

DESY Testbeam Results and More:

Timing Measurements, ATLASpix Rotations, New Sensors

CLICdp Collaboration Meeting CERN, October 1st, 2020

Jens Kröger Heidelberg University & CERN

Test Beam Setup at DESY

- AIDA TLU
- 2-3 scintillators + PMTs
- 6 Mimosa26 planes
- Timepix3
- DUT

- → provides global clock (time sync.)
- + triggers Mimosa Readout
- → input to TLU
- → good spatial resolution, "no" timing (2x 115µs bins rolling shutter)
- → nanosecond track timestamps
- → CLICpix2, ATLASpix, CLICTD

Reference Time Measurement

AIDA TLU:

- coincidence from 2-3 scintillators
 - coarse (25ns bins)
 - fine (780ps bins) for each scintillator
- "precise time = coarse + fine"
 - including measured delays (cables, TOF, ...)
- → 2 scintillators: 600 ps
- → 3 scintillators: 450 ps

Note:

- scintillators not tuned (potential for more)!
- repeat analysis for all test-beams (different scint.)

Timepix3:

- applied lab calibration by Florian Pitters
 ⇒ see CLICdp-Pub-2019-001
- time resolution ~ 1.1 ns
 - unfolded TLU resolution
 - cross-validated analysis with SPS data (2015)
- → fully sufficient for all current DUTs
- + validate TLU performance
- → for highest timing resolution:
- use Timepix3 for track-by-track timestamp
- replace by nearest TLU timestamp

sensor dimensions:

- 25 columns (130 μm pitch)
- (40 µm pitch) 400 rows

rotation in column direction

Use case in tracking detector:

- rotation in column direction
 - forward tracks
- rotations in row direction
 - low p, tracks (more curled)

rotation in row direction

Rotation Analysis Objectives

has not been done before

- cluster formation
- depletion depth
- timing performance
- efficiency (?)

But: rotations require **larger** telescope spacing → **reduced** tracking precision

- rotation in column direction
- cluster width column
 → grows significantly
- cluster width row
 → grows slightly (angled tracks)

cluster ToT and seed pixel ToT

→ clear angle dependence

no tracking yet! alignment work-in-progress

- rotation in row direction
- cluster width column
 → grows slightly (angled tracks)
- cluster width row
 → grows significantly

cluster ToT and seed pixel ToT

→ clear angle dependence

no tracking yet! alignment work-in-progress

Event Displays at 90° Rotations

What's next after ATLASpix?

Reticle map of Run2020

- TSI engineering run submitted in **May 2020** → called "Run2020"
- 8 new similar chips (+ 8 others)
 - for CLIC, LHCb, PANDA etc.
 - based on ATLASpix(3) design
- each sensor:
 - same size (\sim 5x5 mm²)
 - same periphery and readout
- → 1 readout system:
 - directly compare 8 sensors

8 Similar Sensors

- same: size, periphery, readout, pinout
- different: comparators, amplifiers
- v1: NMOS comparator
 - well-known (safe option)
- v2: CMOS comparator
 - better performance expected
 - but: manufacturing risk due to additional deep p-well
- v3: comparator in periphery
 - very fast (only for large pixels)
 - allows daisy-chain readout

- V*:
 - 29 x 124 pixels
 - 25 x 165 μm²
- V* Var: variable pixel size
 - $50 \times 165 \, \mu m^2$ and
 - 100 x 165 μm²
- *_hidr: high dynamic range
 - 2 comparators:
 - one fast for timestamp
 - one slow for ToT

Reticle map of Run2020

small pixel HV-MAPS:

- 25 x 35 μm²
- CLIC Vertex Detector?

Which are relevant for CLIC?

Reminder

CLIC tracker requirements

- spatial resolution:
 - ~ 7 μm (transversal)
- max. granularity:
 - 1-10 mm pixel size (longitudinal)

NMOS

comp.

CMOS

comp.

distributed

comp.

ATLASpix: 40 x 130 μm²

- transversal: 40 μ m/ $\sqrt{12}$ ~ 11.5 μ m (binary resolution)
- longitudinal: 130 μm << 1 mm

New sensors: 25 x 165 μm²

- transversal: 25 μ m/ $\sqrt{12}$ ~ 7.2 μ m (binary resolution)
- longitudinal: 165 μm << 1 mm

relevant for CLIC:

3: V2-NMOS (II.N)

amp:

DAC	PMOS	NMOS	
	25 x 165	25 x 165	
	comp: CMOS source: dPLoad cascode: circ		

5: V3-NMOS (III.NS)

DAC	amp: PMOS	amp: NMOS
8,000,010	25 x 165	25 x 165
	comp: dis	nt wires

LHCb "MightyPix"

2: V1-VSIZE (I.V) 100 x 165 PMOS std 8u DS CC 50 x 165 PMOS std 8u DS CC

comp: NMOS

4: V2-VSIZE (II.V)

100	x 16	5 PMC	os
std	8u	DS	СС
50	x 16	5 PMC	os
std	8u	DS	CC
com	ip: CN	/OS	

6: V3-VSIZE (III.V)

100	x 16	5 PMC	os
std	8u	DS	CC
50	x 16	5 PMC	os
std	8u	DS	CC
com	p: dis	tribute	ed

LHCb/PANDA

Standard design:

4µ, single source, linear cascode

Legend:

std = standard

DS = double source

CC = circular cascode

7: V2-VSIZE (II.H)

- 2 comparators:
- one slow one fast
- → high dyn. range (hidr)
- provides high energy & time resolution

8: V3-VSIZE (III.H)

100 x 165 PMOS std 8u DS CC 50 x 165 PMOS std 8u DS CC comp: 2 x distributed

Timeline + Status

- submission in May 2020
- wafers received in September 2020
- 1 unthinned wafer diced at KIT (Karlsruhe)
- started testing in Heidelberg
- other wafers:
 thinning + dicing at Optim (France)
 → delayed by COVID
- first LHCb test-beam at DESY in 3 weeks
 - support by Mu3e group (Heidelberg)
 - support by me for reconstruction (Corryvreckan)

Wafer Picking in Karlsruhe

Summary:

Reference Time

quantified precisely now

- AIDA TLU: 450 – 600 ps

Timepix3: 1.1ns

ATLASpix Rotation Scans

- first sanity checks
 → good data quality
- analysis ongoing
 - → interesting physics results expected

Outlook:

New Sensors

- based on ATLASpix design
- produced by TSI, testing has begun in HD
- next: integration in Caribou

Acknowledgment:

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

Backup

in case there are some questions...

Run2020: More details on the sensors

relevant for CLIC tracker: -

ATLASpix: $40 \times 130 \mu m^2$

25 x 165 μm² now:

> NMOS comp.

- each pixel contains:
 - n-well (electrode)
 - charge-sensitive amplifier (CSA)
 - output transistor
 - TDAC (not all matrices), 3 tune + 1 enable
 - injection switch + capacitor

LHCb

2: V1-VSIZE (I.V) 100 x 165 PMOS std 8u DS CC 50 x 165 PMOS std 8u DS CC comp: NMOS

4: V2-VSIZE (II.V)

l	100 x 165 PMOS				
l	std	8u	DS	СС	
ſ	50 x 165 PMOS				
١	std	8u	DS	СС	
Ì	com	p: CN	IOS		

6: V3-VSIZE (III.V)

100	x 165	РМС	S
std	8u	DS	СС
50 x 165 PMOS			
std	8u	DS	CC

LHCb/PANDA

Standard design: 4µ, single source, linear cascode

Legend:

std = standard

DS = double source

CC = circular cascode

- one slow - one fast
- → high dyn. range (hidr)

2 comparators:

provides high energy & time resolution

8: V3-VSIZE (III.H)

Run2020: all chips on the reticle

Pros and Cons of the Different Designs

Comparators

NMOS:

- + standard used so far
- high current consumption
- larger delay than CMOS
- additional 2.1V
- reduced output amplitude
- large area, large capacitance

• CMOS:

- + faster than NMOS at same current
- + smaller
- + more radiation tolerant (?)
- additional deep p-well (1st time for TSI) → some risk

distributed

- + very small capacitance in pixel
- + fast, low power
- + no additional p-well
- 2 lines per pixel → only feasible for larger pixels

Amplifiers

PMOS:

- + lower noise at high current
- + smaller timewalk
- + more suitable for larger pixels (large capacitance)

NMOS:

- + better timewalk at small currents
- + more suitable for smaller pixels (small capacitance)
- some risk: more flicker noise + less experience

CMOS:

+ for very low bias current (like at CEPC)

larger rotation → cover **all columns** on DUT with **fewer rows** of reference detector (rotated by 90°)

• 2D correlations for rotation in column direction

as expected: no significant effect for rows

2D correlations for rotation in row direction

as expected: no significant effect for columns

2D correlations for rotation in row direction

larger rotation → cover all rows on DUT with fewer columns of reference detector (rotated by 90°)

