag{1}
\end{equation*}
$$

- Expand both sides in $\widetilde{\alpha}_{s}=\alpha_{s} /(4 \pi)$, superscripts give loop order

$$
\begin{aligned}
T_{a} & =T_{a}^{(0)}+\widetilde{\alpha}_{s} T_{a}^{(1)}+\widetilde{\alpha}_{s}^{2} T_{a}^{(2)}+\ldots \\
\left\langle j^{\mathrm{em}}\right\rangle & =\sum_{a=1,2, E}\left\{A_{a}^{(0)}+\widetilde{\alpha}_{s} A_{a}^{(1)}+\widetilde{\alpha}_{s}^{2}\left[A_{a}^{(2)}+Z_{\alpha}^{(1)} A_{a}^{(1)}\right]+\ldots\right\}\left\langle O_{a}\right\rangle^{(0)}
\end{aligned}
$$

- On-shell matrix elements of $\left\langle O_{a}\right\rangle$ simplify due to scaleless integrals

$$
\left\langle O_{a}\right\rangle=\sum_{b=1,2, E}\left\{\delta_{a b}+\widetilde{\alpha}_{s} Z_{a b}^{(1)}+\widetilde{\alpha}_{s}^{2} Z_{a b}^{(2)}+\ldots\right\}\left\langle O_{b}\right\rangle^{(0)}
$$

- Compare coefficients of $\left\langle O_{i}\right\rangle^{(0)}$ on both sides of (1) at given order in $\widetilde{\alpha}_{s}$.

Matching onto SCET: Master formulas

- Tree level

$$
T_{a}^{(0)}=A_{a}^{(0)}
$$

- One loop

$$
\begin{aligned}
& T_{2}^{(1)}=A_{2}^{(1)}-T_{2}^{(0)} * Z_{22}^{(1)}-T_{E}^{(0)} * Z_{E 2}^{(1)} \\
& T_{E}^{(1)}=A_{2}^{(1)}-T_{2}^{(0)} * Z_{22}^{(1)}=T_{2}^{(1)}+\underbrace{T_{E}^{(0)} * Z_{E 2}^{(1)}}_{\text {finite shift }}
\end{aligned}
$$

- Asterisk denotes convolution, due to non-locality of SCET operators O_{a}.
- Have used that

$$
\begin{array}{ll}
A_{2}^{(L)}=A_{E}^{(L)} & Z_{1 E}^{(1)}=Z_{2 E}^{(1)}=0 \\
Z_{12}^{(1)}=0 \text { (parity) } & Z_{E E}^{(1)}=Z_{22}^{(1)}
\end{array}
$$

- Two loops

$$
T_{2}^{(2)}=A_{2}^{(2)}+Z_{\alpha}^{(1)} A_{2}^{(1)}-\sum_{a=2, E}\left[T_{a}^{(1)} * Z_{a 2}^{(1)}+T_{a}^{(0)} * Z_{a 2}^{(2)}\right]
$$

Two-loop calculation

- Generate diagrams with FeynArts and in-house routine
- Many diagrams vanish
- Zero color factor
- Furry's theorem
- projection onto the π^{0} wave-function $\propto|u \bar{u}\rangle-|d \bar{d}\rangle$
- 42 diagrams (plus $\gamma \leftrightarrow \gamma^{*}$) remain
- Use dimensional regularization with $D=4-2 \epsilon$, NDR for γ_{5}
- Perform Dirac reduction to $\Gamma_{1,2, E}^{\mu \nu}$
- In individual diagrams two additional Dirac structures appear, $n^{\mu} n^{\nu} \bar{\not}$ and $\bar{n}^{\mu} n^{\nu} \bar{\eta}$

Two-loop calculation

- Reduction of scalar integrals: IBP relations, Laporta algorithm in FIRE
[Tkachov'81; Chetyrkin,Tkachov'81] [Laporta'01; Smirnov'08]
- Reduction of most complicated diagram takes ~ 1 day
- In addition, exploit relations based on momentum conservation
- Required since $p_{1}=x p$ and $p_{2}=\bar{x} p$ are parallel

$$
\begin{aligned}
\bar{x} k_{1}^{2}-\bar{x}\left(k_{1}+p_{1}\right)^{2}+x k_{2}^{2}+x\left(k_{2}-k_{1}-p_{2}\right)^{2}-x\left(k_{1}-k_{2}\right)^{2}-x\left(k_{2}-p_{2}\right)^{2} & =0 \\
k_{2}^{2}-x\left(k_{2}-p_{2}\right)^{2}-\bar{x}\left(k_{2}+p_{1}\right)^{2} & =0
\end{aligned}
$$

- Reduction yields (only) 12 master integrals
- After IBP reduction, Dirac structures $n^{\mu} n^{\nu} \bar{\not}$ and $\bar{n}^{\mu} n^{\nu} \overline{\not x}$ drop out identically
- Manifestation of QED Ward identity

Master integrals

Evaluating Master integrals

- Closed forms, valid to all orders in ϵ. Gives Γ - and hypergeometric functions.
- Expand with HypExp
[Maître,TH'05'07]
- Method of differential equations
[Kotikov'90'91; Remiddi'97]
- Partially in canonical form
- Mellin Barnes representations
[Czakon'05; Gluza,Riemann et al.'07+; Kosower'09]
- compute boundary conditions for DEs as $x \rightarrow 0$ or $x \rightarrow 1$
[Czakon'06]
- derive full x-dependence of analytic functions
- Numerical checks with FIESTA
- Obtain analytic ϵ-expansion of all master integrals
- Harmonic polylogarithms (HPLs) of weights 0,1
- HPLs of at most weight four appear in the amplitude.

Infrared subtraction

- Recall master formula

$$
T_{2}^{(2)}=A_{2}^{(2)}+Z_{\alpha}^{(1)} A_{2}^{(1)}-\sum_{a=2, E}\left[T_{a}^{(1)} * Z_{a 2}^{(1)}+T_{a}^{(0)} * Z_{a 2}^{(2)}\right]
$$

- $Z_{22}^{(1)}$ is the one-loop ERBL kernel

$$
Z_{22}^{(1)}\left(x, x^{\prime}\right)=-\frac{2 C_{F}}{\epsilon}\left[\frac{\bar{x}}{\bar{x}^{\prime}}\left(1+\frac{1}{x-x^{\prime}}\right) \theta\left(x-x^{\prime}\right)+\left(x \leftrightarrow \bar{x}, x^{\prime} \leftrightarrow \bar{x}^{\prime}\right)\right]_{+}
$$

- $Z_{22}^{(2)}$ is the two-loop ERBL kernel

$$
\begin{aligned}
Z_{22}^{(2)}\left(x, x^{\prime}\right) & =\frac{1}{2 \epsilon^{2}}\left\{Z_{22}^{(1)}\left(x, x^{\prime \prime}\right) * Z_{22}^{(1)}\left(x^{\prime \prime}, x^{\prime}\right)-\beta_{0} Z_{22}^{(1)}\left(x, x^{\prime}\right)\right\} \\
& +\frac{1}{2 \epsilon}\left\{2 n_{f} C_{F} V_{F}+2 C_{F} C_{A} V_{G}+C_{F}^{2} V_{F}\right\}_{+}
\end{aligned}
$$

- Need lower-loop quantities beyond $\mathcal{O}\left(\epsilon^{0}\right)$.

Infrared subtraction

- Most delicate point:

Evanescent \longrightarrow physical mixing at two loops, $Z_{E 2}^{(2)}$

- Insertion of non-local evanescent operator, regularize IR divergences

$$
\begin{aligned}
& I_{(2), A}^{\mu \nu}=C_{F}^{2}(\bar{n} \cdot k) \int_{-\infty}^{\infty} \frac{d z}{2 \pi} \mathrm{e}^{-i t z k \cdot \bar{n}} \int \frac{d^{d} l_{1} d^{d} l_{2}}{(2 \pi)^{2 d}} \bar{u}\left(k_{1}\right)\left(i g \gamma^{\rho}\right) \frac{i\left(k_{1}-l_{2}\right)}{\left(k_{1}-l_{2}\right)^{2}}\left(i g \gamma^{\alpha}\right) \frac{i\left(k_{1}-l_{1}\right)}{\left(k_{1}-l_{1}\right)^{2}} \\
& \times \mathcal{O}_{E}^{\mu \nu} \frac{-i\left(l_{1}+k_{2}\right)}{\left(l_{1}+k_{2}\right)^{2}}\left(i g \gamma^{\beta}\right) \frac{-i\left(l_{2}+k_{2}\right)}{\left(l_{2}+k_{2}\right)^{2}}\left(i g \gamma^{\sigma}\right) v\left(k_{2}\right) \frac{-i g_{\rho \sigma}}{l_{2}^{2}} \frac{-i g_{\alpha \beta}}{\left(l_{1}-l_{2}\right)^{2}} \mathrm{e}^{i z\left(k_{1}-l_{1}\right) \cdot \bar{n}}
\end{aligned}
$$

- Take coefficient of $O_{2}^{\mu \nu}$, Fourier transform

$$
I_{(2), A}^{\mu \nu}=8 a_{s}^{2} C_{F}^{2}\left\{\frac{\bar{t}}{\bar{x}}\left[3+2 L_{m}\right]+\frac{t \ln t}{\bar{x}}\left[2\left(1+L_{m}\right)+\ln t\right]+\frac{\bar{t}}{x} \ln \bar{x}\left[2\left(1+L_{m}+\ln \bar{t}\right)-\ln \bar{x}\right]\right\} \theta(t-x)+(t \rightarrow \bar{t}, x \rightarrow \bar{x})
$$

- IR regulator drops in sum of all diagrams

Analytic results

- Sum everything up, poles in ϵ cancel, extract $T_{2}^{(2)}$

$$
T_{2}^{(2)}=\beta_{0} C_{F}\left(\mathcal{K}_{\beta}^{(2)}(x) / x+\mathcal{K}_{\beta}^{(2)}(\bar{x}) / \bar{x}\right)+C_{F}^{2}\left(\mathcal{K}_{F}^{(2)}(x) / x+\mathcal{K}_{F}^{(2)}(\bar{x}) / \bar{x}\right)+C_{F} / N_{c}\left(\mathcal{K}_{N}^{(2)}(x) / x+\mathcal{K}_{N}^{(2)}(\bar{x}) / \bar{x}\right)
$$

where

$$
\begin{aligned}
\mathcal{K}_{\beta}^{(2)}(x)= & -L^{2}\left(H_{0}(x)+\frac{3}{2}\right)+L\left(-\frac{10}{3} H_{0}(x)-H_{1}(x)+2 H_{0,0}(x)-2 H_{1,0}(x)-2 \zeta_{2}-\frac{19}{2}\right)-\zeta_{2} H_{1}(x)-\frac{19}{9} H_{0}(x) \\
& -\frac{1}{2} H_{1}(x)+\frac{10}{3} H_{0,0}(x)-\frac{14}{3} H_{1,0}(x)-H_{1,1}(x)-2 H_{0,0,0}(x)+2 H_{1,0,0}(x)-H_{1,1,0}(x)-\frac{14}{3} \zeta_{2}-\zeta_{3}-\frac{457}{24} \\
\mathcal{K}_{F}^{(2)}(x)= & L^{2}\left(6 H_{0}(x)-2 H_{1}(x)+4 H_{0,0}(x)+2 H_{1,0}(x)+\frac{9}{2}\right)+L\left(8 \zeta_{2} H_{0}(x)+\frac{38}{3} H_{0}(x)+4 \zeta_{2} H_{1}(x)-17 H_{1}(x)\right. \\
& \left.-6 H_{0,0}(x)+8 H_{1,0}(x)-2 H_{1,1}(x)-12 H_{0,0,0}(x)+4 H_{1,1,0}(x)-4 \zeta_{3}+6 \zeta_{2}+\frac{47}{2}\right)+6 \zeta_{2} H_{0}(x)+4 \zeta_{2} H_{1}(x) \\
& -2 \zeta_{2} H_{2}(x)-8 \zeta_{2} H_{0,0}(x)-2 \zeta_{2} H_{1,0}(x)+2 \zeta_{2} H_{1,1}(x)+32 \zeta_{3} H_{0}(x)-4 \zeta_{3} H_{1}(x)-\frac{64}{9} H_{0}(x)-\frac{71}{2} H_{1}(x) \\
& -\frac{38}{3} H_{0,0}(x)+\frac{34}{3} H_{1,0}(x)-11 H_{1,1}(x)-2 H_{1,2}(x)-8 H_{1,0,0}(x)+4 H_{1,1,0}(x)-2 H_{1,1,1}(x) \\
& -2 H_{1,2,0}(x)-4 H_{2,0,0}(x)-2 H_{2,1,0}(x)+12 H_{0,0,0,0}(x)-2 H_{1,0,0,0}(x)-2 H_{1,1,0,0}(x) \\
& +2 H_{1,1,1,0}(x)+3 \zeta_{2}^{2}+\frac{34}{3} \zeta_{2}+39 \zeta_{3}+\frac{701}{24}
\end{aligned}
$$

Analytic results

- Sum everything up, poles in ϵ cancel, extract $T_{2}^{(2)}$

$$
T_{2}^{(2)}=\beta_{0} C_{F}\left(\mathcal{K}_{\beta}^{(2)}(x) / x+\mathcal{K}_{\beta}^{(2)}(\bar{x}) / \bar{x}\right)+C_{F}^{2}\left(\mathcal{K}_{F}^{(2)}(x) / x+\mathcal{K}_{F}^{(2)}(\bar{x}) / \bar{x}\right)+C_{F} / N_{c}\left(\mathcal{K}_{N}^{(2)}(x) / x+\mathcal{K}_{N}^{(2)}(\bar{x}) / \bar{x}\right)
$$

[agrees with Braun,Manashov,Moch,Schoenleber'21]
where

$$
\begin{aligned}
\mathcal{K}_{N}^{(2)}(x)= & L\left(4 \zeta_{2} H_{0}(x)-\frac{8}{3} H_{0}(x)-4 H_{1}(x)-4 H_{3}(x)+4 H_{2,0}(x)+12 \zeta_{3}-1\right)+12 x\left(\zeta_{2} H_{0}(x)-H_{3}(x)+H_{2,0}(x)\right) \\
& -6 \zeta_{2} H_{1}(x)-4 \zeta_{2} H_{2}(x)-4 \zeta_{2} H_{0,0}(x)+4 \zeta_{2} H_{1,0}(x)+2 \zeta_{2} H_{1,1}(x)+14 \zeta_{3} H_{0}(x)-\frac{32}{9} H_{0}(x)+11 H_{1}(x) \\
& +4 H_{2}(x)+8 H_{4}(x)+\frac{8}{3} H_{0,0}(x)+\frac{2}{3} H_{1,0}(x)+2 H_{1,1}(x)+6 H_{1,2}(x)-2 H_{1,3}(x)+6 H_{2,2}(x)-4 H_{3,0}(x) \\
& -4 H_{3,1}(x)-6 H_{1,1,0}(x)-2 H_{1,1,2}(x)+4 H_{1,2,0}(x)-6 H_{2,0,0}(x)-4 H_{2,1,0}(x)-2 H_{1,1,0,0}(x) \\
& +2 H_{1,1,1,0}(x)+\frac{1}{5} \zeta_{2}^{2}-\frac{22}{3} \zeta_{2}+54 \zeta_{3}-\frac{73}{12}
\end{aligned}
$$

Numerical results

- Need to model the pion LCDA, choose five models
- Use three-loop evolution of pion LCDA, expand to first 12 Gegenbauer moments
- Model I: $\quad \phi_{\pi}\left(x, \mu_{0}\right)=\frac{\Gamma\left(2+2 \alpha_{\pi}\left(\mu_{0}\right)\right)}{\Gamma^{2}\left(1+\alpha_{\pi}\left(\mu_{0}\right)\right)}(x \bar{x})^{\alpha_{\pi}\left(\mu_{0}\right)}, \quad \alpha_{\pi}(2 \mathrm{GeV})=0.585_{-0.055}^{+0.061}$
[Khodjamirian,Melic,Wang,Wei'20]

- Red line includes subleading power corrections (twist 4, hadronic photon effect)
[Shen,Wang'17]
- Only perturbative uncertainties are shown

Numerical results

- Model III: $a_{2}(1 \mathrm{GeV})=0.14 \quad a_{4}(1 \mathrm{GeV})=0.23$

$$
a_{6}(1 \mathrm{GeV})=0.18 \quad a_{8}(1 \mathrm{GeV})=0.05
$$

- Only perturbative uncertainties are shown

Numerical results

- Comparison between models
- Only perturbative uncertainties are shown

- Belle II data will allow to distinguish between LCDA models

Conclusion and Outlook

- We computed the pion-photon transition form factor to two loops in QCD
- Prime example of QCD factorization in hard exclusive processes
- Two-loop computation of bare amplitude uses standard multi-loop methods
- IR subtraction non-trivial due to evanescent-physical mixing at two loops
- Studied models of pion LCDA, comparison to data
- Future plans, e.g.
- Include massive quarks in fermion loops
- Take second photon off-shell

