BROOKHAVEN NATIONAL LABORATORY

Nested soft-collinear subtractions for deep inelastic scattering

Konstantin Asteriadis; BNL | May 20, 2021 RADCOR-LoopFest 2021

IR finite differential cross section @NNLO QCD

- To test the SM, predictions for fully-differential cross sections through higher orders in QCD are needed.
- Contributions to next-to-next-to-leading order partonic cross section

IR finite differential cross section @NNLO QCD

- To test the SM, predictions for fully-differential cross sections through higher orders in QCD are needed.
- Contributions to next-to-next-to-leading order partonic cross section

$$d\hat{\sigma}_{nnlo} = \frac{d\hat{\sigma}_{rr} + d\hat{\sigma}_{rv} + d\hat{\sigma}_{vv} + d\hat{\sigma}_{pdf}}{4\hat{\sigma}_{rr} + d\hat{\sigma}_{rv} + d\hat{\sigma}_{rv} + d\hat{\sigma}_{pdf}}$$

contain infrared singularities that become poles in $1/\epsilon$ only upon phase space integration

• In dimensional regularization ($d = 4 - 2\epsilon$) the explicit poles of 1-loop and 2-loop amplitudes are known independent of the hard matrix element [Catani '98; Becher, Neubert '09]

$$\mathcal{M}_{1\text{-loop}}(\{p\}) = \left[\frac{e^{\epsilon\gamma_E}}{\Gamma(1-\epsilon)}\sum_i \left(\frac{1}{\epsilon^2} + \frac{g_i}{\mathbf{T}_i^2}\frac{1}{\epsilon}\right)\sum_{j\neq i}\frac{\mathbf{T}_i\cdot\mathbf{T}_j}{2}\left(\frac{\mu^2}{-s_{ij}}\right)^{\epsilon}\right]\mathcal{M}_{\text{tree}}(\{p\}) + \mathcal{M}_{1\text{-loop}}^{\text{fin}}(\{p\})$$

Singularities of real emission contributions

• Singularities of QCD amplitudes come in two varieties: soft $(E \to 0)$ and collinear $(\vec{p_i} \parallel \vec{p_j})$

- The corresponding limits of amplitudes are generic and independent of a hard process
- For example, the soft $(E_k \rightarrow 0)$ limit of a single real emission DIS amplitude is [Altarelli, Parisi, '77]

$$\left| \begin{array}{c} k \\ p_1 \underbrace{\longrightarrow}_{k \to 0} p_2 \\ \underbrace{\longrightarrow}_{k \to 0} p_2 \end{array} \right|^2 \approx 2C_F g_{s,b}^2 \times \underbrace{\begin{array}{c} p_1 \cdot p_2 \\ (p_1 \cdot k)(p_2 \cdot k) \end{array}}_{\text{eikonal function}} \times \left| \begin{array}{c} p_1 \underbrace{\longrightarrow}_{k \to 0} p_2 \\ \underbrace{\longrightarrow}_{k$$

- Two new genuine NNLO singularities: double soft and triple collinear
- Factorization formulas for double soft and triple collinear singularities are known [Catani, Grazzini '99; ...]
- They are structurally similar to the NLO case.

Entangled soft and collinear limits

• Entangled soft/collinear limits

$$p \xrightarrow{k_1 \ k_2} p \xrightarrow{k_1 \ k_2} \sim \frac{1}{(p - k_1 - k_2)^2} \sim \frac{1}{2p \cdot k_1 + 2p \cdot k_2 - 2k_1 \cdot k_2} \xrightarrow{k_1 \parallel p} k_2 \rightarrow 0$$

- For a given amplitude it can be checked explicitly that entangled soft/collinear singularities do not occur
- This observation is general thanks to a phenomenon known as **colour coherence** (a soft gluon does not resolve details of a collinear splitting) [Caola, Melnikov, Röntsch, '17]

As a result ...

- ... known soft and collinear limits of amplitudes are sufficient to construct all relevant subtraction terms;
- ... soft and collinear limits can be treated independently;
- ... can be used to extend FKS subtraction @NLO to NNLO [Frixione, Kunszt, Signer '96].

\rightarrow Nested soft-collinear subtraction scheme

[Caola, Melnikov, Röntsch, '17]

How to regulate and extract singularities without integration?

• Soft and collinear singularities turn into $1/\epsilon$ poles upon phase space integration.

$$\int \frac{\mathrm{d}^{d-1}k}{2E} |M(\{p\},k)|^2 \sim \int \frac{\mathrm{d}E}{E^{1+\epsilon}} \frac{\mathrm{d}\theta}{\theta^{1+2\epsilon}} \times |M(\{p\})|^2 \sim \frac{1}{\epsilon^2}$$

- We would like to extract singularities without integration over resolved phase space. Currently two approaches used: **slicing** and **subtraction**.
- To illustrate the basic idea of **subtraction**, consider an integral

$$I = \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} \mathbf{F}(x)$$

where F(0) is finite. We then write

$$\mathbf{\epsilon} \to \mathbf{0} \text{ limit}$$

$$\mathbf{\epsilon} \to \mathbf{0} \text{ limit}$$

$$I = \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} \left[\mathbf{F}(x) - \mathbf{F}(0) \right] + \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} \mathbf{F}(0) = \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} \left[\mathbf{F}(x) - \mathbf{F}(0) \right] - \frac{1}{\epsilon} \mathbf{F}(0)$$
extracted 1/ $\mathbf{\epsilon}$ pole

1 1 1 0 1 1 1

Nested soft-collinear subtractions for deep inelastic scattering RADCOR-LoopFest 2021 Konstantin Asteriadis Brookhaven National Laboratory

Regulating the double soft singularity

• As an example we consider the double soft singularity ($E_5 \sim E_6 \rightarrow 0$). The action of \mathcal{S} on the differential cross section is defined as

$$S \left| 1 \xrightarrow{\delta^{5}} 6 \right|^{2} = S \left[\mathcal{N} \int d\text{Lips} (2\pi)^{d} \delta^{(d)} \left(p_{1} + p_{2} - \sum_{i=3}^{6} p_{i} \right) |M^{\text{tree}}(\{p\}, p_{5}, p_{6})|^{2} \mathcal{O}(p_{3}, p_{4}, p_{5}, p_{6}) \right]$$

$$\equiv g_{s,b}^{4} \times \text{Eikonal}(1, 4, 5, 6) \times \mathcal{N} \int d\text{Lips} (2\pi)^{d} \delta^{(d)} (p_{1} + p_{2} - p_{3} - p_{4}) |M^{\text{tree}}(\{p\})|^{2} \mathcal{O}(p_{3}, p_{4})$$
independent of the hard matrix element and the observable independent of gluons 5 & 6 =
$$\left| \underbrace{\bullet} \underbrace{\bullet} \right|^{2}$$

• We insert unity decomposed as $I = (I - \mathcal{S}) + \mathcal{S}$ into the phase space

Double-soft singularity regularized but still contains single soft and collinear singularities. Subtraction term; soft gluons decouple; integrate analytically over phase space of gluons 5 and 6 [Caola, Delto, Frellesvig, Melnikov '18]

... continue iteratively for other singularities

• Gluons ordered in energy \rightarrow only one single soft singularity (e.g. for $E_6 \rightarrow 0$); insert $I = (I - S_6) + S_6$

- Due to the absence of entangled soft and collinear singularities we can continue with collinear singularities in the same way.
- In case of collinear singularities introduction of partition functions [Frixione, Kunszt, Signer '96] and splitting of the angular phase space into sectors [Czakon '10 '11; Czakon, Heymes '14] to separate overlapping singularities.

• Subtraction terms can be integrated analytically over the phase space of one or both gluons and $1/\epsilon$ poles can be extracted **explicitly**.

The role of deep inelastic scattering

- Most complex singular contributions (both soft and collinear) only depend on the properties of two external partons
- Separation of complex $pp \to N$ processes into simpler building blocks

• Focus on simpler processes \rightarrow check against analytical results possible

Fully regulated double-real contribution

$$\begin{split} F_{\mathrm{LM}}(1,4,5,6) &= \begin{cases} \langle \mathscr{S}F_{\mathrm{LM}}(1,4,5,6) \rangle + \langle [I-\mathscr{S}] S_{6}F_{\mathrm{LM}}(1,4,5,6) \rangle \\ &+ \sum_{i,j \in \{1,4\}} \langle [I-\mathscr{S}] [I-\mathscr{S}_{6}] \left[C_{5i}w^{5i,6j} + C_{6i}w^{5j,6i} + \left(\theta_{i}^{(a)}C_{5i} + \theta_{i}^{(c)}C_{6i} \right) w^{5i,6i} \right] \\ &+ \sum_{i,j \in \{1,4\}} \langle [I-\mathscr{S}] [I-\mathscr{S}_{6}] \left[\theta_{i}^{(b)}C_{56} + \theta_{i}^{(d)}C_{56} \right] \left] dp_{5} \right] [dp_{6}]w^{5i,6i}F_{\mathrm{LM}}(1,4,5,6) \rangle \\ &+ \sum_{i,j \in \{1,4\}} \langle [I-\mathscr{S}] [I-\mathscr{S}_{6}] C_{5i}C_{6j} [dp_{5}] [dp_{6}] w^{5i,6j}F_{\mathrm{LM}}(1,4,5,6) \rangle \\ &+ \sum_{i,j \in \{1,4\}} \langle [I-\mathscr{S}] [I-\mathscr{S}_{6}] \left[\theta_{i}^{(a)}\mathscr{C}_{i} [I-C_{5i}] + \theta_{i}^{(b)}\mathscr{C}_{i} [I-C_{56}] + \theta_{i}^{(c)}\mathscr{C}_{i} [I-C_{6i}] \right] \\ &+ \theta_{i}^{(d)}\mathscr{C}_{i} [I-C_{56}] \right] [dp_{5}] [dp_{6}] w^{5i,6j}F_{\mathrm{LM}}(1,4,5,6) \rangle \\ \end{split}$$
subtraction terms
regulated matrix
elements
$$+ \sum_{i,j \in \{1,4\}} \langle [1-\mathscr{S}] [1-\mathscr{S}_{6}] [1-C_{6j}] [1-C_{5i}] [dp_{5}]]dp_{6}] w^{5i,6j}F_{\mathrm{LM}}(1,4,5,6) \rangle \\ &+ \sum_{i \in \{1,4\}} \langle [1-\mathscr{S}] [1-\mathscr{S}_{6}] [1-\mathscr{C}_{i}] (\theta^{(a)} [1-C_{6i}] + \theta^{(b)} [1-C_{56}] \\ &+ \theta^{(c)} [1-C_{5i}] + \theta^{(d)} [1-C_{56}]] [dp_{5}]]dp_{6}] w^{5i,6i}F_{\mathrm{LM}}(1,4,5,6) \rangle \end{aligned}$$

Pole structure @NNLO

• Analytic integration of subtraction terms is possible (analytic simplifications after recombining subtractions terms)

$$\begin{split} &[1-\mathcal{S}][1-S_6]\Big[C_{54}w^{54,61}+C_{64}w^{51,64}+\left(\theta^{(a)}C_{64}+\theta^{(c)}C_{54}\right)w^{54,64}\Big][\mathrm{d}g_5][\mathrm{d}g_6]F_{LM}(1,4,5,6)\Big\rangle \\ &= \boxed{\frac{[\alpha_s]^2C_F}{\epsilon}\left\langle\sum_{i=1,4}(I-S_5)(I-C_{5i})w^{5i}\left[\left(\frac{1}{\epsilon}+Z^{2,2}\right)(2E_4)^{-2\epsilon}-\frac{1}{\epsilon}(2E_5)^{-2\epsilon}\right]\left[w^{51}_{\mathrm{dc}}+w^{54}_{\mathrm{tc}}\left(\frac{\rho_{54}}{4}\right)^{-\epsilon}\right]F_{LM}(1,4,5)\Big\rangle} \\ &+ \frac{[\alpha_s]^2C_F^2}{\epsilon^3}\left\langle\left[\left(\frac{1}{\epsilon}+Z^{2,2}\right)(2E_4)^{-2\epsilon}(2E_{max})^{-2\epsilon}-\frac{1}{2\epsilon}(2E_{max})^{-4\epsilon}\right]\right. \\ &\times \left[\langle\Delta_{51}\rangle_{S_5}-\frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)}-\frac{2^{\epsilon}}{2}\frac{\Gamma(1-\epsilon)\Gamma(1-2\epsilon)}{\Gamma(1-3\epsilon)}\right]F_{LM}(1,4)\Big\rangle \\ &+ \frac{[\alpha_s]^2C_F^2}{\epsilon^2}\left[\frac{2^{\epsilon}}{2}\frac{\Gamma(1-\epsilon)\Gamma(1-2\epsilon)}{\Gamma(1-3\epsilon)}\right]\left[\frac{1}{\epsilon}+Z^{2,2}\right]\left[\frac{1}{\epsilon}+Z^{4,2}\right]\left\langle(2E_4)^{-4\epsilon}F_{LM}(1,4)\right\rangle \\ &- \frac{[\alpha_s]^2C_F^2}{\epsilon^3}\left[\frac{1}{2\epsilon}+Z^{2,4}\right]\left\langle\left[\langle\Delta_{51}\rangle_{S_5}+\left(\frac{2^{\epsilon}}{2}\frac{\Gamma(1-\epsilon)\Gamma(1-2\epsilon)}{\Gamma(1-3\epsilon)}\right)\right](2E_4)^{-4\epsilon}F_{LM}(1,4)\right)\right\rangle \\ &- \frac{[\alpha_s]^2C_F^2}{\epsilon^2}\left[\frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)}\right]\int\mathrm{d}z\,\left\langle\left[\left(\frac{1}{\epsilon}+Z^{2,2}\right)(2E_4)^{-2\epsilon}-\frac{1}{\epsilon}(2E_1)^{-2\epsilon}(1-z)^{-2\epsilon}\right]\right] \\ &\times (2E_1)^{-2\epsilon}(1-z)^{-2\epsilon}\bar{P}_{qq}(z)\frac{F_{LM}(z\cdot1,4)}{z}\right\rangle. \end{split}$$

- The subtraction terms contains the regulated NLO differential cross section \rightarrow poles cancel against similar terms from real virtual contributions
- Regular and "boosted" LO differential cross section \rightarrow cancel against double virtual (and collinear renormalization contributions)
- Provide analytic formula for the finite remainder

Finite contributions of integrated subtraction terms

- E.g. abelian boosted quark non-singlet contribution (multiplying the LO matrix element)
- This is one of the more complex contributions, still relatively compact

$$\begin{split} \mathcal{T}_{\mathrm{ns}}^{1} &= \frac{\pi^{2}(5-2z)}{3(z-1)} + 5z + 8\mathcal{D}_{3}(z) + 12\mathcal{D}_{2}(z)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \\ &+ \ln\left(\frac{E_{1}}{E_{4}}\right) \left(\ln\eta_{14}\left(-2z-2(z+1)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) - 4(z+1)\ln(1-z)+2\right) \right) \\ &+ (2-2z)\ln z - \frac{2(z^{2}+1)\ln(4E_{1}^{2}/\mu^{2})\ln z}{z-1} - \frac{4(z^{2}+1)\ln(1-z)\ln z}{z-1} \right) \\ &+ \ln\eta_{14} \left(-3z+2(z-1)\ln z + \ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \left(\frac{2(z^{2}+1)\ln z}{z-1} - 3(z+1)\right) \\ &+ \ln(1-z)\left(\frac{4(z^{2}+1)\ln z}{z-1} - 6(z+1)\right) + 3\right) + \ln z \left(\frac{-22z^{2}-5z+17}{2(z-1)} \right) \\ &+ \frac{\pi^{2}\left(2z^{2}+2\right)}{3(1-z)} + 4(z+1)\ln(1+z)\right) + \ln^{2}\left(\frac{E_{1}}{E_{4}}\right) \left(-z + (-z-1)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \\ &- 2(z+1)\ln(1-z) + 1\right) - 2(z+1)\ln(1-z)\ln^{2}\eta_{14} \\ &+ \ln\left(\frac{E_{1}}{E_{\max}}\right) \left(-\frac{1}{2}\ln^{2}(2)(z+1) - 2\ln^{2}\eta_{14}(z+1) + \frac{2}{3}\pi^{2}(z+1) \\ &+ \ln\eta_{14}\left(4(z-1) + 4(z+1)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) + 8(z+1)\ln(1-z)\right)\right) \\ &+ \ln^{2}\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \left(\frac{1}{2}(-z-5) - 2(z+1)\ln(1-z) + \frac{(3z^{2}+1)\ln z}{2(z-1)} \right) \\ &+ \left(2(z-1) + \frac{(1-7z^{2})\ln z}{2(z-1)}\right)\ln^{2}(1-z) - \frac{3\left(2z^{2}+2z-7\right)\ln^{2} z}{4(z-1)} \\ &+ \ln\left(1-z\right)\left(\frac{\pi^{2}\left(27-29z^{2}\right)}{6(1-z)} + \frac{(-7z^{2}+2z-7)\ln z}{z-1} + \frac{-7z-(z+1)\ln^{2}(2)-46}{2} \right) \\ &+ \frac{5(z^{2}+1)\ln^{2} z}{2(z-1)}\right) + \ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)\left(-3z+2\pi^{2}(z+1) + \frac{(-4z^{2}-2z+3)\ln z}{z-1}\right) \end{split}$$

$$\begin{split} &+ \ln\left(1-z\right)\left(-z+\frac{2(z^{2}+1)\ln z}{z-1}-5\right)-6(z+1)\ln^{2}\left(1-z\right) \\ &+ \frac{(3z^{2}+1)\ln^{2}z}{2(z-1)}-10\right)-4(z+1)\ln^{3}\left(1-z\right)+\frac{1}{12}(z+1)\ln^{3}(z) \\ &+ \operatorname{Li}_{2}(1-\eta_{14})\left(-2z-4(z+1)\ln\left(\frac{E_{1}}{E_{\max}}\right)-2(z+1)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \\ &- 8(z+1)\ln\left(1-z\right)+2\right)+\mathcal{D}_{1}(z)\left(8\ln\left(\frac{E_{1}}{E_{4}}\right)\ln\eta_{14}-16\ln\left(\frac{E_{1}}{E_{\max}}\right)\ln\eta_{14} \\ &+ 12\ln\eta_{14}+6\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+\ln^{2}(2)+4\ln^{2}\left(\frac{E_{1}}{E_{4}}\right)+4\ln^{2}\eta_{14}+4\ln^{2}\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \\ &+ 16\operatorname{Li}_{2}(1-\eta_{14})-8\pi^{2}+26\right)+\left(4(z+1)+\frac{4(z^{2}+1)\ln z}{z-1}\right)\operatorname{Li}_{2}(-z) \\ &+ \operatorname{Li}_{2}(z)\left(\frac{2(2z^{2}-5)}{z-1}-2(z+1)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+\frac{(3-5z^{2})\ln\left(1-z\right)}{z-1}+\frac{(z^{2}+1)\ln z}{z-1}\right) \\ &+ \frac{(9z^{2}+1)\operatorname{Li}_{3}(1-z)}{1-z}-\frac{8(z^{2}+1)\operatorname{Li}_{3}(-z)}{z-1}+\frac{(1-3z^{2})\operatorname{Li}_{3}(z)}{z-1} \\ &+ \mathcal{D}_{0}(z)\left\{4\ln\left(\frac{E_{1}}{E_{4}}\right)\ln\eta_{14}\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+6\ln\eta_{14}\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+2\ln^{2}\left(\frac{E_{1}}{E_{4}}\right)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right) \\ &+ \left(13-\frac{10\pi^{2}}{3}\right)\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+\ln\left(\frac{E_{1}}{E_{\max}}\right)\left(-8\ln\eta_{14}\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+\ln^{2}(2) \\ &+ 4\ln^{2}\eta_{14}-\frac{4\pi^{2}}{3}\right)+3\ln^{2}\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)+\left(8\ln\left(\frac{E_{1}}{E_{\max}}\right)+4\ln\left(\frac{4E_{1}^{2}}{\mu^{2}}\right)\right)\operatorname{Li}_{2}(1-\eta_{14}) \\ &+ 16\zeta_{3}\right\}+\frac{(1-11z^{2})\zeta_{3}}{z-1}-2, \end{split}$$

12 May 20, 2021

Nested soft-collinear subtractions for deep inelastic scattering RADCOR-LoopFest 2021 Konstantin Asteriadis Brookhaven National Laboratory

Numerical results

- Due to the focus on simpler processes as building blocks, results can be extensively tested against known analytic results. [Kazakov et al. '90; Zijlstra, van Neerven '92; Moch, Vermaseren '00]
- In the case of photon-induced deep-inelastic scattering with only up-quarks and gluons in the initial state and $\sqrt{s} = 100 \,\text{GeV}, \ 10 \,\text{GeV} < Q < 100 \,\text{GeV}, \ \mu_R = \mu_F = 100 \,\text{GeV}$ we obtain permille agreement for the NNLO contribution

$$\sigma = \sigma_{\rm LO} + \Delta \sigma_{\rm NLO} + \Delta \sigma_{\rm NNLO}$$

channel	numeric result (pb)	analytic result (pb)
$\sigma_{ m q,ns}^{ m NNLO}$	$33.1(2) - 2.18(1) \cdot n_f$	$33.1 - 2.17 \cdot n_f$
$\sigma_{ m q,s}^{ m NNLO}$	9.19(2)	9.18
$\sigma_{ m g}^{ m NNLO}$	-142.4(4)	-142.7

[KA, Caola, Melnikov, Röntsch '19]

• In general, we find that we can get per mill precision on the NNLO total cross section, corresponding to a few percent precision on the NNLO coefficient, running for a few hours on an 8-core machine.

The role of deep inelastic scattering

- Most complex singular contributions (both soft and collinear) only depend on the properties of two external partons
- Separation of complex $pp \to N$ processes into simpler building blocks

- Permille agreement for all basic processes against analytic results.
- Fast computation time for the NNLO cross section (Drell-Yan $\mathcal{O}(1h)$, $H \to b\bar{b}$ decay $\mathcal{O}(<1h)$, DIS $\mathcal{O}(60h)$)
- Building blocks under control! What is next?

 \rightarrow Natural next application: factorizable VBF @ NNLO QCD

• Due to focus on simpler processes check against analytical results possible

Nested soft-collinear subtractions for deep inelastic scattering RADCOR-LoopFest 2021

Vector boson fusion (developing a subtraction scheme)

• Challenging VBF phase space \rightarrow requires efficient subtraction scheme

- Integrated subtraction terms not Lorentz invariant \rightarrow complex cancellation between analytically integrated subtractions and regulated real emission contributions.
- Can be checked against known fully differential descriptions @NNLO QCD [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15; Cruz-Martinez, Gehrmann, Glover, Huss '18]

Vector boson fusion (physics)

- Important production channel of Higgs boson @LHC (second highest cross section @14TeV)
- Fast numerical implementation \rightarrow study Higgs decay, anomalous couplings, non-factorizable contributions, ...

Preliminary results

- Setup: 13 TeV, typical VBF cuts
- Computation time for Δ NNLO histograms around ~ 50.000 CPU hours

Conclusion

- HL-LHC requires high precision theoretical predictions for collider processes.
- Despite progress with developing IR subtraction schemes, the "perfect" subtraction scheme is yet to come.
- The presented nested soft-collinear scheme for NNLO descriptions includes many of the desired properties from FKS @NLO.
- Development status: Complete set of analytic building blocks (obtained from studies of colour singlet production, decay and a DIS process) that can be used as building blocks to design subtractions for arbitrary LHC processes.
- Next steps: Application to more complex processes; in the pipeline: Higgs production in vector boson fusion.

Construction of the nested soft-collinear subtraction scheme is based on ...

- ... iterative extraction of soft and collinear singularities;
- ... partitioning of angular phase space into sectors to obtain well-defined sets of collinear limits;
- ... (not shown) the possibility to parametrize phase space in a way that makes analytic integration of subtraction terms possible.

Backup

Subtraction @NLO is ...

physically transparent	"physical" singularities and clear mechanism of cancellation
local	subtracted matrix elements are finite at any point in the phase-space
analytic	analytic formulas for integrated subtraction terms
modular	subtractions for complex processes are built from subtraction terms established in analyses of simpler processes (soft singularities are sensitive to pairs of emittors; collinear singularities factorize on external lines)
efficient	efficient numerical evaluation (as result of local and analytic)

Situation @NNLO

- Many subtraction schemes at NNLO [Gehrmann-de Ridder, Gehrmann, Glover '05; Czakon '10, '11; Cacciari et al '15; Somogyi, Trócsányi, Del Duca '05; Caola, Melnikov, Röntsch '17; Herzog '18; Magnea et al '18; ...]
- None of the existing subtraction schemes satisfies all of the above criteria ...

... but up to now this was not a problem for phenomenology.

• For more complex processes, better subtraction schemes may become a necessity.

The role of deep inelastic scattering

- Most complex singular contributions (both soft and collinear) only depend on the properties of two external partons
- Separation of complex $pp \to N$ processes into simpler building blocks

• Focus on simpler processes \rightarrow check against analytical results possible

Deep inelastic scattering @NNLO QCD

• We write the differential cross section as

Energy ordering

$$2s \cdot d\sigma_{\rm rr} = \int [dg_5] [dg_6] \frac{\theta(E_5 - E_6)}{\theta(E_5 - E_6)} F_{\rm LM}(1, 4, 5, 6) \equiv \langle F_{\rm LM}(1, 4, 5, 6) \rangle$$

with

$$F_{\rm LM}(1,4,5,6) = \mathcal{N} \int d\text{Lips} \ (2\pi)^d \delta^{(d)}(p_1 + p_2 - p_3 - p_4 - p_5 - p_6) \\ \times |M^{\rm tree}(\{p\}), p_5, p_6|^2 \times \mathcal{O}(p_3, p_4, p_5, p_6)$$

$$[dg_i] = \frac{d^{d-1}p_i}{(2\pi)^{d-1}2E_i} \ \theta(E_{\max} - E_i)$$

Different subtraction schemes and slicing methods

qt	slicing	[Catani, Grazzini]
Jettiness	slicing	[Boughezal et al., Gaunt et al.]
Antenna	subtraction	[Gehrmann-de Ridder, Gehrmann, Glover et al.]
Projection-to-Born	subtraction	[Cacciari et al.]
Colorful NNLO	subtraction	[Del Duca, Troscanyi et al.]
Stripper	subtraction	[Czakon]
Nested soft-collinear	subtraction	[Caola, Melnikov, Röntsch]
Local Analytic Sector	subtraction	[Magnea, Maina et al.]
Geometric	subtraction	[Herzog]

	Analytic	FS Colour	IS Colour	Local
Antenna	 Image: A second s	1	1	X
qΤ	1	×	1	X (slicing)
Colourful	1	1	×	1
Stripper	X	1	1	1
N-jettiness	1	1	1	X (slicing)

Updated and adapted from [Nigel Glover, Amplitudes '15]

Collinear singularities

- In the collinear limits, many different singular configurations exist, but collinear singularities factorize on external legs, therefore either three partons become collinear or two pairs of partons become collinear at once.
- To control which partons these are, the different configurations are separated by **introducing partition functions** (similarly to NLO)

$$1 = w^{51,61} + w^{54,64} + w^{51,64} + w^{54,61}$$

- Singularities in **double collinear sectors** are separated.
- Different collinear singularities in **triple collinear partitions** are isolated in the angular phase space.
- We separate them by **splitting the phase space** into different sectors.

Partition functions

• The different configurations are separated by **introducing partition functions** in the phase space

$$1 = w^{51,61} + w^{54,64} + w^{51,64} + w^{54,61}$$

with

$$\lim_{5 \parallel l} w^{5i,6j} \sim \delta_{li}, \quad \lim_{6 \parallel l} w^{5i,6j} \sim \delta_{lj} \quad \text{and} \quad \lim_{5 \parallel i} \lim_{6 \parallel j} w^{5i,6j} = 1.$$

• One possible choice

$$\begin{split} w^{51,61} &= \frac{\rho_{54}\rho_{64}}{d_5d_6} \left(1 + \frac{\rho_{51}}{d_{5641}} + \frac{\rho_{61}}{d_{5614}} \right), \quad w^{51,64} = \frac{\rho_{54}\rho_{61}\rho_{56}}{d_5d_6d_{5614}}, \\ w^{54,64} &= \frac{\rho_{51}\rho_{61}}{d_5d_6} \left(1 + \frac{\rho_{64}}{d_{5641}} + \frac{\rho_{54}}{d_{5614}} \right), \quad w^{54,61} = \frac{\rho_{51}\rho_{64}\rho_{56}}{d_5d_6d_{5641}}, \end{split}$$

where

$$d_{i=5,6} \equiv \rho_{1i} + \rho_{4i}, \quad d_{5614} \equiv \rho_{56} + \rho_{51} + \rho_{64}, \quad d_{5641} \equiv \rho_{56} + \rho_{54} + \rho_{61}.$$

24 May 20, 2021

Nested soft-collinear subtractions for deep inelastic scattering RADCOR-LoopFest 2021 Konstantin Asteriadis Brookhaven National Laboratory

Splitting of the angular phase space

• In practice this is done by introducing the unity

$$1 = \theta \left(\rho_{61} < \frac{\rho_{51}}{2} \right) + \theta \left(\frac{\rho_{51}}{2} < \rho_{61} < \rho_{51} \right) + \theta \left(\rho_{51} < \frac{\rho_{61}}{2} \right) + \theta \left(\frac{\rho_{61}}{2} < \rho_{51} < \rho_{61} \right)$$

• To integrate singularities analytically it is crucial the phase space is parameterized in such a way that all singularities are made explicit [Czakon]

Subtraction terms before NLO regulation

• Single collinear finial state emission

$$\left\langle [I - \mathcal{S}][I - S_6] \Big[C_{54} w^{54,61} + C_{64} w^{51,64} + \Big(\theta^{(a)} C_{64} + \theta^{(c)} C_{54} \Big) w^{54,64} \Big] [dg_5][dg_6] F_{LM}(1,4,5,6) \right\rangle$$

$$= \frac{[\alpha_s] C_F}{\epsilon} \left\langle \left[\left(\frac{1}{\epsilon} + Z^{2,2} \right) (2E_4)^{-2\epsilon} - (2E_5)^{-2\epsilon} \right] \left(w^{51}_{DC} + w^{54}_{TC} \left(\frac{\rho_{54}}{4} \right)^{-\epsilon} \right) F_{LM}(1,4,5) \right\rangle$$

$$- \frac{[\alpha_s]^2 C_F^2}{\epsilon^3} \left(\frac{1}{2\epsilon} + Z^{2,4} \right) \left\langle \langle \Delta_{51} \rangle_{S_5} (2E_4)^{-4\epsilon} F_{LM}(1,4) \right\rangle.$$

with

$$Z^{n,m} = -\frac{2}{m\epsilon} - \int_0^1 \mathrm{d}z \ z^{-n\epsilon} (1-z)^{-m\epsilon} P_{qq}(z) = \frac{3}{2} + \frac{1}{12} \left[6 + 21m + 15n - 4n\pi^2 \right] \epsilon + \mathcal{O}(\epsilon^2) ,$$

$$\langle \Delta_{51} \rangle_{S_5} = \left(-\frac{1}{\epsilon} \left[\frac{1}{8\pi^2} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \right] 2^{-2\epsilon} \right)^{-1} \int \mathrm{d}\Omega_5^{(d-1)} \ \frac{\rho_{14}}{\rho_{15}\rho_{45}} \left[w_{\mathrm{DC}}^{51} + w_{\mathrm{TC}}^{54} \left(\frac{\rho_{54}}{4} \right)^{-\epsilon} \right] = \frac{3}{2} + \epsilon \left(\frac{\ln 2}{2} - 2\ln \eta_{14} \right) + \mathcal{O}(\epsilon^2) ,$$

$$w_{\mathrm{DC}}^{51} = C_{64} w^{51,64} ,$$

$$w_{\mathrm{TC}}^{54} = C_{64} w^{54,64} .$$

• The subtraction terms contains the **NLO differential cross-section** with **NLO singularities**

Single and double soft limit

• Single soft at NLO

$$\left| \begin{array}{c} k \\ p_1 \underbrace{\longrightarrow}_{k \to 0} p_2 \\ \underbrace{\longrightarrow}_{E_k \to 0} p_2 \end{array} \right|^2 \approx 2C_F g_{s,b}^2 \times \underbrace{\frac{p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}}_{\text{Eikonal function}} \times \left| \begin{array}{c} p_1 \underbrace{\longrightarrow}_{k \to 0} p_2 \\ \underbrace{\longrightarrow}_{k \to 0$$

• Single soft at NNLO

$$S_6 F_{\rm LM}(1,4,5,6) = g_{s,b}^2 \times \frac{1}{E_6^2} \left[(2C_F - C_A) \frac{\rho_{14}}{\rho_{16}\rho_{46}} + C_A \left(\frac{\rho_{15}}{\rho_{16}\rho_{56}} + \frac{\rho_{45}}{\rho_{46}\rho_{56}} \right) \right] \times F_{\rm LM}(1,4,5)$$

• Double soft eikonal

$$\begin{split} \text{Eikonal}(1,4,6,7) &= 4C_F^2 S_{14}(6) S_{14}(7) + C_A C_F \left[2S_{12}(6,7) - S_{11}(6,7) - S_{22}(6,7) \right], \\ S_{ij}(k) &= \frac{p_i \cdot p_j}{[p_i \cdot p_k] [p_j \cdot p_k]}, \\ S_{ij}(k,l) &= S_{ij}^{\text{so}}(k,l) - \frac{2[p_i \cdot p_j]}{[p_k \cdot p_l] [p_i \cdot (p_k + p_l)] [p_j \cdot (p_k + p_l)]} \\ &+ \frac{[p_i \cdot p_k] [p_j \cdot p_l] + [p_i \cdot p_l] [p_j \cdot p_k]}{[p_i \cdot (p_k + p_l)] [p_j \cdot (p_k + p_l)]} \left(\frac{1 - \epsilon}{[p_k \cdot p_l]^2} - \frac{1}{2} S_{ij}^{\text{so}}(k,l) \right), \\ S_{ij}^{\text{so}}(k,l) &= \frac{p_i \cdot p_j}{p_k \cdot p_l} \left(\frac{1}{[p_i \cdot p_k] [p_j \cdot p_l]} + \frac{1}{[p_i \cdot p_l] [p_j \cdot p_k]} \right) - \frac{[p_i \cdot p_j]^2}{[p_i \cdot p_k] [p_j \cdot p_l] [p_j \cdot p_l]}. \end{split}$$

Konstantin Asteriadis Brookhaven National Laboratory