Proving the dimension-shift conjecture

2011.13821 [hep-th] JHEP 04 (2021), 276

Guy R. Jehu

Trinity College Dublin
in collaboration with Ruth Britto and Andrea Orta

RadCor/LoopFest 2021

Thursday $20^{\text {th }}$ May

European Research Counci
stabulshed by the European Commission

Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

The dimension-shift conjecture

- Made by Z. Bern , L. Dixon, D. C. Dunbar and D. Kosower (BDDK) hep-th/9611127 Phys.Lett.B 394 (1997), 105-115
- Simple relationship between GLUON amplitudes at ONE LOOP in different theories.
- Relates all-plus-helicity QCD amplitudes to MHV amplitudes in N=4 SYM

$$
D=4-2 \epsilon
$$

$$
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=-2 \epsilon(1-\epsilon)(4 \pi)^{2}\left[\frac{A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)}{\langle i j\rangle^{4}}\right]_{D \rightarrow D+4}
$$

The dimension-shift conjecture

$$
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=-2 \epsilon(1-\epsilon)(4 \pi)^{2}\left[\frac{A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, . . j^{-}, \ldots, n^{+}\right)}{\langle i j\rangle^{4}}\right]_{\epsilon \rightarrow \epsilon-2}
$$

- BDDK verified up to $n=6$
- Can we prove this after 25 years of advances in understanding?

Proven!

- THIS TALK:
- How to prove
- How to compute all- ε all-n forms in both theories

The dimension-shift conjecture

- How far have we come with these particular theories and helicity configurations?

All-plus QCD

$$
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)
$$

- Tree-Level

$$
=0
$$

- One-loop

$$
=\sum_{1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq n} \frac{\operatorname{tr}_{-}\left(i_{1} i_{2} i_{3} i_{4}\right)}{\langle 12 \ldots n 1\rangle}+\mathcal{O}(\epsilon)
$$

[Mahlon '93] [Bern, Chalmers, Dixon, Kosower '93]

- Two-loop
- Planar: First $\mathrm{n}>4$ result in QCD [Badger, Frellesvig, Zhang '13]
- Planar: all-n for cut-constructible ($\mathrm{n}=7$ full) [Dunbar, GRJ, Perkins ${ }^{1} 16$] [Dunbar, Godwin, GRJ, Perkins ${ }^{\text {177] }}$
- Non-planar: first all-n partial amplitude at 2 loops [Dunbar, Godwin, Perkins, Strong '20]

MHV in $N=4$

$$
A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)
$$

[Nair '88]

[Bianchi, Elvang, Freedman '05]

- Tree-Level

$$
A_{n}^{\text {tree }}=\frac{\langle i j\rangle^{4}}{\langle 12 \ldots n 1\rangle}=\frac{\delta^{4}}{\delta \eta_{i}^{4}} \frac{\delta^{4}}{\delta \eta_{j}^{4}}\left[\frac{\delta^{(8)}\left(|k\rangle \eta_{k A}\right)}{\langle 12 \ldots n 1\rangle}\right]
$$

- One-loop
$=\frac{1}{4} A_{n}^{\text {tree }} \sum_{i_{1}, i_{3}=1}^{n} \operatorname{tr}\left(i_{1} q_{i_{1}+1, i_{3}} i_{3} q_{i_{3}+1, i_{1}}\right) I_{4}^{\left[i_{1}, i_{1}+1, i_{3}, i_{3}+1\right]}+\mathcal{O}(\epsilon)$
- Multi-loop
- BDS ansatz to all loop order (exact for $\mathrm{n}<6$) [Bern, Dixon, Smirnov`05]

[Bern, Dixon, Dunbar, Kosower '94]
[Britto, Cachazo, Feng '05]

- Seven-loops $\mathrm{n}=6$ [Caron-Huot, Dixon, Dulat, von Hippel, Mcleod, Papathanasiou '19]
- Two loops $\mathrm{n}=9$ [Golden, Mcleod'21]

Proving the conjecture

$$
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=-2 \epsilon(1-\epsilon)(4 \pi)^{2}\left[\frac{A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)}{\langle i j\rangle^{4}}\right]_{\epsilon \rightarrow \epsilon-2}
$$

- Need to capture all- ε structure to all multiplicities
- To compute up to six points, BDDK use:
- String-derived (worldline) formalism for $\mathrm{N}=4$ amplitude
- D-dimensional cuts for all-plus QCD

$$
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=2 A^{[0]}
$$

Amplitude with scalar particle in the loop

Proving the conjecture

$$
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=-2 \epsilon(1-\epsilon)(4 \pi)^{2}\left[\frac{A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)}{\langle i j\rangle^{4}}\right]_{\epsilon \rightarrow \epsilon-2}
$$

- D-dimensional cuts nicer for both sides

$$
\ell=l+\ell^{[-2 \epsilon]} \quad \Longrightarrow \quad \begin{array}{r}
\ell^{2}=l^{2}-\mu^{2}=0 \\
\mu^{2} \equiv-\left(\ell^{-2 \epsilon]}\right)^{2}
\end{array}
$$

$\int \frac{d^{4-2 \epsilon} \ell}{\ell^{2} \cdots(\ell-q)^{2}}=-\int \frac{d \mu^{2}}{\left(-\mu^{2}\right)^{1+\epsilon}} \frac{d^{4} l}{\left(l^{2}-\mu^{2}\right) \cdots\left((l-q)^{2}-\mu^{2}\right)}$

Proving the conjecture

$$
\begin{gathered}
A_{n}^{\mathrm{QCD}}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=-2 \epsilon(1-\epsilon)(4 \pi)^{2}\left[\frac{A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)}{\langle i j\rangle^{4}}\right]_{\epsilon \rightarrow \epsilon-2}^{4-2 \epsilon}\left[\mu^{2 r}\right]=-\int \frac{d^{4} l d \mu^{2}}{\left(-\mu^{2}\right)^{1+\epsilon}} \frac{\left(\mu^{2}\right)^{r}}{\left(l^{2}-\mu^{2}\right) \cdots\left((l-q)^{2}-\mu^{2}\right)} \\
=-\epsilon(1-\epsilon) \cdots(r-1-\epsilon) I_{m}^{4+2 r-2 \epsilon} \\
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \text { cut }} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
\end{gathered}
$$

Proving the conjecture

$$
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
$$

- Need tree amplitudes with two equally-massive legs
- Vector bosons, adjoint fermions, scalars
- Expressions available
[Forde, Kosower '06]
[Rodrigo '06]
[Ferrario, Rodrigo, Talavera '06]
[Boels, Schwinn '11]
[Craig, Elvang, Kiermaier, Slatyer '11]
[Kiermaier '11]

Proving the conjecture

$$
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \text { cut }} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
$$

- Simple relationships between all-n amplitudes in "MHV band"
- All related to scalar amplitude
- Coulomb-branch SUSY associates spin structure
[Craig, Elvang, Kiermaier, Slatyer '11]
[Kiermaier '11]
[Elvang, Freedman, Kiermaier '11]
$A_{\text {tree }}^{\mathrm{MHV}-\text { band }}=\frac{\left[\lambda_{n} \lambda_{1}\right]^{2} \delta_{12}^{\chi} \delta_{34}^{\chi}}{m^{2} q_{n 2}^{4}} A_{n}^{\text {tree }}\left(1^{0}, 2^{+}, 3^{+}, \ldots,(n-1)^{+}, \mathbf{n}^{0}\right)$

Proving the conjecture

$$
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
$$

- MHV has three types of cut in a given axial gauge

Proving the conjecture

$$
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
$$

- MHV has three types of cut in a given axial gauge

$$
p_{\chi} \cdot q_{r s}=0
$$

$$
\begin{gathered}
A^{\mathcal{N}=4}=A^{[1]}+4 A^{\left[\frac{1}{2}\right]}+6 A^{[0]} \\
\left.A^{[1]}\right|_{\text {b.cut }}=\left.2 A^{[0]}\right|_{\text {b.cut }} \\
\left.A^{\left[\frac{1}{2}\right]}\right|_{\text {b.cut }}=-\left.2 A^{[0]}\right|_{\text {b.cut }}
\end{gathered}
$$

b.

c.

Proving the conjecture

$$
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
$$

- MHV x MHV cut similar to massless (4D) cuts

$$
p_{\chi} \cdot q_{r s}=0
$$

$$
=\frac{\delta^{(8)}\left(\left\langle\lambda_{i}\right| \eta_{i A}\right)}{\mu^{4}} A_{L}\left(-l_{r}^{0}, r^{+}, \ldots,(s-1)^{+}, l_{s}^{0}\right) A_{R}\left(-l_{s}^{1}, s^{+}, \ldots,(r-1)^{+}, l_{r}^{1}\right)
$$

c.

Proving the conjecture

$$
\left.A_{n}^{\mathrm{QCD}}\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}=\left.A_{n}^{\mathcal{N}=4}\left[\frac{2 \mu^{4}}{\langle i j\rangle^{4}}\right]\right|_{q_{r s} \mathrm{cut}} ^{\mu^{2} \neq 0}
$$

- MHV x MHV cut similar to massless (4D) cuts

$$
p_{\chi} \cdot q_{r s}=0
$$

$$
=\left.\frac{\langle i j\rangle^{4}}{2 \mu^{4}} A_{n}^{\mathrm{QCD}}\right|_{q r \mathrm{scut}}
$$

Closed forms at all-multiplicity

- Boxes:
- Can simply use 4D cuts on $\mathrm{N}=4$ side
- All-plus side: Two-mass easy from UV truncation

$$
\frac{1}{\mu^{4}}\left[2 \times \frac{1}{2} \sum_{\alpha_{ \pm}} A^{\text {trec }} \times A^{\text {trec }} \times A^{\text {trec }} \times\left. A^{\text {trece }}\right|_{O\left(\alpha^{\rho}\right)}\right]
$$

$$
\sim \mu^{4}
$$

$$
=\frac{1}{2} \frac{\operatorname{tr}\left(i_{1} q_{i_{1 i} i_{3}} i_{3} q_{i_{3}+1, i_{1}-1}\right)}{\langle 12 \ldots n 1\rangle}
$$

Closed forms at all-multiplicity

- Pentagons:
- Generalised D-dimensional cuts
- Solution very simple, general for all-massive case
[GRJ '20]

Summary

- Dimension shift conjecture proven
- All-epsilon, all-n forms computed
- Very different cut constructions for each
- Two-mass-easy boxes: UV vs helicity
- (Purity of MHV in N=4 not all-epsilon (work in progress))

MHV in $N=4$
 $A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)$

- Uniformly Transcendental amplitude (UT)

- Stronger property: Purity
[Cachazo '08]
[Arkani-Hamed, Bourjaily, Cachazo, Trnka '12]
[Henn '13]

MHV in $N=4$
 $A_{n}^{\mathcal{N}=4}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)$

- Uniformly Transcendental amplitude (UT)
- All-epsilon was computed up to $\mathrm{n}=6$ by BDDK

$$
\begin{aligned}
A_{6}^{\mathrm{MHV} ; 1-\text { loop }}= & \frac{1}{4} A^{\text {tree }}\left[-\sum_{1<j_{1}<j_{2} \leq 6} \operatorname{tr}\left(\left(j_{1}+1\right) q_{j_{1}+1, j_{2}+1}\left(j_{2}+1\right) q_{j_{2}+1, j_{1}+1}\right) I_{4}^{4-2 \epsilon,\left(j_{1}, j_{2}\right)}\right. \\
& \left.-2 \epsilon\left(\sum_{j=1}^{6} \operatorname{tr}_{5}(j+1, j+2, j+3, j+4) I_{5}^{6-2 \epsilon,(j)}+\operatorname{tr}(123456) I_{6}^{6-2 \epsilon}\right)\right]
\end{aligned}
$$

Higher-in-epsilon
structure NOT PURE n>5

