



# Update on ACF interconnect studies for novel pixel detector hybridization

CLICdp Collaboration meeting 01/10/2020

Mateus Vicente (EP-DT-TP)

# Work context

## and talk outline

Vertex detector with high demands for the pixel detector modules

- **CLICpix2** hybrid pixel detector
  - Pixel pitch of 25 μm x25 μm
    - Challenging and expensive solder bump bonding is a drawback
      - See talk by Morag Williams

CLICdp investigated alternative technologies to standard bump bonding

 Check: <u>Pixel detector hybridisation alternatives to bump-bonding</u> and <u>Anisotropic Conductive Film (ACF) developments</u>

Talk outline

- Bonding with Anisotropic Conductive Films
- First test-beam results with an ACF bonded Timepix3 assembly
  - + cross-section measurements
- First in-house under bump metallization trials at CERN





#### CLICpix2 + planar Si sensor 128 x 128 pixels 25 µm pixel pitch 3.2 x 3.2 mm<sup>2</sup>

mvicente@cern.ch - 01/10/20



Timepix3 + planar Si sensor 256 x 256 pixels 55 µm pixel pitch 14 x 14 mm<sup>2</sup>



# ACF – Anisotropic Conductive Film µ-particle bonding

- Multiple 3 µm polymer spheres plated with Ni-Au embedded in an adhesive film
  - µ-particles gets **captured** between the UBM in the sensor and ROC during thermocompression
    - Permanent attachment and an anisotropic electrical connection only in the direction of the compression
- **Conpart (AIDAinnova & EP-R&D** partner): Specialized in providing and characterizing the µ-particles









Bonded Timepix3/sensor pixels

#### ACF particle deformation

van der Pauw measurement

ROC pixel matrix w/ ACF

mvicente@cern.ch - 01/10/20

Polymer

core

HirAuconing

conpart

# Timepix3 ACF hybrid

#### First assembly tests – Test-beam at DESY

- □ The ACF sample was tested at DESY during one night with 5.4 GeV electrons
  - Recorded tracks coverage limited by telescope acceptance (Mimosa26 smaller than Timepix3)
    - Lack of hits around the center of the pixel matrix still to be understood
  - Recorded efficiency shows 390 pixels with 100% efficiency Analysis still on-going
    - Signal from surrounding pixels most likely coming from cross-talk
      - Cluster size map shows tracks going through unconnected pixels generating larger clusters w.r.t. pixels with 100% efficiency



# **Timepix3 ACF hybrid**

#### First assembly tests – Cross-section measurements



- After test-beam data acquisition, the sample was prepared for cross-section measurements
  - Assembly was removed from PCB
  - In order to locate the cross-section area within the chip (within mm precision (~20 pixels)), the efficiency map was inverted horizontally, printed with a 1:1 scale, and glued to the backside of the Timepix3
    - Assembly was embedded on a transparent resin



# Timepix3 ACF hybrid

#### First assembly tests – Cross-section measurements



- mvicente@cern.ch 01/10/20
- Cross-section around the first columns shows a few pixels with ACF particles slightly crushed
  - Higher bonding force/pressure would be desirable
- Cross-section around the last columns shows a gap between the pixels about 2 µm larger
  - ROC/sensor parallelism < 200 µrad
    - Electrical connection is only achieved when two particles are crushed together between UBM pads







## **ACFs available**



mvicente@cern.ch - 01/10/20

Random distribution of ACF particles in the film makes the capture rate vary significantly

#### Current film from vendor "D"

| Min. connection area $[\mu m^2]$         | 1,000 or 1,400           |  |
|------------------------------------------|--------------------------|--|
| Film thickness [µm]                      | 18                       |  |
| Particle diameter [μmΦ]                  | 3                        |  |
| Particle density [pcs./mm <sup>2</sup> ] | 35.000 (estimated)       |  |
| Particles configuration                  | Spread over filled layer |  |
| Bonding Temperature [°C]                 | 150 to 180               |  |
| Bonding Time [sec]                       | 5                        |  |
| Bonding Pressure [MPa]                   | 30 to 80                 |  |



\*Top

8

\*Particle configuration

## Started contact with new suppliers of 2D particle-aligned ACF Possible new film from vendor "H"

| Min. connection area [µm <sup>2</sup> ]  | 500 or 400               |  |
|------------------------------------------|--------------------------|--|
| Film thickness [µm]                      | 16                       |  |
| Particle diameter [μmΦ]                  | 3.5                      |  |
| Particle density [pcs./mm <sup>2</sup> ] | 23.000                   |  |
| Particles configuration*                 | Aligned on layer surface |  |
| Bonding Temperature [°C]                 | 130 to 170               |  |
| Bonding Time [sec]                       | 5                        |  |
| Bonding Pressure [MPa]                   | 40 to 90                 |  |
|                                          |                          |  |



\*Particle configuration

#### Opportunity to have a 3D particle aligned ACF also from vendor "D" under investigation





\*100 MPa  $\sim$  1000 kgf/cm² 256x256 \* 320  $\mu m^2 \sim$  0.20 cm² (Timepix3) 128x128 \* 200  $\mu m^2 \sim$  0.03 cm² (CLICpix2)

# **UBM for ACF bonding**

# the EN(EP)IG plating process

EN(EP)IG - Electroless Nickel (Electroless Palladium) Immersion Gold

- Wet chemical deposition of Ni (Pd) Au for the under bump metallization
  - Self-patterning on exposed metal contacts under openings in the passivation layer
    - Maskless process → lower cost
  - Industrial/commercial used process requires full wafer processing
    - Tests of in-house single-chip plating process started at CERN with CLICpix2 chip and sensor



Sensor pixel matrix with ENEPIG



Cross-section of ENEPIG pad



CLICpix2 pixels on a bare chip



ENIG pad





CLICpix2 pixels on a plated chip

# **UBM for ACF CLICpix2 bonding**

## the EN(EP)IG plating process at CERN

With the help of CERN EP-DT-EF (Engineering Facilities) – Thank you Rui and Ercan!

- Initial tests with 4 bad quality sensors and 2 CLICpix2 chips, within 4 different platting trials
  - Simple chip holder with Kapton tape
  - All plating process is done manually and time controlled
  - **3** main baths: Zn for Al surface activation; Ni for the UBM pad bulk; Au for Ni oxidization protection
    - Baths are kept on a controlled temperature and are chemically controlled on a daily basis



Chips on sample holder

ENIG plating line and Ercan

Zn activation bath

Ni plating bath

Au plating bath

# UBM for ACF CLICpix2 bonding

the EN(EP)IG plating process at CERN



mvicente@cern.ch - 01/10/20

- **D** First test with strong initial cleaning using a brush and phosphorus based solution
  - double zincation process and 20 minutes on the Ni bath, + 10 min Au plating
    - sensor plating delaminated with an adhesive tape puling test, most likely due to aggressive steps before the Ni bath, poor quality of sensor metal layer, and thin/negligible passivation layer (500-700 nm thermal oxide)
- Second sensor plating test with softer surface cleaning
  - + single Zn bath and 15 minutes Ni bath, + 10 min Au plating
    - → Successful tape test without any delamination, but overgrown UBM pad shorts all pixels together



Bare CLICpix2 sensor pixel matrix



First CLICpix2 sensor ENIG plating



Second sensor ENIG plating trial

# **UBM for ACF CLICpix2 bonding** the EN(EP)IG plating process at CERN

The bad sensor plating results are due to the lack of a thick passivation protection on top of of the metal layer

- Ni is growing unconstrained through the remaining passivation layer and shorts the pixel at their bottom part
- For the 3<sup>rd</sup> and 4<sup>th</sup> trial we included the CLICpix2 chip, knowing it has a better passivation
- Process finally used

- 20 s brush cleaning on P based solution
- 10 s Zn activation
- 7 and 3 min Ni plating
- 10 min Au plating
  - Intermediate cleaning steps with cold and demineralized water
- Successful CLICpix2 plating and no short for the sensor chip with 3 min Ni plating (only on the pixel matrix)





# **UBM for ACF CLICpix2 bonding** the EN(EP)IG plating process at CERN



mvicente@cern.ch - 01/10/20

The bad sensor plating results are due to the lack of a thick passivation protection on top of of the metal layer

- Ni is growing unconstrained through the remaining passivation layer and shorts the pixel at their bottom part
- For the 3<sup>rd</sup> and 4<sup>th</sup> trial we included the CLICpix2 chip, knowing it has a better passivation
- Process finally used

- 20 s brush cleaning on P based solution
- 10 s Zn activation
- 7 and 3 min Ni plating
- 10 min Au plating
  - Intermediate cleaning steps with cold and demineralized water
- Successful CLICpix2 plating and no short for the sensor chip with 3 min Ni plating (only on the pixel matrix)





mvicente@cern.ch - 01/10/20

#### Conclusions

- Hybridization with anisotropic conductive films
  - Micro-bumps embedded in an adhesive film
    - Particles trapped between the sensor and ROC creates an electrical contact only in the direction of the compression
  - In-house UBM and flip-chip process
    - Maskless ENIG deposition started using the CLICpix2 chip
      - Deposition characterization measurements to follow soon, together with first CLICpix2/sensor ACF assemblies
- First tests were done with the Timepix3 chip
  - □ First assembly for proof-of-concept with motivating results
    - Uniformity of ACF connection to be further investigated/optimized
      - Higher bonding force/pressure can be achieved (up to 400 kg)
        - 100 kg might be already sufficient for the smaller CLICpix2 chip ( $\sim$ 5% of area  $\rightarrow$  20x higher pressure)
      - Flip-chip planarity calibration
        - Possible to achieve planarity of 10s of µrads (100s of nm gap increase over 10s of mm)
        - Planarity check of UBM pads to follow with interferometry measurements
    - Cross-talk still needs to be understood

#### **ACF** bonding characterization Conpart test-structure W/

- Test structure with 5 matrices of pads with different sizes
  - Resistance scales with the **pad size** and film **particle count** 
    - Acceptable resistance in hybrid pixel detectors is  $\lesssim 100 \Omega$
    - Timepix3 pixel contact pad is ~320 µm<sup>2</sup>; CLICpix2 is ~200 µm<sup>2</sup>





Test-structure pad with ACF particles captured





# In-house Flip-chip at Geneva University ACCµRA<sup>™</sup>100 device bonder





mvicente@cern.ch - 01/10/20

- Semi-automatic flip-chip bonder, co-financed by CERN
  - Substrates up to 100 mm x 100 mm and chips up to 22 mm
    - Chip-to-chip or chip-to-wafer bonding

- Alignment stage resolutions: 0.015 μm in XY; 1 μrad in θ
  - Post-bonding accuracy 0.5-1 μm achieved and planarity < 100's μrad</p>
- Heating up to 400 °C and force applied by bonding arm up to 100 kg
- Dispenser system allows for automated dispense of glue
  - Additional options for + thermosonic bonding + reflow + UV curing...





# Hybridization with ACF

flip-chip process

- Film thickness  $\sim 18 \ \mu m$ , curing starts at  $\sim 100 \ C$
- Film is perforated for better film transfer to the ASIC
- Pre-bonding (film transfer): 100 kg at 80 °C (10 seconds)
- Bonding: 100 kg and 80 °C for 500s, and final curing at 150 °C for 18s



TPX3 to TPX3 bonding stage with ACF in between

TPX3 on bonding head and ACF on chuck

ACF transfer to ASIC

Flip-chip at Geneva University







UNIVERSITÉ DE GENÈVE

mvicente@cern.ch - 01/10/20







# **Flip-chip calibration**

- ToT  $\sim$  Capacitance  $\sim$  distance between pixel pads
  - Gradient seen in some CCPD samples
  - Bad parallelism between HV-CMOS sensor and read-out ASIC









## Achievable flip-chip planarity



18

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COLORED IN HERITECTION COLORED             | 24.40 mm                                           |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peri                                       | phery                                              |                       |
| COLORAD DE COLORAD DE COLORADO | Analog matrix 2                            | Analog matrix 1                                    | CONTRACTOR OF TAXABLE |
| CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sub-matrix 1<br>Extra DPTUB<br>+ high gain | Sub-matrix 1<br>Extra DPTUB<br>+ ELT               | NMOS                  |
| monolithic r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sub-matrix 2<br>No DPTUB<br>+ high gain    | Sub-matrix 2<br>No DPTUB<br>+ ELT                  | monolithic r          |
| natrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sub-matrix 3<br>No DPTUB<br>+ Iow gain     | Sub-matrix 3<br>No DPTUB<br>+ Linear<br>transistor | natrix                |







mvicente@cern.ch - 01/10/20

**Figure 7.** Left: deposition of epoxy on the H35DEMO matrix by the automatic glue time-pressure dispenser of the Acc $\mu$ ra 100. Middle: glue (partially) deposited on double pixel column. Right: 100  $\mu$ mthin H35DEMO-FE-I4 assembly on PCB.

**Figure 8**. Thickness of the glue layer along the chip edge at two locations along the chip at 2 cm distance showing good parallelism, less than 100 nm difference measured with an optical microscope, from left to right.

Figure 9. Combined ToT map from analog matrix 1 (left) and 2 (right). The lower threshold on the second analog matrix is due to the higher FE-I4 threshold (3000 e), comparing with the 2000 ethreshold for the first analog matrix, during data acquisition.

## Non-destructive test trials

#### 500 nm nano-tomography





#### Non-destructive test trials

#### nano-laminography

20



