Importing pertubative QCD methods into gravitational wave physics

Mao Zeng, University of Oxford
Talk at Radcor / LoopFest 2021
arXiv:2005.04236 (JHEP), Parra-Martinez, Ruf, MZ
arXiv:2101.07254 (PRL), Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ

OUTLINE

1. Background - Precision GW Physics
2. The Amplitudes Approach
3. Collider methods - method of regions, differential equations, reverse unitarity...
4. Results \& comparisons with numerical relativity

Background

DISCOVERIES OF OUR TIMES

ATLAS Collaboration, arXiv:1207.7214

Two of the fundamental discoveries of our times: Higgs boson (2012), gravitational waves (2015). Spectacular confirmation of SM / GR.

DISCOVERIES OF OUR TIMES

LIGO \& VIRGO collaborations, arXiv:1602.03837

Two of the fundamental discoveries of our times: Higgs boson (2012), gravitational waves (2015). Spectacular confirmation of SM / GR.

- Intense precision theory efforts on two types experiments chance for cross-fertilization?

INSPIRAL WAVEFORMS

Weak-field perturbative expansions: Post-Newtonian, Post-Minkoskian, Self force, Effective one body...

LIGO-Virgo GW signals

LVT151012:
GW151226

GW170104 ~WUWMN|
GW170814 MUWWWN|'

GW170817

FUTURE GW DETECTORS

NEW RESULTS FOR CONSERVATIVE DYNAMICS

$$
G^{6}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right)
$$

[adapted from Mikhail Solon's slide]

The Amplitudes Approach

POINT PARTICLE EFFECTIVE FIELD THEORY

Massive particles (scalar field) coupled to gravity.

Lagrangian: $\quad S=S_{\text {Einstein-Hilbert }}+S_{\text {point-particle }}+S_{\text {finite-size }}$

Point-particle: scalar field in dynamic metric.

Finite-size (tidal) effect: highly suppressed for compact objects
$\sim \mathcal{O}\left(G^{5}\right)$, even more so for black holes $\sim \mathcal{O}\left(G^{6}\right)$.

GRAVITY AMPLITUDES FROM YANG-MILLS

- Gravity $=(\text { Yang-Mills })^{2} .3$-point amplitude example:

- 4-points and above: generally a sum of $\mathrm{YM} \times \mathrm{YM}$ expressions.
- Early example: Kawai-Lewellen-Tye relations (string theory)
- Local Feynman diagram-like version: Double copy from colorkinematic duality [Bern, Carrasco, Johanson, 08]

CLASSICAL LIMITS FROM AMPLITUDES

- Eikonal exponentiation: scattering angle from saddlepoint / stationary phase approximation.
[Glauber, '59; Levy, Sucher, '69; Soldate, '87; 't Hooft, '87; Amati, Ciafoloni, Veneziano, '87, '88, '90, '07; Muzinich, Soldate, '88; Kobat, Ortiz, '92; Bern, Ita, Parra-Martinez, Ruf, '20; Parra-Martinez, Ruf, MZ, '20; Di Vecchia, Heissenberg, Russo, Veneziano, '21...]
- Two-body potential, defined in an EFT inspired by NRQED / NRQCD, has smooth classical limit.
[Cheung, Rothstein, Solon, '18]
- Suitable physical observables from S-matrix have well-defined classical limits. [Kosower, Maybee, o'connell, '18]
- Hyperbolic scattering can be analytically continued to elliptic orbits. [Kalin, Porto, '20]

MATCHING TO NON-RELATIVISTIC EFT

[Cheung, Rothstein, Solon, 1808.02489]
Lagrangian: two scalars, no antiparticles, no particle creation
$\mathcal{L}=\sum_{i=1,2} \int_{\boldsymbol{k}} \phi_{i}^{\dagger}(-\boldsymbol{k})\left(i \partial_{t}-\sqrt{\boldsymbol{k}^{2}+m_{i}^{2}}\right) \phi_{i}(\boldsymbol{k}) \longleftarrow$ kinetic term

+ instantaneous potential $\sim V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \phi_{1}^{\dagger} \phi_{1} \phi_{2}^{\dagger} \phi_{2}$

Importing collider methods

CHALLENGES IN LOOP INTEGRATION

GW physics needs 3 loops and beyond, but exact evalulation is very difficult already at 2 loops: most results are planar, with $m_{1}=m_{2}$.

Smirnov, '01;
Henn, Smirnov, '13
Two-mass: Heller '21

Heinrich, Smirnov, '04 (only the $1 / \epsilon^{2}$ pole)

Leoni, Bianchi, '16; Kreer, Weinzierl, '21 Talk by S. Weinzierl

Heller, von Manteuffel, Schabinger, 19; Broedel, Duhr, Dulat, Penante, Tancredi, '19

Talk by V. Smirnov, w/ Duhr, Tancredi

METHOD OF REGIONS

Expanding matter propagators (linearized):
(1) : $\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2} \approx 2 m_{1} u_{1} \cdot k_{1}+i 0$
(2): $\left(k_{2}+p_{2}\right)^{2}-m_{2}^{2} \approx 2 m_{2} u_{2} \cdot k_{2}+i 0$
(Hard region does not contribute to classical physics)

Soft region:
$\left|k_{1}\right| \sim\left|k_{2}\right| \sim|q| \ll m_{1}, m_{2}, \sqrt{s}$

Kinematics:
$u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot q=u_{2} \cdot q=0$,
$q^{2}=t, \quad u_{1} \cdot u_{2}=\sigma$
σ : dimensionless velocity parameter - differential equations in σ

IBP analytic - two decoupled systems:
integer and half-integer powers of t

NO NEED FOR (MIXED) HARD REGIONS

Hard gravitons are irrelevant for classical physics, sometimes after nontrivial cancellations.

Contact potential, no long-range effects

Scaleless integral

Suppressed after IR subtraction

FURTHER EXPANSION IN SMALL VELOCITY

Potential region coincides with conservative dynamics up to 2 loops.

- suitable regularization needed: symmetrization prescription [Cheung, Rothstein, Solon, '18; Cheung, Bern, Roiban, Shen, Solon, MZ, '19; Parra-Martinez, Ruf, MZ, '20]

DIFFERENTIAL EQUATIONS

differential eqauations

PN expansion $q^{2} \ll(m v)^{2} \ll m^{2}$

Kotikov; Bern, Dixon, Kosower; Remiddi; Gehrmann, Remiddi; Henn

consistency conditions:

cancellation of spurious singularities

PM expansion $q^{2} \ll m^{2}, v \sim \mathcal{O}(1)$

Imported into post-Minkowskian gravity: [Parra-Martinez, Ruf, Mz, '20]
subsequently: [Kalin, Porto, '20; Di Vecchia, Heissenberg, Russo, Veneziano, '21; Herrmann, Parra-Martinez, Ruf, MZ, '21; Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21]

DIFFERENTIAL EQUATIONS

$u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot u_{2}=y=\sqrt{1+v^{2}}$
Rationalization: $y=\frac{1+x^{2}}{2 x}$
Physical region: $0<x<1$
Euclidean region: $-1<x<0$
symbol letters: $x, 1 \pm x, 1+x^{2}$
Similar to letters in massive cusp anomalous dimension [Bruser, Dlapa, Henn, Yan, '20] Talk by C. Dlapa
Canonical form: [Henn, '13]

$$
\frac{\partial}{\partial x} \vec{I}=\epsilon \sum_{r} \frac{\partial \log W_{r}}{\partial x} \mathbb{M}^{(r)} \cdot \vec{I}
$$

The last letter only appears at 3 loops. For the potential region, smooth static limit implies that $(1-x)$ is never a first entry.

Results and Comparisons

THE 4PM / 3-LOOP CALCULATION

[Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ, '21 (PRL)]

- Amplitude integrand from 8 generalized unitarity cuts.

- In potential region, used epsilon [Prauso, '17] to find canonical form, except for one bottom-level sector (ellitpic, 3×3 system).

THE 4PM / 3-LOOP CALCULATION

[Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ, '21 (PRL)]

$$
\mathcal{M}_{4}(\boldsymbol{q})=G^{4} M^{7} \nu^{2}|\boldsymbol{q}|\left(\frac{\boldsymbol{q}^{2}}{4^{1 / 3} \tilde{\mu}^{2}}\right)^{-3 \epsilon} \pi^{2}\left[\mathcal{M}_{4}^{p}+\nu\left(\frac{\mathcal{M}_{4}^{t}}{\epsilon}+\mathcal{M}_{4}^{f}\right)\right]+\text { IR divs. }
$$

$$
\begin{aligned}
& \mathcal{M}_{4}^{\mathrm{f}}=h_{4}+h_{5} \log \left(\frac{\sigma+1}{2}\right)+h_{6} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}+h_{7} \log (\sigma)-h_{2} \frac{2 \pi^{2}}{3}+h_{8} \frac{\operatorname{arccosh}^{4}(\sigma)}{\sigma^{2}-1}+h_{9}\left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right)+\frac{1}{2} \log ^{2}\left(\frac{\sigma+1}{2}\right)\right] \\
& \quad+h_{10}\left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right)-\frac{\pi^{2}}{6}\right]+h_{11}\left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{1+\sigma}\right)-\operatorname{Li}_{2}\left(\frac{\sigma-1}{\sigma+1}\right)+\frac{\pi^{2}}{3}\right]+h_{2} \frac{2 \sigma\left(2 \sigma^{2}-3\right)}{\left(\sigma^{2}-1\right)^{3 / 2}}\left[\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right)-\operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right)\right] \\
& \quad+\frac{2 h_{3}}{\sqrt{\sigma^{2}-1}}\left[\operatorname{Li}_{2}\left(1-\sigma-\sqrt{\sigma^{2}-1}\right)-\operatorname{Li}_{2}\left(1-\sigma+\sqrt{\sigma^{2}-1}\right)+5 \operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right)-5 \operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right)+2 \log \left(\frac{\sigma+1}{2}\right) \operatorname{arccosh}(\sigma)\right] \\
& \\
& +h_{12} \mathrm{~K}^{2}\left(\frac{\sigma-1}{\sigma+1}\right)+h_{13} \mathrm{~K}\left(\frac{\sigma-1}{\sigma+1}\right) \mathrm{E}\left(\frac{\sigma-1}{\sigma+1}\right)+h_{14} \mathrm{E}^{2}\left(\frac{\sigma-1}{\sigma+1}\right),
\end{aligned}
$$

$$
\text { polylogarithms up to transcendental weight } 2
$$

complete elliptic integrals of the 1st \& 2nd kind

Rational prefactors:

$$
\begin{aligned}
& h_{1}=\frac{1151-3336 \sigma+3148 \sigma^{2}-912 \sigma^{3}+339 \sigma^{4}-552 \sigma^{5}+210 \sigma^{6}}{12\left(\sigma^{2}-1\right)} \\
& h_{2}=\frac{1}{2}\left(5-76 \sigma+150 \sigma^{2}-60 \sigma^{3}-35 \sigma^{4}\right)
\end{aligned}
$$

IR DIVERGENCE IN 2-BODY POTENTIAL

m_{2}

radiation region / far-zone
[Gally, Leibovich, Porto, Ross, '15]

Potential region: graviton dominated by spatial momenta

$$
\mathcal{M}_{4}^{\text {pot }}(\boldsymbol{q}) \propto\left[\frac{\mathcal{M}_{4}^{t}}{\epsilon}+\text { finite }\right]+\text { Iterations } \quad \begin{aligned}
& \text { Next slides: preliminary } \\
& \text { NR comparison }
\end{aligned}
$$

Radiation region: small energy and spatial momenta $\sim 1 / \lambda$

$$
\mathcal{M}_{4}^{\mathrm{rad}}(\boldsymbol{q}) \propto\left[-\frac{\mathcal{M}_{4}^{t}}{\epsilon}+2 \log \left(v^{2}\right)+\text { finite }\right] \quad \begin{aligned}
& \text { To be calculated in } \\
& \text { PM expansion! }
\end{aligned}
$$

Divergence cancels in the sum, leaving $\log (v)$ term analogous to Lamb shift in QED with $\log (\alpha)$ term.

4PM BINDING ENERGY VS. NUMERICAL RELATIVITY

[Khalil, Buonanno, Steinhoff, Vines, preliminary]

GW cycles before merger

4PM BINDING ENERGY VS. NUMERICAL RELATIVITY

[Khalil, Buonanno, Steinhoff, Vines, preliminary]
Same plot shown as relative deviation from NR.

Post-Minksowskian prediction starts to become competitive with post-Newtonian predictions!

DISCUSSIONS \& OUTLOOK

- Obtained new results for post-Minkowskian binary dynamics, beyond the best classical calculations.
- Start to compete with post-Newtonian theory, and offers new analytic insights.
- Relies on modern methods for scattering amplitudes and advanced integration techniques developed in QCD:
- Method of regions
- IBP \& Differential equations
- Polylogarithms \& (iterated) elliptic integrals
- Reverse unitarity Talk by Julio Parra-Martinez
- Rich physics to be explored - spin, tidal effects, radiation reaction... Preparing for coming decades of GW physics!

