

cern.ch/allpix-squared

The Allpix Squared Framework: New Developments

A Brief Overview of New Features, Releases and Plans

Simon Spannagel, DESY

CLICdp Collaboration Meeting 01 October 2020

Outline

- Introduction
- Recently Added Features
 - Digitizing Pulses: The CSADigitizer Module
 - ProjectionPropagation:
 Diffuse Before Project
 - Passive Material: Things in the Beamline
 - Many new Simulation Modules

- Simulations
 - A Look at Transient Monte Carlo Simulations
 - Some Outside-HEP Application Highlights
- Outlook: Things Underway
 - Google Season of Docs
 - Multithreading Once More
 - Features currently under Development

Introduction: Silicon Detectors Monte Carlo Simulation

ap

Introduction: The Allpix² Framework

• Silicon Pixel Detector MC simulation software, that

...provides a **modular tool kit** to simulate signal formation in silicon detectors

... implements parametrized **detector models**

... facilitates usage of precise electric fields

- Focus on usability & stability
 - Provide documentation (170p. user manual)
 - **Regular patch & feature releases,** 6 feature releases, 18 patch releases in 3.5 years
 - Community-driven, with by now more than 30 contributors

Recently Added Features Releases 1.5 & 1.6

Digitizing Pulses: CSADigitizer

- Implementation of charge-sensitive amplifier with Krummenacher feedback, configuration via:
 - Rise time, feedback time & capacitance "simple"
 - Detector cap., Krum. current, transconductance "csa"
- Integrated ToT / ToA sampling on different clocks


```
[CSADigitizer]
model = "simple"
feedback_capacitance = 5e-15C/V
rise_time_constant = 1e-9s
feedback_time_constant = 10e-9 s
integration_time = 0.5e-6s
threshold = 10e-3V
clock_bin_toa = 1.5625ns
clock_bin_tot = 25.0ns
```


Digitizing Pulses: CSADigitizer Example

- Single pulse of CLICTD, modified process, bias -6V/-6V at p-wells/substrate
- 5.4 GeV electron beam
- Electric field & weighting potential imported from electrostatic TCAD
- CSADigitizer with *simple* model and default parameters:
 - Rise time: 1ns
 - Feedback: 10ns

ProjectionPropagation: Diffuse Before Project

- ProjectionPropagation simplest & fastest charge transport module
 - Calculate total drift time, move to sensor surface, smear for diffusion
- Problem: does not work in partially-depleted sensors (e.g. CMOS)
- Solution: diffuse charge carriers in zero-field region before projection GenericPropagation ProjectionProp. (diffuse ON) ProjectionProp. (diffuse OFF)

Better description of MIMOSA26, see new example!

01/10/2020

Paul Schütze

Passive Materials: Things in the Beamline

Paul Schütze

- Added possibility to define passive material in the geometry Koen van den Brandt
- Different shapes, automatic merging of multiple shapes / hierarchy resolution
- Completely transparent to core framework through new parameter "role"

Many New Simulation Modules

DESY.

- CSADigitizer: *covered before*
- DepositionPointCharge:
 - Deposit energy at a single point or along line, e.g. for comparison with TCAD
- DepositionReader
 - Generate energy depositions externally (e.g. full-experiment G4 simulation)
 - Read deposited energy from file and dispatch for configured detectors
- DatabaseWriter (Enrico Jr. Schioppa)
 - Write simulation result directly into PostgreSQL databases

Transient MC Simulations

Magdalena Munker

- Goal: understand timing performance of CMOS prototypes, predict timing performance of future CMOS detectors
- Transient TCAD simulations provide detailed insight into signal formation, but are computationally heavy
 - \rightarrow use MC simulations via Shockley-Ramo theorem

Transient MC Simulation: Validation

ap

- Comparison: TCAD transient / Allpix Squared transient + TCAD static
 - Comparing different CMOS sensor designs in worst-case scenario (pixel corner)

Transient MC Simulations: Scaling Out

- Validated MC+TCAD simulation allows:
 - Random sampling of position in pixel cell
 - Too time-consuming in TCAD
 - Obtain full picture, not individual scenarios
 - Usage of Geant4 for realistic performance
 - Landau fluctuations
 - Secondaries
- Compatibility should be validated for every design
- Have seen some deviations in extreme cases,
 e.g. doping-dependent mobility in TCAD etc

Some Outside-HEP Application Highlights

- Outside particle physics
 - NASA / Space Radiation Analysis Group
 ISS radiation monitor simulations
 - Kansas State University
 Silicon neutron detector with LiF trenches
- Education
 - EDIT Detector School & Bonn-Cologne Graduate School
 Lab exercise on resolution of pixel detectors
 - Beam Line 4 Schools 2019
 - Simulation of beam telescope with absorbers
 - Uni Dortmund
 - Bachelor thesis on time-of-flight measurements

Outlook

Things Underway

odule { end class ModuleManager; and class Messenger;

> f Base constructor for unique modules n config Configuration for this module

Module(Configuration& config);

Base constructor for detector modules config Configuration for this module detector Detector bound to this module g Detector modules should not forget to forward their detector to the

\ref InvalidModuleStateException will be raised if the module failed to su

ule(Configuration& config, std::shared_ptr<Detector> detector);

ential virtual destructor.

s all delegates linked to this module

();

a module is not allowed

e&) = delete; const Module&) = delete;

ve behaviour (not possible with references)

ept = delete; le&&) noexcept = delete;

ap²

Google Season of Docs

... is *not* Google Summer of Code!

- Scholarship for experienced technical writers to work on documentation of open source projects
- Allpix Squared is participating through HEP Software Foundation
- Technical Writer Sabita Rao started her work on September 14
 - Goal: revision of online appearance
 - Focus on integration of online user manual
 - Improvements to tutorials/examples
- Three-month project
- Mentorship by Paul Schütze, me

Multithreading – Once More

- Fully parallel event processing already in preparation since 2018
- Overcame some road blocks in the past months
 - Full random number distribution audit now possible to trace PRNG usage
 - Wrapping of ROOT's Tref removes bottleneck, allows scaling to 100+ cores with ~100% utilization
- Still a few issues to be solved
 - Some memory handling
 - TProcessID assignment to objects
 - Some rare race conditions to be solved
- Getting into very good shape!

Time

S. Spannagel - The Allpix Squared Framework: New Developments

Features Currently Under Development/Validation

- Charge multiplication / gain (Florian Pitters, HEPHY Vienna)
 - Implementations of Oeverstraten and Massey models
 - Comparison with TCAD simulations of LGADs underway
- Hexagonal pixels (Tasneem Saleem, Paco Iguaz Gutierrez, Synchrotron SOLEIL)
 - Mapping of charge carriers from sensor onto hexagonal front-end pixels
 - Working prototype, framework integration pending
- Trapping / radiation damage (Sinuo Zhang, Uni Bonn)
- Sensor implants for 3D sensor studies (me)

In a nutshell...

01/10/2020

S. Spannagel - The Allpix Squared Framework: New Developments

Summary

- Allpix Squared continues to be developed & used by broad community
- Many new features added recently
 - Transient simulations, charge-sensitive amplifier
 - Better treatment of partially depleted sensors in fast simulation
 - Passive materials can be added to geometry
 - Many new modules
- First detailed looks on transient simulations of CMOS sensors
- Several ongoing projects (GSDocs, Multithreading, ...)

Allpix Squared Resources

Website

https://cern.ch/allpix-squared

Repository

https://gitlab.cern.ch/allpix-squared/allpix-squared

Docker Images

https://gitlab.cern.ch/allpix-squared/allpix-squared/container_registry

User Forum:

https://cern.ch/allpix-squared-forum/

Mailing Lists:

allpix-squared-users https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10262858

allpix-squared-developers https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10273730

User Manual:

https://cern.ch/allpix-squared/usermanual/allpix-manual.pdf

