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Introduction

At hadron colliders, studies of resonant 
production of Z and W bosons lead to the 
precise measurement of EW parameters as 
the W boson mass

Very accurate SM predictions are required 
to achieve a control over the theory 
systematic in the extraction of the W mass 
at the level of 𝒪(10 MeV)

QCD corrections dominant effects. They are known up to
• NNLO for differential cross sections 

[Anastasiou, Dixon, Melnikov, Petriello (2003)], [Melnikov, Petriello (2006)] [Catani, Cieri, Ferrera, de Florian, Grazzini (2009)] 
[Catani, Ferrera, Grazzini (2010)] 

• N3LO for inclusive cross section (for  and  production) 
[Duhr, Dulat, Mistlberger (2020)]

NLO EW corrections are known since long [S. Dittmaier and M. Kramer (2002)], [Baur,Wackeroth (2004)], [Baur, 
Brein, Hollik, Schappacher, Wackeroth (2002)], [Zykunov (2006,2007)]

and nowadays automatised in different available generators [Les Houches 2017, 1803.07977] 

γ* W

The Drell-Yan process is of the primary importance for the LHC precision physics program 
given the large production rates and clean experimental signatures
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Introduction
The Drell-Yan process is of the primary importance for the LHC precision physics program 
given the large production rates and clean experimental signatures

Given the (sub)per-mille accuracy target, mixed QCD-
EW corrections become relevant 

Recently, quite a hot topic: at least 4 talks this 
conference!  

At hadron colliders, studies of resonant 
production of Z and W bosons lead to the 
precise measurement of EW parameters as 
the W boson mass

Very accurate SM predictions are required 
to achieve a control over the theory 
systematic in the extraction of the W mass 
at the level of 𝒪(10 MeV)
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Theoretical developments 
- progress on two-loop master integrals  

[Bonciani, Di Vita, Mastrolia, Schubert (2016)], [Heller, von Manteuffel, Schabinger (2019)] [Hasan, Schubert (2020)] 

- renormalization 
[Dittmaier, Schmidt, Schwarz (2020)]

- 2-loop amplitudes for  neutral current DY 
[Heller, von Manteuffel, Schabinger, Spiesberger (2020)]

On-shell Z/W production (  process)
- analytical mixed QCD–QED corrections to the inclusive production of an on- shell Z 

[De Florian, Der, Fabre (2018)]

- fully differential mixed QCD–QED corrections to the production of an on-shell Z 
[Delto, Jaquier, Melnikov, Röntsch (2019)]

- total Z production cross section in fully analytical form including exact NNLO QCD-EW corrections 
[Bonciani, Buccioni, Rana, Vicini (2020)] 

- fully differential on-shell Z and W production including exact NNLO QCD-EW corrections 
[F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch (2020)],[Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, 
Röntsch (2020)] 

Beyond on-shell computations
- dominant Mixed QCD-EW corrections in Pole Approximation for neutral- and charged- DY processes 

[Dittmaier, Huss, and Schwinn (2014,2015)]

- neutrino-pair production including NNLO QCD-QED corrections 
[Cieri, Der, De Florian, Mazzitelli (2020)]

2 → 2

2 → 1

Mixed QCD-EW corrections: state of the art
The computation of fully differential mixed QCD-EW corrections to the production of an 
electro-weak boson is a complicated task

see von Manteuffel’s talk

see Rana’s talk
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Mixed QCD-EW corrections to p + p → l+vl + X
The computation of fully differential mixed QCD-EW corrections to the production of an 
electro-weak boson is a complicated task

This talk: we present the first (almost) exact fully differential computation of the mixed 
corrections to the  charged current DY process

The complexity of the computation is similar to that of NNLO QCD corrections for a  
with (many) scales. The complete computation requires 

- double real emission tree-level diagrams  

- single real emission one-loop diagrams 

- two-loop virtual and one-loop squared diagrams

 
All contributions are separately infrared divergent (IR):

1. we need a suitable subtraction formalism to handle IR singularities 

2. the two-loop virtual amplitude represents the bottle neck (still not available)

2 → 2

2 → 2
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The computation of fully differential mixed QCD-EW corrections to the production of an 
electro-weak boson is a complicated task

This talk: we present the first (almost) exact fully differential computation of the mixed 
corrections to the  charged current DY process

The complexity of the computation is similar to that of NNLO QCD corrections for a  
with (many) scales. The complete computation requires 

- double real emission tree-level diagrams  

- single real emission one-loop diagrams 

- two-loop virtual and one-loop squared diagrams

2 → 2

2 → 2

We consistently included all the contributions

1. achieving the cancellation of IR singularities within the  
subtraction formalism

2. approximating only the finite part of the two-loop virtual

In the following, we will focus on one key observable, namely the 
transverse momentum of the charged lepton

qT
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• Handling of IR singularities

• Hard-Virtual coefficient 

• Numerical results   

• Conclusions 

Outline



Handling of IR singularities



 subtraction for NNLO QCD-EW correction (and NLO-EW)qT
General ideas

• Do not reinvent the wheel: start from the well established experience at NNLO QCD  

• IR structure is associated to only QCD-QED subpart: recycle NNLO QCD results via a 
careful abelianisation procedure                                                                                                   
[de Florian, Rodrigo, Sborlini (2016)], [de Florian, Der, Fabre (2018)]

• We rely on the  subtraction formalism and on the recent developments to heavy quarks 
[Catani, Grazzini (2007)], [Catani, Torre, Grazzini (2014)] 

• Final state is colour neutral: purely soft contributions have a much simpler structure

qT
see Devoto’s talk

4



 subtraction for NNLO QCD-EW correction (and NLO-EW)qT

dσ(1,1) = ℋ(1,1) ⊗ dσLO + [dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

dσ =
∞

∑
m,n=0

dσ(m,n)

𝒪(αm
s αn) term

transverse momentum of the dilepton finale state
invariant mass of the dilepton finale state

qT :=
Q :=
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Since , the integration of double real 
and real-virt terms present only NLO (single unresolved) 
IR singularities
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 subtraction for NNLO QCD-EW correction (and NLO-EW)qT

Subtraction counterterm at small  (double unresolved
limits) derived from NNLO computation of heavy quarks

rcut

• NNLO QCD color singlet ingredients sufficient to deal with initial state radiation  

• Production of on-shell Z or neutrino pair production [Cieri, de Florian, Der, Mazzitelli (2020)]
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CT ]qT /Q>rcut

dσ =
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∑
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dσ(m,n)

𝒪(αm
s αn) term
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• Do not reinvent the wheel: start from the well established experience at NNLO QCD  
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careful abelianisation procedure                                                                                                   
[de Florian, Rodrigo, Sborlini (2016)], [de Florian, Der, Fabre (2018)]

• We rely on the  subtraction formalism and on the recent developments to heavy quarks 
[Catani, Grazzini (2007)], [Catani, Torre, Grazzini (2014)] 

• Final state is colour neutral: purely soft contributions have a much simpler structure

qT
see Devoto’s talk
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 subtraction for NNLO QCD-EW correction (and NLO-EW)qT

• The mass of the lepton is the physical regulator of the final state collinear radiation   
Pure soft ingredients: we need only  coefficients! 𝒪(α)

Γt = −
1
4 {e2

ℓ(1 − iπ) + ∑
i=1,2

eie3 ln
(2pi ⋅ p3)2

Q2m2
ℓ }

Subtraction counterterm at small  (double unresolved
limits) derived from NNLO computation of heavy quarks

rcut
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dσ =
∞
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m,n=0

dσ(m,n)

𝒪(αm
s αn) term

General ideas
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[de Florian, Rodrigo, Sborlini (2016)], [de Florian, Der, Fabre (2018)]

• We rely on the  subtraction formalism and on the recent developments to heavy quarks 
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• Final state is colour neutral: purely soft contributions have a much simpler structure

qT
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 subtraction for NNLO QCD-EW correction (and NLO-EW)qT

Hard-Collinear coefficient: 
contains the genuine two-loop virtual contribution 
plus finite contributions that restore unitarity 

dσ(1,1) = ℋ(1,1) ⊗ dσLO + [dσ(1,1)
R − dσ(1,1)

CT ]qT /Q>rcut

dσ =
∞

∑
m,n=0

dσ(m,n)

𝒪(αm
s αn) term

General ideas

• Do not reinvent the wheel: start from the well established experience at NNLO QCD  

• IR structure is associated to only QCD-QED subpart: recycle NNLO QCD results via a 
careful abelianisation procedure                                                                                                   
[de Florian, Rodrigo, Sborlini (2016)], [de Florian, Der, Fabre (2018)]

• We rely on the  subtraction formalism and on the recent developments to heavy quarks 
[Catani, Grazzini (2007)], [Catani, Torre, Grazzini (2014)] 

• Final state is colour neutral: purely soft contributions have a much simpler structure

qT

only missing ingredient!

see Devoto’s talk
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Hard-Virtual coefficient
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Hard-Virtual coefficient

ℋF = [ HF C1C2]

Process independent (universal) 
collinear functions known up N3LO 
[Catani,Grazzini (2011)],
[Catani, Cieri, de Florian, Ferrera, Grazzini (2012)
[Luo, Yang, Zhu, Zhu (2019)]
[Ebert, Mistlberger, Vita (2020)]

Process dependent hard-virtual 
functions: universal relation with the 
all-order virtual amplitude 
[Catani, Cieri, de Florian, Ferrera Grazzini (2013)]

dσF
(N)NLO = ℋF

(N)NLO ⊗ dσF
LO + [dσF+jet(s)

(N)LO − dσCT]

HF ∼ < ℳ̃ |ℳ̃ >

|ℳ̃ > = (1 − Ĩ ) |ℳ >

In order to expose the irreducible virtual contribution, we introduce the decomposition

ℋ(m,n) = H(m,n)δ(1 − z1)δ(1 − z2) + δℋ(m,n)

H(0,1) ≡
2Re (ℳ(0,1)

fin ℳ(0,0)*)
|ℳ(0,0) |2 H(1,1) ≡

2Re (ℳ(1,1)
fin ℳ(0,0)*)

|ℳ(0,0) |2

computed with abelianisation



ℳ(1,0)
fin = ℳ(1,0) +

1
2 ( αs

π ) CF [ 1
ϵ2

+ ( 3
2

+ iπ) 1
ϵ

−
π2

12 ] ℳ(0)

ℳ(0,1)
fin = ℳ(0,1) +

1
2 ( α

π ) [ 1
ϵ2

+ ( 3
2

+ iπ) 1
ϵ

−
π2

12 ] e2
u + e2

d

2
−

2Γt

ϵ
ℳ(0)

ℳ(1,1)
fin = ℳ(1,1) − ( αs

π ) ( α
π ){ 1

8ϵ4
(e2

u + e2
d)CF +

1
2ϵ3

CF [( 3
2

+ iπ) e2
u + e2

d

2
− Γt]}ℳ(0)

+
1

2ϵ2 {( α
π ) e2

u + e2
d

2
ℳ(1,0)

fin + CF ( αs

π ) ℳ(0,1)
fin

+ CF ( αs

π ) ( α
π ) [( 7

12
π2 −

9
8

−
3
2

iπ) e2
u + e2

d

2
+ ( 3

2
+ iπ) Γt] ℳ(0)}

+
1
2ϵ {( α

π ) [( 3
2

+ iπ) e2
u + e2

d

2
− 2Γt] ℳ(1,0)

fin + ( αs

π ) CF [ 3
2

+ iπ] ℳ(0,1)
fin

+
1
8

CF ( αs

π ) ( α
π ) [( 3

2
− π2 + 24ζ(3) +

2
3

iπ3) e2
u + e2

d

2
−

2
3

π2Γt] ℳ(0)}
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Hard-Virtual coefficient: IR structure and finite amplitudes
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Hard-Virtual coefficient: Pole Approximation
The Pole Approximation (PA) is a systematic expansion around the resonance pole with 
respect to the parameter . 

Beyond the narrow width approximation, the PA:

• keeps dominant (logarithmic) terms in 

• the structure of the IR singularities resembles that of the full computation 

ΓW /MW

ΓW /MW

αsα αs α αsα

Factorisable corrections

The contributions are evaluated on-shell, only the resonant propagator is kept exact

They corresponds to corrections to the production and/or decay vertex

Initial-Initial: extracted from 
mixed QCD-EW form factor 
for the W boson 
[Behring, Buccioni, Caola, 
Delto, Jaquier, Melnikov, 
Röntsch (2020)]

Initial-Final: computed 
using the one-loop provider 
RECOLA

Final-Final: finite 
renormalisation constant 
[Dittmaier, Huss, and Schwinn 
(2015)]

W W W



9

Hard-Virtual coefficient: Pole Approximation

Non-Factorisable corrections

The contributions are evaluated on-shell, only the resonant propagator is kept exact

Correspond to box topologies containing a soft photon linking production and decay. The 
factorisable corrections are subtracted in order to avoid double-counting 

Notice that no logs of the lepton mass can be generated by these contributions 

αs = ℱ(1,1)
nf ℳ(0)

PA = δ(0,1)
nf δ(1,0)ℳ(0)

PA

[Dittmaier, Huss, and Schwinn (2014)]

γ

W

The Pole Approximation (PA) is a systematic expansion around the resonance pole with 
respect to the parameter . 

Beyond the narrow width approximation, the PA:

• keeps dominant (logarithmic) terms in 

• the structure of the IR singularities resembles that of the full computation 

ΓW /MW

ΓW /MW



10

Hard-Virtual coefficient: Pole Approximation

Remarks

At variance with the computation carried out in [Dittmaier, Huss, and Schwinn (2015)] 

• we use the PA only for the (double) virtual-tree interference

• we include all factorisable and non-factorisable contributions which ensure the correct 
structure of the IR singularities

• power-corrections of the mass of the lepton are neglected in some of the two-loop 
contributions

The Pole Approximation (PA) is a systematic expansion around the resonance pole with 
respect to the parameter . 

Beyond the narrow width approximation, the PA:

• keeps dominant (logarithmic) terms in 

• the structure of the IR singularities resembles that of the full computation 

ΓW /MW

ΓW /MW



Remark: since the Hard-Virtual term is eventually multiplied by , the above definition 
corresponds to compute the virtual-tree interference in PA

We consider alternative definitions which differ for terms beyond the accuracy of the PA

• at NLO-EW ( )

• at NNLO QCD-EW ( )

dσLO

m = 0,n = 1

m = 1,n = 1
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Hard-Virtual coefficient: re-weighting 

H(m,n)
PA =

2Re (ℳ(m,n)
fin ℳ(0,0)*)PA

|ℳ(0,0) |2 , for m = 0,1, n = 1

H(0,1)
PA,rwg =

2Re (ℳ(0,1)
fin ℳ(0,0)*)PA

|ℳ(0,0)
PA |2

H(1,1)
PA,rwgB

= H(1,1)
PA ×

|ℳ(0,0) |2

|ℳ(0,0)
PA |2 =

2Re (ℳ(1,1)
fin ℳ(0,0)*)PA

|ℳ(0,0)
PA |2

H(1,1)
PA,rwgV

= H(1,1)
PA ×

H(0,1)

H(0,1)
PA

=
2Re (ℳ(1,1)

fin ℳ(0,0)*)PA

|ℳ(0,0) |2 ×
2Re (ℳ(0,1)

fin ℳ(0,0)*)
2Re (ℳ(0,1)

fin ℳ(0,0)*)PA

Cancellation of IR poles is exact
 
Effectively re-weights the virtual in PA 
with the exact Born amplitude

Effectively re-weights with the exact
one-loop EW virtual amplitude



Numerical Results
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IMPLEMENTATION & SETUP

Setup similar to [Dittmaier, Huss, and Schwinn (2015)] 

Physical Parameters (  complex mass scheme)

•  = 1.1663787 x10-5 GeV-2    

•  = 80.385 GeV  = 91.1876 GeV     
•  = 2.085 GeV  = 2.4952 GeV
•  = 105.658369 MeV                  = 173.3 GeV                            = 125.9 GeV

•                              pdf set: NNPDF31_nnlo_as_0118_luxqed  
Fiducial cuts

•  > 25 GeV              < 2.5                                      > 25 GeV
• no lepton-photon recombination (bare muon)

Gμ

GF
MW,OS MZ,OS
ΓW,OS ΓZ,OS
mμ Mt MH

μF = μR = MW

pT,μ |yμ | pT,νμ

Our calculation has been implemented in the MATRIX framework 
[Grazzini, Kallweit, Wiesemann (2017)]

• Efficient multi-channel integrator MUNICH  by S.Kellweit
• Automatic implementation of dipole subtraction
• Interfaced to OpenLoops and Recola for the evaluation of required tree-level and 

one-loop matrix elements
•  subtraction is implemented as a slicing qT
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VALIDATION of the POLE APPROXIMATION @NLO-EW
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• The Pole Approximation supplemented with the re-weighting  

agrees with the exact result at the percent level both below and above the peak 

good modelling (correct order of magnitude) of the hard-virtual at high pT 

difference with exact coefficient:  at ,   at  with PA 
systematically overshooting the exact result (Sudakov Logs)

𝒪(20%) 300 GeV 𝒪(80%) 500 GeV



14

VALIDATION of the POLE APPROXIMATION @NNLO QCD-EW
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The comparison between the two 
approximations  and  allows us to 
gauge the uncertainties associated to the mis-
modelling of the hard-virtual coefficient 

 

Around the peak region (low- )

the two approximations are very to 
close to each other , consistently with 
the expectation that PA should work 
well  

the relative impact of  is rather 
modest/small but for the regions in 
which the mixed corrections change 
sign and/or are vanishing 

rwgB rwgV

H(1,1)

pT

H(1,1)
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VALIDATION of the POLE APPROXIMATION @NNLO QCD-EW
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At high-

the two approximations starts to 
differs (a factor  at ) 

the PA re-weighted with the NLO-EW 
coefficient  ( ) displays a 
softer spectrum going at higher  as 
expected since it includes exact 
Sudakov Logs 

the relative impact of  is always 
smaller than  (and becomes 
smaller as  increases)

pT

∼ 2 pT = 500 GeV

H(0,1) rwgV
pT

H(1,1)

1 %
pT
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VALIDATION of the POLE APPROXIMATION @NNLO QCD-EW
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Physical explanation: at high- , resonant 
Born-like topologies are suppressed and the 
cross section is dominated by real 
contributions where an on-shell W boson 
recoils against an hard QCD or QED emission

Furthermore, we find that the dominant 
contribution is given here by the  channel, 
which is computed exactly

pT

qg



We present our prediction for the  correction as 

• absolute correction 

• normalised correction with respect to the LO cross section 

• normalised correction with respect to the NLO QCD cross section

We compare our results with the naive factorised ansantz given  by the formula

𝒪(αsα)

16

The result:  of the muonpT

dσ(1,1)
fact

dpT
= ( dσ(1,0)

dpT ) × (
dσ(0,1)

qq̄

dpT ) × ( dσLO

dpT )
−1

Remark

A factorised approach is justified if the dominant sources of QCD and EW corrections 
factorise with respect to the hard W production subprocesses. 

At NLO, gluon/photon initiated channels open up populating the tail of the  spectrum, 
thus leading to large corrections (giant K-factors)   

We do not include the photon-induced channels in the NLO-EW differential K-factor to avoid 
the multiplication of two giant K-factors of QCD and EW origin, which is not expected to 
work

[Lindert, Grazzini, Kallweit, Pozzorini, Wiesemann (2019)]

pT
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The result:  of the muonpT
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The result:  spectrumpT
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• Negative correction in the tail as large as  of the NLO QCD at 

• The factorised anzatz shows a harder spectrum, but overall decently reproduce the 
complete result     

𝒪(20%) pT = 500 GeV
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The result:  spectrumpT
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• Negative correction in the tail as large as  of the NLO QCD at 

• The factorised anzatz shows a harder spectrum, but overall decently reproduce the 
complete result 

• Around the peak, qualitative agreement  with the result of [Dittmaier, Huss, and Schwinn 
(2015)]    

𝒪(20%) pT = 500 GeV



Systematic uncertainties
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 subtraction is implemented as a slicing: the computation is carried out keeping a finite 
value of  

Our best prediction is obtained by an extrapolation procedure for , varying  in the 
range . It is applied both at the level of the total cross section and at the level of 
individual bins of differential distributions. 

We have a rather good control over the total systematic (statics+extrapolation), both in the 
peak (sub-percent) and in the tail region (few percent), which is sufficient for the 
phenomenology 

qT
rcut = qT,cut /Q

rcut → 0 rcut
[10−4,10−2]
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CONCLUSIONs

• We have presented a new computation of the mixed QCD-EW corrections to the  
charged Drell-Yan process with massive lepton

• For the first time, all real and virtual contributions are consistently included but for the 
finite part of the two-loop amplitude, which is computed in the pole approximation and 
improved through a re-weighting procedure

• The cancellation of the IR singularities is achieved with  subtraction. The extension for 
the mixed QCD-EW case can be worked out applying a careful abelianisation procedure 
to the NNLO QCD calculation for heavy quarks

• We have focused on the  of the muon, showing that our calculation is reliable in the 
entire region of the muon transverse momentum

• We believe that our calculation fills the gap in controlling the residual uncertainty coming 
from the mixed QCD-EW corrections for the considered process

2 → 2

qT

pT



BACKUP



Consider the production of a vector boson (color singlet system) of mass M

The transverse momentum of the color singlet  controls the the structure of the infrared 
singularities (good resolution variable)

h1(P1) + h2(P2) → F(Q)

qT

 subtraction formalism: review (color singlet)qT

c

a

b

h

h

1

2

p

p

1

2

f

f

a

b

c
H

S

C

C

F

C

C

.

.

.

1. At NLO: all the IR singularities are contained 
in the small qT limit

2. At NNLO, disentanglement of the 
singularities: 

• , the structure of the divergence is as 
NLO for the process 

• , the genuine NNLO singularities 
occur (double unresolved emissions)

qT > 0
F + jet

qT = 0



The singular part of the cross section in the small-  limit is controlled by the transverse 
resummation formula 
[S. Catani, D. de Florian and M. Grazzini, Nucl. Phys. B 596 (2001) 299] 

qT

dσ(sing) =
M2

s ∑
c

σ(0)
cc̄,V ∫

∞

0
db

b
2

J0(bqT)Sq(M, b)

× ∑
a1,a2

∫
1

x1

dz1

z1 ∫
1

x2

dz2

z2
[HFC1C2]cc̄;a1a2

fa1/h1
(x1, b2

0 /b2)fa2/h2
(x2, b2

0 /b2)dydq2
T

Fixed-order expansion of this formula allows to build a subtraction scheme
[S. Catani, M. Grazzini, Phys.Rev.Lett. 98 (2007) 222002] 

Sudakov Form Factor: 
large logs

Hard-collinear function: 
 termsδ(q2

T)

dσF
(N)NLO = ℋF

(N)NLO ⊗ dσF
LO + [dσF+jet(s)

(N)LO − dσCT]
Hard-collinear auxiliary cross section

 subtraction formalism: review (color singlet)qT



 subtraction formalism extended to the case of heavy quarks production [Catani, Grazzini, 
Torre (2014)]

Successful employed for computation of NNLO QCD corrections to the production of
• a top pair [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan (2019)] 

• a bottom pair production [Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2021)] 
• a top pair and a Higgs (off-diagonal channels) [Catani, Fabre, Grazzini, Kallweit, (2021)]

The resummation formula shows a richer structure because of additional soft singularities 
(four coloured patrons at LO)

qT

 subtraction formalism for heavy quarks production qT

• Soft logarithms controlled by the 
transverse momentum anomalous 
dimension  known up to NNLO [Mitov, 
Sterman, Sung(2009)], [Neubert et al (2009)]

• Hard coefficient gets a non-trivial colour 
structure (matrix in colour-space) 

• Non trivial azimuthal correlations 

• Notice that is crucial that the final state is 
massive: the mass is the physical regulator 
of the final state collinear singularities

Γt



For color singlet production power corrections are known to be quadratic for inclusive cross 
sections: [Grazzini, Kallweit, Pozzorini, Rathlev, Wiesemann (2016)], [Ebert, Moult, Stewart, Tackmann. Vita. Zhu 
(2019)], [Cieri, Oleari, Rocco (2019)]

They might become more severe in presence of cuts (as for symmetric cuts on final states) 
[Grazzini,Kallweit, Wiesemann (2017)], [Ebert, Michel, Stewart, Tackmann (2020)], [Alekhin, Kardos, Moch, Trócsányi 
(2021)]

 counterterm is by construction non-localqT

-subtraction is actually implemented as a slicing introducing a cutoff on the minimum 
allowed transverse momentum
qT

dσCT = dσL0 ⊗ ΣF ( qT

M ) d2qT

The real emission cross section and the counterterm are integrated separately, giving rise to 
logs in . Trade off between 

• Global cancellation between large logs: choose  relatively large

• The slicing is exact in the  limit; for finite , it introduces power corrections: 
choose  relatively small 

rcut

rcut

rcut → 0 rcut
rcut

qT

M
> rcut

 subtraction formalism: review (color singlet)qT



Proof-of-concept: NLO-EW corrections to neutral current Drell-Yan production with fiducial 
cuts (symmetric cuts) and for physical muon mass 

                  

mμ = 105.658369 MeV

Mℓ+ℓ− > 50 GeV pℓ± > 25 GeV |yℓ± | < 2.5

 subtraction @NLO-EW: validationqT
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We study analytically the power corrections arising from soft (QED) radiation off massive 
final state: they are linear (even for inclusive setup)

LB, M. Grazzini, F. Tramontano (2019)



Results: Fiducial Cross Sections

• NLO and NNLO QCD  corrections show large cancellations among  the partonic channels 
( especially between  and )

• NLO QCD and NLO EW corrections are of the same order

• Mixed QCD-EW corrections are dominated by the  channel (exact) and are larger than 
NNLO QCD (for the particular chosen setup) 

qq̄ qg

qg

−2.2 % −2.8 % +0.4 % +0.6 %σ(m,n)/σLO



Results: Fiducial Cross Sections

Remark: the pattern of QCD correction is sensitive to the choice of the scales. For example, 
for  we find  μF = μR = mW /2

−2.2 % −2.8 % +0.4 % +0.6 %σ(m,n)/σLO

+10 % −2.9 % +4.2 % +0.8 %σ(m,n)/σLO



W W W W

 channel qqx

Example of abelianisation at NNLO (ISR)



Example of abelianisation at NNLO (ISR)

W W W W

 channel qqx

Color structure + symmetry factor (identical gluons)

1
2N2

C
Tr[TaTaTbTb] =

C2
F

2NC
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C
Tr[TaTbTaTb] =

1
2NC

CF (CF −
CA

2 )
Photon-gluon replacement. Two distinguishable processes

1
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C
Tr[TaTa]e2

f =
CFe2

f

NC

Replacement list:                                            ,    CA → 0 C2
F → 2CFe2

f

W W


