

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Higher-order β -functions in the Standard Model and beyond

Florian Herren

May 20, 2021

‡ Fermilab

_		
-	lorian	Herren
		THEFTET

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

What are β -functions?

イロト イロト イヨト イヨト

э

2/36

What are β -functions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

 β -functions determine the energy dependence of coupling constants:

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \frac{\alpha_i(\mu)}{\pi} = \beta_i \left(\{\alpha_j\}; \epsilon \right) \; .$$

 β_i depends on all couplings $\{\alpha_j\}$ of the theory. QCD: $\{\alpha_j\} = \left\{\frac{g_s^2}{4\pi}\right\}$

What are β -functions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

 β -functions determine the energy dependence of coupling constants:

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \frac{\alpha_i(\mu)}{\pi} = \beta_i \left(\{\alpha_j\}; \epsilon \right) \; .$$

 $\begin{array}{l} \beta_i \text{ depends on all couplings } \{\alpha_j\} \text{ of the theory.} \\ \mathsf{SM: } \{\alpha_j\} = \left\{ \frac{\alpha_{\mathsf{QED}}}{\cos^2 \theta_W}, \frac{\alpha_{\mathsf{QED}}}{\sin^2 \theta_W}, \frac{g_s^2}{4\pi}, \frac{y_f^2}{4\pi}, \frac{\lambda}{4\pi} \right\} \end{array}$

Asymptotic freedom

イロト イボト イヨト イヨト

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

[Particle Data Group]

 \Rightarrow precision of $\alpha_{\rm s}$ determinations made five-loop calculation necessary

Vacuum stability

What are β -functions?

Florian Herren

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

 \Rightarrow three-loop calculation necessary to gain confidence in results. $_{\odot}$

State of the art for gauge theories

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

 $\begin{array}{l} {\rm SM \ gauge} \\ {\rm coupling} \\ \beta {\rm -functions \ at} \\ 4 \ {\rm loops} \end{array}$

Beyond the SM

Backup

• 5-loop QCD β -function

[Baikov, Chetyrkin, Kühn '16], [Herzog, Ruijl, Ueda, Vermaseren, Vogt '17], [Luthe, Maier, Marquard, Schroder '17]

> <ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 6/36

State of the art for gauge theories

イロト 不得 とくきとくきとう

6/36

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

 $\begin{array}{l} {\rm SM \ gauge} \\ {\rm coupling} \\ \beta {\rm -functions \ at} \\ 4 \ {\rm loops} \end{array}$

Beyond th SM

Backup

- 3-loop SM gauge coupling β-functions
 [Mihaila, Salomon, Steinhauser '12], [Bednyakov, Pikelner, Velizhanin '12]
- 3-loop SM Yukawa coupling β -functions

[Chetyrkin, Zoller '12], [Bednyakov, Pikelner, Velizhanin '13,'14]

• 3-loop SM self-coupling β -functions

[Chetyrkin, Zoller '12,'13], [Bednyakov, Pikelner, Velizhanin '13]

State of the art for gauge theories

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

 $\begin{array}{l} {\rm SM \ gauge} \\ {\rm coupling} \\ \beta {\rm -functions \ at} \\ 4 \ {\rm loops} \end{array}$

Beyond th SM

Backup

- 3-loop 2HDM gauge and Yukawa coupling β -functions [FH, Mihaila, Steinhauser '19]
- 3-loop gauge coupling β -function for arbitrary gauge group [Poole, Thomsen '19]

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Why don't we know the SM β -functions at 4 loops?

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Relating β -functions to counterterms for couplings

Bare and renormalized couplings are related by:

$$\alpha_i^0 = \mu^{2\epsilon} Z_{\alpha_i} \alpha_i$$

Taking the derivative w.r.t. μ and solving for β_i :

$$\beta_{i} = -\left[\epsilon \frac{\alpha_{i}}{\pi} + \frac{\alpha_{i}}{Z_{\alpha_{i}}} \sum_{j \neq i} \frac{\partial Z_{\alpha_{i}}}{\partial \alpha_{j}} \beta_{j}\right] \left(1 + \frac{\alpha_{i}}{Z_{\alpha_{i}}} \frac{\partial Z_{\alpha_{i}}}{\partial \alpha_{i}}\right)^{-1}$$

To obtain β_i at *L* loops, we need to know Z_{α_i} at *L* loops and all β_j at L - 1 loops (at most)

イロト 不得 トイヨト イヨト

Relating counterterms to Green's functions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Couplings renormalization constants computed via

$$Z_{\alpha_i} = \frac{Z_V^2}{\prod_{\Phi} Z_{\Phi}}$$

Slavnov-Taylor identities relate renormalization constants

 \Rightarrow need to compute UV-poles of 2- and 3-point Green's functions

Poles do not depend on masses and momenta in $\overline{\rm MS}$ scheme \rightarrow neglect all particle masses

Relating counterterms to Green's functions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β-functions at 4 loops

Beyond the SM

Backup

- $\mathcal{O}\left(10^{5}
 ight)$ diagrams per relevant Green's function at 4 loops
- 3 gauge parameters
- However, many diagrams share the same structure:

• Combine diagrams with same colour factors and topology into super-diagrams $\rightarrow \mathcal{O}\left(10^3\right)$

Treatment of γ_5

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

SM is a chiral theory, thus γ_5 appears In four dimensions:

$$\{\gamma_{5}, \gamma_{\mu}\} = 0$$

$$\gamma_{5}^{2} = 1$$

$$\operatorname{tr} (\gamma_{5}\gamma_{\mu}\gamma_{\nu}\gamma_{\lambda}\gamma_{\sigma}) = -4i\epsilon_{\mu\nu\rho\sigma}$$

$$\epsilon^{\mu\nu\rho\sigma}\epsilon_{\mu'\nu'\rho'\sigma'} = g^{[\mu}_{[\mu'} g^{\nu}_{\nu'} g^{\rho}_{\rho'} g^{\sigma}_{\sigma'}]$$

But what about D dimensions? (see also talks by Long Chen and Taushif Ahmed)

Treatment of γ_5

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond t SM

Backup

None of these diagrams contribute

Treatment of γ_5

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Only the second diagram contributes with an $\frac{1}{\epsilon}$ pole

$$\rightarrow \operatorname{tr}\left(\gamma_5\gamma_{\mu}\gamma_{\nu}\gamma_{\lambda}\gamma_{\sigma}\right) = -4i\epsilon_{\mu\nu\rho\sigma} + \mathcal{O}(\epsilon)$$

γ_5 and the four-loop gauge coupling beta functions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

 $\begin{array}{l} \mathsf{SM} \ \mathsf{gauge} \\ \mathsf{coupling} \\ \beta\text{-functions at} \\ 4 \ \mathsf{loops} \end{array}$

Beyond the SM

Backup

This fails however at four loops:

In [Bednyakov, Pikelner '15], [Zoller '15] a non-cyclic trace was used \rightarrow Result depends on reading point

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

SM gauge coupling β -functions at 4 loops

Weyl consistency conditions

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

In the framework of the local renormalization group Osborn's equation [Osborn '89, '91] can be derived:

$$\partial_I \tilde{A} = T_{IJ} B^J$$

This equation gives rise to the so-called Weyl consistency conditions, relations between coefficients of tensor structures of the β functions.

Weyl consistency conditions

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Most general Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \sum_{u} F^{A_{u}}_{u,\mu\nu} F^{A_{u}\mu\nu}_{u} + \frac{1}{2} (D_{\mu}\phi)_{a} (D^{\mu}\phi)_{a} + i\psi^{\dagger}_{i} \bar{\sigma}^{\mu} (D_{\mu}\psi)_{i}$$
$$-\frac{1}{2} (Y_{aij}\psi_{i}\psi_{j} + \text{h.c.}) \phi_{a} - \frac{1}{24} \lambda_{abcd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}.$$

Covariant derivatives are defined by

$$D_{\mu}\phi_{a} = \partial_{\mu}\phi_{a} - i\sum_{u}g_{u}V_{u,\mu}^{A_{u}}(T_{\phi,u}^{A_{u}})_{ab}\phi_{b}$$
$$D_{\mu}\psi_{i} = \partial_{\mu}\psi_{i} - i\sum_{u}g_{u}V_{u,\mu}^{A_{u}}(T_{\psi,u}^{A_{u}})_{ij}\psi_{j}$$

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 15 / 36 Higher-order β -functions in the Standard

Weyl consistency conditions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond t SM

Backup

Graph-tensor identification rules [Poole, Thomsen '19]:

$$A \sim B = G_{AB}^2 \quad i - j = \delta_{ij} \quad a - \cdots - b = \delta_{ab}$$

$$i \underbrace{}_{j} = (T^{A})_{ij} \qquad \sum_{a \dots b} = (T^{A}_{\phi})_{ab}$$

$$\int_{C}^{A} = G_{AD}^{-2} f^{DBC}$$

Λ

В

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q C 16 / 36

Weyl consistency conditions

Florian Herren

What are β -functions

Examples:

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

Higher-order β -functions in

Weyl consistency conditions

 \ddot{A} can be decomposed into coefficients a_i and tensor structures, e.g. at three loops [Poole, Thomsen '19]:

Derivative acts on couplings, corresponding to gauge lines, fermion-scalar vertices and quartic scalar vertices:

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

18 / 36

Higher-order β -functions in

Weyl consistency conditions

Overall, we get:

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

In a similar way T_{IJ} and B^J can be decomposed:

19/36

Weyl consistency conditions

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

 $\begin{array}{l} \mathsf{SM} \text{ gauge} \\ \mathsf{coupling} \\ \beta\text{-functions at} \\ \mathsf{4} \text{ loops} \end{array}$

Beyond th SM

Backup

Identifying tensor structures, we obtain 4 equations:

$$\begin{aligned} a_{10}^{(3l)} &= t_1^{(1l)} g_6^{(2l)} , \qquad a_{11}^{(3l)} &= t_1^{(1l)} g_7^{(2l)} \\ 2a_{10}^{(3l)} &= t_4^{(2l)} n_1^{(1l)} , \qquad 2a_{11}^{(3l)} &= t_4^{(2l)} n_2^{(1l)} \end{aligned}$$

Which can be solved for

$$g_7^{(2l)} n_2^{(1l)} = g_6^{(2l)} n_1^{(1l)}$$

Higher-order β-functions in the Standard Model and

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Taking a closer look at the γ_5 contributions

<ロト < 団ト < 巨ト < 巨ト < 巨ト < 巨 > 巨 の Q () 21 / 36

Taking a closer look at the γ_5 contributions

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Let's connect the external lines in each of them...

All problematic contributions can be expressed through unproblematic ones [Poole, Thomsen '19]

Calculational setup

Higher-orde β -functions

Combining the various ingredients we obtained the 4-loop gauge coupling β -functions in the SM $_{\rm [Davies, FH, Poole, Steinhauser, Thomson '19]:}$

Gauge coupling β -functions in the SM at four loops

 $\beta_1 = \frac{\alpha_1^2}{\iota(\pi)^2} \left(\frac{i2}{\varsigma} \right) + \frac{\alpha_1^2}{\iota(\pi)^3} \left(\frac{396\alpha_1}{\varkappa} + \frac{i4\alpha_2}{\varsigma} + \frac{i76\alpha_3}{\varsigma} - \frac{34\alpha_4}{\varsigma} \right) + \frac{\alpha_1^2}{(\pi^{1/4})} \left(- \frac{33861\alpha_1^2}{600} + \frac{i22\alpha_1\alpha_2}{40} - \frac{548\alpha_1\alpha_3}{75} + \frac{i22\alpha_1\alpha_2}{75} + \frac{i22\alpha_1\alpha_3}{75} + \frac{i22\alpha_1\alpha_3}{75$ $+\frac{709\Omega_2^2}{16}-\frac{112\Omega_2\Omega_3}{5}+\frac{1188\Omega_3^2}{5}-\frac{2127\Omega_1\Omega_4}{200}-\frac{471\Omega_2\Omega_4}{8}-\frac{116\Omega_3\Omega_4}{5}+\frac{109\Omega_4^2}{4}+\frac{54\Omega_1\Omega_7}{25}+\frac{118\Omega_2\Omega_7}{5}-\frac{56\Omega_7^2}{5}\right)$ $+\frac{\alpha_1^2}{1-\alpha_1}\left[-\alpha_1^3\left(\frac{143035709}{1-\alpha_1}+\frac{1638851\zeta_3}{1-\alpha_2}\right)-\alpha_1^2\alpha_2\left(\frac{3819731}{1-\alpha_2}-\frac{16529\zeta_3}{1-\alpha_2}\right)-\alpha_1^2\alpha_3\left(\frac{3659273}{1-\alpha_2}-\frac{720304\zeta_3}{1-\alpha_2}\right)\right]$ $+\alpha_{1}\alpha_{2}^{2}\left(\frac{572059}{2}-\frac{6751\zeta_{3}}{2}\right)-\frac{69\alpha_{1}\alpha_{2}\alpha_{3}}{2}+\alpha_{1}\alpha_{3}^{2}\left(\frac{333556}{2}-\frac{274624\zeta_{3}}{2}\right)-\alpha_{2}^{3}\left(\frac{117923}{2}+\frac{3109\zeta_{3}}{2}\right)$ $-\alpha_1\alpha_2\alpha_4\left(\frac{42841}{2}+\frac{1122\zeta_3}{2}\right)-\alpha_1\alpha_3\alpha_4\left(\frac{2012}{2}-\frac{408\zeta_3}{2}\right)-\alpha_2^2\alpha_4\left(\frac{439841}{2}-\frac{616\zeta_3}{2}\right)+\alpha_2\alpha_3\alpha_4\left(\frac{1468}{2}-\frac{1896\zeta_3}{2}\right)$ $= \alpha_3^2 \alpha_4 \left(\frac{11462}{2} - \frac{3184 \zeta_3}{2} \right) + \alpha_1 \alpha_4^2 \left(\frac{23059}{2} - \frac{357 \zeta_3}{2} \right) + \alpha_2 \alpha_4^2 \left(\frac{71463}{2} - \frac{639 \zeta_3}{2} \right) + \alpha_3 \alpha_4^2 \left(\frac{11429}{2} - 240 \zeta_3 \right)$ $=\alpha_4^3\left(\frac{13653}{m}+\frac{102\zeta_3}{\epsilon}\right)+\frac{367}{m}\alpha_1^2\alpha_7+\frac{1917\alpha_1\alpha_2\alpha_7}{\epsilon}+\frac{899\alpha_2^2\alpha_7}{m}-\frac{1928\alpha_1\alpha_4\alpha_7}{2\epsilon}-\frac{102\alpha_2\alpha_4\alpha_7}{\epsilon}-\frac{474\alpha_4^2\alpha_7}{\epsilon}$ $-\frac{1269\alpha_{1}\alpha_{7}^{2}}{2^{6}}-\frac{981\alpha_{2}\alpha_{7}^{2}}{^{6}}+\frac{1188\alpha_{4}\alpha_{7}^{2}}{^{6}}+\frac{624\alpha_{7}^{3}}{^{6}}\right]$

For the three gauge couplings, the 4-loop corrections amount to 8%, 5% and 127% of the 3-loop corrections.

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

127% ???

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond t SM

Backup

$$\Delta = \frac{|\alpha_3^{(4/)} - \alpha_3^{(3/)}|}{|\alpha_3^{(3/)} - \alpha_3^{(2/)}|}$$

Electroweak corrections cancel pure α_3 terms at 3-loops.

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

Beyond the SM

<ロト < 部 > < 言 > < 言 > 言 の < C 25 / 36

Beta functions at order 4-3-2

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

- Statements concerning γ_5 hold for any gauge theory
 - BSM-landscape is vast \rightarrow dedicated computation for each model unfeasible
 - Ansatz by [Poole, Thomsen '19] covers general theory at order 4-3-2

Beta functions at order 4-3-2

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β-functions at 4 loops

Beyond the SM

Backup

- Directly computing each coefficient using real fields possible, but cumbersome
- Results available in the literature fix 487/510 coefficients
- Adding SM + ν_R and the type-I 2HDM gives 4 more constraints
- Remaining coefficients need a model with a scalar charged under multiple non-abelian gauge groups

Ambiguities

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

 $\begin{array}{l} {\rm SM \ gauge} \\ {\rm coupling} \\ \beta {\rm -functions \ at} \\ 4 \ {\rm loops} \end{array}$

Beyond the SM

Backup

There is one problem with Yukawa matrices starting from 3 loops:

$$Z_f = 1 - K_\epsilon \left(\sqrt{Z_f}^\dagger \Sigma(Q^2) \sqrt{Z_f}
ight)$$

Square root: $Z_f = \sqrt{Z_f}^{\dagger} U^{\dagger} U \sqrt{Z_f}$ \rightarrow can only determine $\sqrt{Z_f}$ up to unitary rotation

Ambiguities

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

~

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

Issue with anomalous dimension (similar for β -function):

$$\gamma_f = \sqrt{Z_f}^{-1} \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \sqrt{Z_f}$$

= $U^{\dagger} \sqrt{Z_f}^{-1} \left(\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \sqrt{Z_f} \right) U + U^{\dagger} \mu \frac{\mathrm{d}}{\mathrm{d}\mu} U$

Choice U = 1 leads to poles in γ_f (and β) starting from 3 loops [Bednyakov, Pikelner, Velizhanin '14], [FH, Mihaila, Steinhauser '17]

Do the ambiguities lead to issues?

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

RG-finiteness

The divergent part of any set of MS/ $\overline{\text{MS}}$ RG functions (β_I, γ) satisfy

$$\gamma^{(n)} \in \mathfrak{g}_F$$
 and $\beta_I^{(n)} = -(\gamma^{(n)}g)_I$, $n \ge 1$.

This property of the RG functions is referred to as RG-finiteness.

[FH, Thomsen '21]

The B-function

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

It is possible to define an improved β -function [Fortin, Grinstein, Stergiou '12]:

$$B_I = \beta_I - (\hat{v} g)_I$$

B is invariant under transformations of the fields with $G_F(\hat{v} g)_I$ can be computed directly [Fortin, Grinstein, Stergiou '12] and coincides with $(\gamma^{(n)} g)_I$ [FH, Thomsen 21]

What else can we learn?

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

In a next step, we plan to derive the relations at orders 5-4-3.

- Allows to determine 3-loop scalar β-function, many coefficients already known [Steudtner '21]
- Investigate γ_5 at this order (3-loop scalar β -function is safe)
- Does the number of relations grow faster than the number of coefficients?
- Are there non-trivial relations for pure gauge theories at high orders?
- Can one combine Weyl consistency conditions with relations regarding the transcendality structure [Baikov, Chetyrkin '19]?

Conclusion

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond the SM

Backup

- In non-chiral theories 5-loop computations are feasible
- Weyl consistency conditions allow to circumvent an explicit treatment of γ_5 in certain cases
- Computed SM gauge coupling β-functions at 4 loops
- Results for a general gauge-Yukawa theory at order 4-3-2 coming soon [Davies, FH, Thomsen TBP]

Florian Herren		
What are β -functions?		
Why don't we know the SM β -functions at 4 loops? SM gauge coupling β -functions at		
	Packup	
	 Баскир	
4 loops Beyond the SM		
Backup		

Do the ambiguities lead to issues?

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

Ambiguous terms are unitary \rightarrow do not enter quantities invariant under flavour rotations like:

$$\operatorname{Tr}\left(Y_{u}^{\dagger}Y_{u}\right), \operatorname{Tr}\left(Y_{d}^{\dagger}Y_{d}\right), \dots$$

 \rightarrow not an issue when running observables

r

Higher-order β -functions in the Standard Model and

Do the ambiguities lead to issues?

Florian Herren

What are β -functions?

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β-functions at 4 loops

Beyond th SM

Backup

The key observation [FH, Thomsen '21]:

Poles are elements of the Lie-Algebra g_F of the flavour group of SM (2HDM) (G_F = U(3)⁵ × U(1(2)))

Do the ambiguities lead to issues?

Florian Herren

What are β -functions

Why don't we know the SM β -functions at 4 loops?

SM gauge coupling β -functions at 4 loops

Beyond th SM

Backup

The key observation [FH, Thomsen '21]:

$$\left(\frac{\partial}{\partial \ln \mu} + \left(\epsilon \beta_I^{(-1)} + \beta_I \right) \partial^I + \int d^d x \, \mathcal{J}_\beta \gamma^\beta{}_\alpha \frac{\delta}{\delta \mathcal{J}_\alpha} \right) \mathcal{W}$$

= $-\sum_{n=1}^{\infty} \frac{1}{\epsilon^n} \left(\beta_I^{(n)} \partial^I + \int d^d x \, \mathcal{J}_\beta \gamma^{(n)\beta}{}_\alpha \frac{\delta}{\delta \mathcal{J}_\alpha} \right) \mathcal{W}$
= 0 iff $\beta_I^{(n)} = -(\gamma^{(n)}g)_I$ with $\gamma^{(n)} \in \mathfrak{g}_F$

<ロト < 回 ト < 直 ト < 直 ト < 直 ト 三 の Q () 36 / 36