

CLICTD TEST-BEAM RESULTS

Katharina Dort

CLICdp Collaboration Meeting

01/10/2020

CLICTD TRACKER CHIP

- CLICTD (180 nm CMOS imaging process) was designed in two process variants
- Gap in the n-type implant was introduced in one spatial dimension to speed up charge collection
- Epitaxial layer: 30 um
- Bias voltage applied to substrate and p-wells, best performance expected at -6V/-6V
- Channel pitch: 300 μm x 30 μm (16x128 channels)
- Sub-pixel pitch: 37.5 μm x 30.0 μm
- Analogue front-end of 8 sub-pixels are grouped together in one digital front-end (= detector channel)
- Frame-based readout with 40 MHz
- 8-bit ToA (10 ns ToA bins) + 5-bit ToT (combined ToA/ ToT for every 8 sub-pixels in 300µm dimension)

CLICTD TEST-BEAM MEASUREMENTS JULY/AUGUST 2020

Very successful test-beam periods where we tested various assemblies (different thicknesses, different processes) at different bias voltages, different thresholds and different rotation angles -> huge parameter space

Effect of different bias voltages

- Sensor at -3V/-3V and minimum threshold
- Threshold scans for -3V / -3V

Comparison of process variants

- Nominal data for an assembly with and without gap in the n-layer at the same threshold
- Threshold scans for both process variants

Thinned assemblies

 Nominal data and threshold scans for assemblies thinned down to 50 um and 100 um of both processes variants

Rotation scans

 Rotation data (0 deg up to 90 deg) for various assemblies, including thinned assemblies around both rotation axes

SPATIAL RESOLUTION WITH ETA CORRECTION

- Cluster position for multi-pixel clusters first determined with charge-weighted centre-of-gravity algorithm (assumes linear charge sharing)
- The eta correction is a data-driven method to take contributions from non-linear charge sharing into account
- Eta distribution is defined as in-pixel track position as a function of in-pixel cluster position

- Only cluster position in row direction is corrected with eta algorithm (in column direction sub-pixel scheme requires modified correction method)
- RMS of 3 sigma (= 99.7%) of entire residual distribution (also 1 pixel cluster): 5.1 um (before correction: 5.7 um) telescope resolution (= 1.78 um) unfolded
- Requirements for CLIC tracker: 7 um

SPATIAL RESOLUTION ROW

- Spatial resolution worsens with increasing threshold due to decreasing cluster size
- No difference between process variants because the gap is only introduced in column direction
- Also for high thresholds, resolution better than binary resolution of 8.7 um Binary resolution: $30\mu\text{m}/\sqrt{12} = 8.7\mu\text{m}$

SPATIAL RESOLUTION COLUMN

No stringent requirements for CLIC tracker in this spatial dimension

- No eta correction applied
- Less charge sharing due to gap in the n-implant leads to a smaller cluster size and worse spatial resolution
- Resolution gets slightly better at very high thresholds due to shrinking effective pixel size (decreasing efficiency at pixel edges)
- Also for high thresholds, resolution better than binary resolution of 10.8 um Binary resolution: $37.5 \mu m/\sqrt{12} = 10.8 \mu m$

ACTIVE DEPTH FROM ROTATION SCANS

Geometrical model:

$$size_{x} = \frac{d_{depth} \cdot tan(\alpha)}{pitch_{x}}$$

- Cluster size increases for inclined particle tracks since energy is deposited in several adjacent pixel cells
- Active depth can be estimated by analysis of rotation-dependent cluster size
- This model neglects contributions from diffusion and sub-threshold effects

Rotation performed around row axis

IN-PIXEL CLUSTER SIZE IN X

CERN

In-pixel plots illustrate that cluster size at low angles is still dominated by charge sharing via diffusion

Cluster column size

ESTIMATION OF ACTIVE DEPTH

Nominal thickness (300 um)

Thickness: 50 um

- Active depth from fit: (30.7 + 0.3 3.4) um
- Active depth from fit: (29.8 + 0.9 1.0) um
- For now, uncertainties estimated by removing first/last point and fitting again
- Thickness of epitaxial layer: 30 um, depletion depth (TCAD): 23 um
- As expected, no difference in active depth for assemblies with nominal thickness and thinned ones
- Contribution of charge sharing via diffusion and sub-threshold effects will be investigated in simulation

EFFICIENCY STUDIES: THINNED SENSORS

• Similar efficient operation window for thinned assemblies supports the notion that the thinning does not alter the active depth

OUTLOOK

- Paper about initial CLICTD test-beam results is in preparation
- Analysis of parameter scans turned out to be a very time-consuming task since we took data at many different thresholds

 Currently working on the correct treatment of the ToT calibration

Contents	
1 Introduction	1
2 The CLICTD chip	1
3 Test beam and analysis setup	2
4 Configurations	2
5 Performance at nominal conditions	2
6 Parameter scans	4
7 Summary & Outlook	4

2. The CLICTD chip

1. Introduction

CLICTD features a matrix of 16 x 128 detection channels with a size of 300 µm × 30 µm. In the 300 µm dimension, the channels are segmented into eight sub-pixels, each with its own collection diode and analogue front-end. The analogue information from the eight sub-pixels is combined in the digital front-end of one channel. This segmentation

SUMMARY / OUTLOOK

- CLICTD spatial resolution was found to be 5.1 um after eta correction (Fulfils CLIC tracker requirements of < 7 um)
- Estimation of active depth from simple geometrical model yields ~30 um for nominal thickness (300 um) and thinned assemblies (down to 50 um)
 - In agreement with expectations from sensor layout and 3D TCAD simulations
- CLICTD test-beam paper in preparation

Thank you very much!

Part of the measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany)

