or Future Colliders

KEY4HEP & EDM4HEP -
Common Software

CLIC Detector & Physics autumn collaboration meeting - 2020/10/02
Valentin Volkl (CERN), Placido Fernandez (CERN), Andre Sailer (CERN)

Table of Contents

e Key4HEP - Introduction and motivation

e EDM4HEP - Common Data Model Status
e Common Gaudi Framework Status

e Software Infrastructure and Organisation

Packaging: Spack for Key4HEP

e GaudiMarlinWrapper

Key4HEP Motivation

e Future detector studies critically rely on well-maintained software stacks to
model detector concepts and to understand a detector’s limitations and
physics reach

e \We have a scattered landscape of specific software tools on the one hand
and integrated frameworks tailored for a specific experiment on the other
hand

e Aim at a low-maintenance common stack for FCC, ILC/CLIC, CEPC with
ready to use “plug-ins” to develop detector concepts

e Reached consensus among all communities for future colliders to develop a
common turnkey software stack at recent Future Collider Software
Workshop

e |dentified as an important project in the CERN EP R&D initiative

https://agenda.infn.it/event/19047/
https://agenda.infn.it/event/19047/
https://cds.cern.ch/record/2649646

EDM4HEP - Introduction

Browser |File Edit View Options Tool

Files ‘
84 Y @ Draw Option: v
(Qroot -
e Event Data Model: (IPRODF Sessions
. 3R00T Fil =
o Describes structure of HEP Data: E}»cjgmc_ll();z%.zz.root
o definitions of objects and how they are grouped E'--_'drr;wi:iN b
----- runiumber
o technical implementation of persistency and processing || . § eventhunber
e (Can be as simple as “Branch names in ROOT file” jj;;g;:;j;:::“mber
o But more sophisticated solutionscan:. |l Ppvpn
o id licati ing interface for HEP | e
provide an application programming interface for HEP || § scalsFactor_PILELP
software - scaleFactor_ELE
- scaleFactor_HUON

o aid developers in writing more efficient code Yy scaleFactor_BTAG
o enable collaboration

3% scaleFactor_TRIGGER
% scaleFactor_JVFSF

Filters | ALl Files (*,%)]

Code Reference under https://cern.ch/edm4hep

Relation Diagram

EDM4hep DataModel Overview

RawCalorimeterHit. ——
RawCalorimeterHit ParticlelD

MCRecoParticleAdsociation

. > TrackerHit < <=

TPCHit . o
B econstruction

Monte Carlo Raw Data Digitization Analysis

https://cern.ch/edm4hep

Applications: DDSIim

DDSim (Standalone Geant4
simulation tool in DD4hep)
can now produce EDM4hep
files:

source /cvmfs/sw.hsf.org/key4hep/setup.sh

ddsim \
—-—compactFile ${DD4hepINSTALL}/DDDetectors/compact/SiD.xml \
—-—gun.particle pi+ \
—-—part.userParticleHandler="" \
—-—outputFile output_edm4hep.root

Application: DelphesEDM4HEP

Second Plugin for Delphes output recently added:

¢ DelphesPythia8_EDM4HEP ¢ DelphesHepMC_EDM4HEP
¢ DelphesSTDHEP_EDM4HEP ¢ DelphesROOT_EDM4HEP

Adds executables like standard Delphes, outputting directly to
EDM4HEP. inv. mass - jets

hjetmass
Entries 4443
Mean 106
Std Dev 23.56

Higgs Recoil Analysis 260

example: Link 200

150
100

50

lIIIlIIIIIIIIIIIIII]IIIIIIII

1 1 1 1
120 140

o
i

1 1 1 { | 1 |- |- 1 1
20 40 60 80 100

o

https://github.com/key4hep/EDM4hep/blob/master/plugins/delphes/examples/higgs_recoil_plots.C

Key4HEP Framework

Meanwhile, developments on core functionality of the Gaudi-based
framework:

o K4FWCore:
o Data Service for Podio Collections
o Qverlay for backgrounds
o https://qgithub.com/key4hep/K4FWCore
e K4-project-template
o Template repository showing how to build new components on
top of the core Key4HEP framework
o https://github.com/key4hep/k4-project-template

e Ongoing Work to collaborate more with Gaudi ecosystem (Gaussino)
e Add ACTS components

https://github.com/key4hep/K4FWCore
https://github.com/key4hep/k4-project-template

FCCSW - Key4HEP transition

e Already Gaudi- and Podio based, so little technical challenges
gaudi_project(GMPWrapper voOrl
USE K4FWCore vOr2

USE Gaudi v34ro0)

e Event model has a fairly straightforward correspondence
e Still: Many files need to be touched

o Not yet clear if radical or soft (converter-based) update preferred
e Biggest hurdle: touching all components brings technical debts to light.

Software Infrastructure

e Regular meetings
o https://indico.cern.ch/category/11461/

e Docpages
o https://cern.ch/key4hep (main documentation site))
o https://cern.ch/edm4hep (doxygen code reference)

» Key4HEP 0 Edit on GitHub

Key4HEP

Key4HEP

Contents:

o Getting started with Key4HEP software
o Setting up the Key4HEP Software Stack
= Using central installations on cvmfs
= Using Virtual Machines or Docker containers
o Using Spack to build Key4HEP software
o Using a central buildcache
o Spack Usage and Further Technical Topics
o Concretizing before Installation
= Working around spack concretizer problems
o System Dependencies
o Target Architectures

e Modern CMake Configuration

e Automated Builds and Continuous Integration
o Use of SPACK package manager

e Distribution via CVMFS
“Valentin Volkl- KevdHEP & EDM4hen g A

https://indico.cern.ch/category/11461/
https://cern.ch/key4hep
https://cern.ch/edm4hep

Spack for Key4HEP

e Spack is a package manager
o Does not replace CMake, Autotools, ...
o Comparable to apt, yum, homebrew, ...
o But not tied to operating system
o And no central repository for binaries!

e Originally written for/by HPC community
o Emphasis on dealing with multiple configurations of the same packages
o Different versions, compilers, external library versions ...
o ... may coexist on the same system
o Spec: Syntax to describe package version configuration and dependencies

e Repository added with Key4HEP package recipes

git clone https://github.com/spack/spack.git

git clone https://github.com/key4hep/k4-spack.git
source spack/share/spack/setup-env.sh

spack repo add k4-spack

install the meta-package for the key4hep-stack

spack install key4hep-stack

http://spack.io

Some Experiences

e Collaboration with Spack developers fairly smooth

o Some HEP colleagues have merging rights on the spack repo
o Some HEP packages actively maintain their package recipes (ACTS!)

e Rapid pace of changes in upstream repository
o Stable builds will need to pin the spack version used.
o But miss out on the latest features.

e Spack developers very responsive, but roadmap sometimes a bit
opaque:
o The concretizer developments have been much delayed

e The recipes are very nice to persistify build system know-how

conflicts ("%gcc@8.3.1",
msg="There are known issues with compilers from redhat's devtoolsets" \

"which are therefore not supported." \
"See https://root-forum.cern.ch/t/devtoolset-gcc-toolset-compatibility/38286")

e Parallel builds not yet attempted

Spack: use for developers

e Use in developing software is pushing spack’s intended purpose, but

possible. Options:

o Spack can build from branches.
o Build can be done “as usual” after spack load / spack build-env
o spack dev-build compiles local code according to the spack recipe

e Need to include build tools - would be nice to offload the build of
these packages on LCG-releases

Towards the full LCG releases

e Ivan (SFT) has added a tremendous amount of packages - maybe
70% of packages included in the Icg releases already available in

spack
e Key4HEP installation can be used as a test-bed

CVMES directory tree

Already mounted in most places

/

/cvmfs/sw.hsf.org/keydhep/

| -- spackages / / Spkgname-$spackhash /
|-— views / SK4_version / /

| -— setup.sh

| -- contrib

/cvmfs/sw-nightlies.hsf.org/key4hep/

| -- nightlies/ Stimestamp / / $Spkgname-$spackhash /
|-- views / Stimestamp [/ /

| -- setup.sh

| -— contrib

\ Used to test some new cvmfs features

CVMES directory tree

/cvmfs/sw.hsf.org/keydhep/

| -- spackages / / $Spkgname-$spackhash /
|-- views / $SK4_version [/ /

| -- setup.sh

| -— contrib

/cvmfs/sw-nightlies.hsf.org/key4hep/

| -- nightlies/ Stimestamp / / $pkgname-$spackhash /
|-- views / Stimestamp / /

| -- setup.sh

| -- contrib

Contains some 300 packages

e 60 Experiment-specific

e 50 HEP-specific

e 200 System/General Purpose

14 GB install size, some 6h to build on single
4-core machine

CLICSoft transition to
Key4hep -

GaudiMarlinProcessor Update
(Placido Fernandez, Andre Saliler)

GMPWrapper Marlin Gaudi

Language C++ C++
e The Gaudi-Marlin-Processors Working Unit Processor Algorithm
Wrapper project brings Marlin
functionality to the Gaudi E;:;'Sage XML Python
framework, smoothly.
e ltcreates interfaces (wraps) Set-up function | init initialize
around Marlin Processors,
encapSUIating them in Gaudi Working process execute
Algorithms. function
e Current Marlin source code is
kept intact, and it is just Wrap-up end finalize
function
called on demand from the
Gaudi Framework. Transient Data | LCIO Anything /

Format EDM4hep

GMPWrapper now

Bugs were fixed, a manual (README.md’) was included with
instructions to compile, configure, run and test.

Updated and modernization of the code base.

Running examples are included as tests.
A recipe to build it with Spack is also part of the *k4-spack™ repo.
It was included as part of Key4hep, moving there the repo:

o https://github.com/key4hep/GMP

Cl is now included with GitHub Actions, checking syntax
(clang-format’), and running two basic functionality tests.

Dependencies

e GMP Wrapper can be built against an iLCSoft installation + Gaudi,
Main dependencies:
o Gaudi: to wrap Marlin processors and run the algorithms.
o Marlin: to run the underlying processors
m It will eventually disappear when only Gaudi Algorithms are
used
o LCIO: Event Data Model input/output
m Can be changed, for EDM4hep i.e.
e Other dependencies:
o ROOT, Boost
e Or simply:

o spack install key4hep-stack

GMP Wrapper configuration and running

e Configuring and running the wrapper is done as in Gaudi, through a
Python File
o An algorighm is filled with wrapped Marlin Processors.
o Processor parameters are defined for each instance, defining the
Marlin processor to load a list of parameters of values
m Converter for Marlin XML configuration files exists
e On algorithm initialization of a Marlin Processor, MARLIN_DLL
environment variable is used to load the necessary libraries

GMP configuration example

digiVxd = MarlinProcessorWrapper("VXDBarrelDigitiser™)

digiVxd.OutputLevel = DEBUG

digiVxd.ProcessorType = "DDPlanarDigiProcessor"”

digiVxd.Parameters = [
"SubDetectorName"”, "Vertex", END_TAG,
"IsStrip", "false", END_TAG,
"ResolutionuU”, "@.003", "0.003", "0.003", "0.003", "0.003", "0.003", END_TAG,
"ResolutionVv", "@.003", "0.003", "0.003", "0.003", "0.003", "0.003", END_TAG,
"SimTrackHitCollectionName", "VertexBarrelCollection", END_TAG,
"SimTrkHitRelCollection", "VXDTrackerHitRelations", END_TAG,
"TrackerHitCollectionName", "VXDTrackerHits", END_TAG,
“Verbosity" , "DEBUG", END_TAG,]

alglList.append(digiVxd)

CLIC reconstruction

It successfully computes the full CLIC reconstruction:

e The CLIC reconstruction computes a sequence that includes different
Overlays, Digitisers, reconstruction, tracker and vertex finding
algorithms.

e Using the updated converter, clicReconstruction.xml can be
translated to clicReconstruction. py

e The converter add all algorithms to the list and leaves the configurable
ones commented.

A full example is described in Key4hep documentation:

® https://key4hep.qithub.io/key4hep-doc/examples/clic.html

https://key4hep.github.io/key4hep-doc/examples/clic.html

Future directions

e Move from LCIO to EDM4HEP.
o Converter available in K4LCIOReader
e Replace wrapped MarlinProcceors by actual Gaudi Algorithms
o Benefit from the different functionalities Gaudi offers
o Use multi-threaded/functional Gaudi, for the future
o Seamlessly integrate for other users of Key4hep
Start using it in real scenarios to test how resilient it is.
How to approach the transition?
Gradual conversion from Marlin Processors to Gaudi Algorithms
Transition to EDM4hep, before Processors conversion?
Conversions during runtime?

Future directions

Marlin

Gaudi
EDM4hep

Valentin Volkl: KevdHEP & EDM4hen 24

Conclusion

e Key4dhep: Joint software developments between
STC/SCT, FCC, ILC/CLIC, muon collider, CEPC

e Common detector geometry descriptions in DD4HEP
e Common event data model EDM4HEP

e Shared software installations done with Spack

e Transition to common framework (Gaudi) ongoing,
GaudiMarlinWrapper finished

Testing

e Added testing with CTest:
o Simple test that runs some Marlin Processors -> InitDD4hep ->
VXDBarrelDigitiser

o Muon.slcio is used for input, without hits
o Second test generates an input file with ddsim
o It runs a similar list of algorithms with actual hits
o Qutput checks for regex with INFO Application Manager
Terminated successfully
ddsim \

--steeringFile $ILCSOFT/ClicPerformance/HEAD/clicConfig/clic_steer.py \
--inputFiles $ILCSOFT/ClicPerformance/HEAD/Tests/yyxyev_000.stdhep -N 4 \
--compactFile $ILCSOFT/lcgeo/HEAD/CLIC/compact/CLIC 03 v14/CLIC 03 vi14.xml \
--outputFile $GMP_tests DIR/inputFiles/testSimulation.slcio

Technical: PODIO

e PODIO is an Event Data Model toolkit for HEP

o developed in the Horizon2020 project AIDA2020

o based on the use of PODs for the event data objects (Plain Old Data objects)
e PODIO originally developed in the context of the FCC study

o addressing the problem of creating an EDM in a generic way
o EDM described in yaml, C++ code auto-generated
o Allowing potential re-use by other HEP groups

e PODIO is used since its first release by the FCC studies

Recent/Ongoing Developments: T

0 Hit
e Addition of Metadata 1 |
e Template engine based on Jinja2 Hitobject | OPiect Layer
e Another backend (SIO) 1
e Improved RDataFrame Interface HitData | POD Layer

N —

