
Valentin Volkl: Key4HEP & EDM4hep

KEY4HEP & EDM4HEP -
Common Software
for Future Colliders

CLIC Detector & Physics autumn collaboration meeting - 2020/10/02
Valentin Volkl (CERN), Placido Fernandez (CERN), Andre Sailer (CERN)

Valentin Volkl: Key4HEP & EDM4hep

Table of Contents

● Key4HEP - Introduction and motivation

● EDM4HEP - Common Data Model Status

● Common Gaudi Framework Status

● Software Infrastructure and Organisation

● Packaging: Spack for Key4HEP

● GaudiMarlinWrapper

2

Valentin Volkl: Key4HEP & EDM4hep

Key4HEP Motivation

● Future detector studies critically rely on well-maintained software stacks to
model detector concepts and to understand a detector’s limitations and
physics reach

● We have a scattered landscape of specific software tools on the one hand
and integrated frameworks tailored for a specific experiment on the other
hand

● Aim at a low-maintenance common stack for FCC, ILC/CLIC, CEPC with
ready to use “plug-ins” to develop detector concepts

● Reached consensus among all communities for future colliders to develop a
common turnkey software stack at recent Future Collider Software
Workshop

● Identified as an important project in the CERN EP R&D initiative

3

https://agenda.infn.it/event/19047/
https://agenda.infn.it/event/19047/
https://cds.cern.ch/record/2649646

Valentin Volkl: Key4HEP & EDM4hep

EDM4HEP - Introduction

● Event Data Model:
○ Describes structure of HEP Data:
○ definitions of objects and how they are grouped
○ technical implementation of persistency and processing

● Can be as simple as “Branch names in ROOT file”
○ But more sophisticated solutions can:

○ provide an application programming interface for HEP
software

○ aid developers in writing more efficient code
○ enable collaboration

4

Valentin Volkl: Key4HEP & EDM4hep

Relation Diagram

5

Code Reference under https://cern.ch/edm4hep

https://cern.ch/edm4hep

Valentin Volkl: Key4HEP & EDM4hep

Applications: DDSim

source /cvmfs/sw.hsf.org/key4hep/setup.sh

ddsim \
 --compactFile ${DD4hepINSTALL}/DDDetectors/compact/SiD.xml \
 --gun.particle pi+ \
 --part.userParticleHandler='' \
 --outputFile output_edm4hep.root

6

DDSim (Standalone Geant4
simulation tool in DD4hep)
 can now produce EDM4hep
files:

Valentin Volkl: Key4HEP & EDM4hep

Application: DelphesEDM4HEP

Second Plugin for Delphes output recently added:

Adds executables like standard Delphes, outputting directly to
EDM4HEP.

Higgs Recoil Analysis

example: Link

7

 ◈ DelphesPythia8_EDM4HEP ◈ DelphesHepMC_EDM4HEP
 ◈ DelphesSTDHEP_EDM4HEP ◈ DelphesROOT_EDM4HEP

https://github.com/key4hep/EDM4hep/blob/master/plugins/delphes/examples/higgs_recoil_plots.C

Valentin Volkl: Key4HEP & EDM4hep

Key4HEP Framework

Meanwhile, developments on core functionality of the Gaudi-based
framework:

● K4FWCore:
○ Data Service for Podio Collections
○ Overlay for backgrounds
○ https://github.com/key4hep/K4FWCore

● K4-project-template
○ Template repository showing how to build new components on

top of the core Key4HEP framework
○ https://github.com/key4hep/k4-project-template

● Ongoing Work to collaborate more with Gaudi ecosystem (Gaussino)
● Add ACTS components

8

https://github.com/key4hep/K4FWCore
https://github.com/key4hep/k4-project-template

Valentin Volkl: Key4HEP & EDM4hep

FCCSW - Key4HEP transition

● Already Gaudi- and Podio based, so little technical challenges

gaudi_project(GMPWrapper v0r1

 USE K4FWCore v0r2

 USE Gaudi v34r0)

● Event model has a fairly straightforward correspondence
● Still: Many files need to be touched

○ Not yet clear if radical or soft (converter-based) update preferred

● Biggest hurdle: touching all components brings technical debts to light.

9

Valentin Volkl: Key4HEP & EDM4hep

Software Infrastructure
● Regular meetings

○ https://indico.cern.ch/category/11461/

● Docpages
○ https://cern.ch/key4hep (main documentation site))
○ https://cern.ch/edm4hep (doxygen code reference)

● Modern CMake Configuration
● Automated Builds and Continuous Integration

○ Use of SPACK package manager

● Distribution via CVMFS
10

https://indico.cern.ch/category/11461/
https://cern.ch/key4hep
https://cern.ch/edm4hep

Valentin Volkl: Key4HEP & EDM4hep

Spack for Key4HEP

● Spack is a package manager
○ Does not replace CMake, Autotools, …
○ Comparable to apt, yum, homebrew, ...

○ But not tied to operating system
○ And no central repository for binaries!

● Originally written for/by HPC community
○ Emphasis on dealing with multiple configurations of the same packages

○ Different versions, compilers, external library versions …
○ … may coexist on the same system

○ Spec: Syntax to describe package version configuration and dependencies

● Repository added with Key4HEP package recipes

11

git clone https://github.com/spack/spack.git
git clone https://github.com/key4hep/k4-spack.git
source spack/share/spack/setup-env.sh
spack repo add k4-spack
install the meta-package for the key4hep-stack
spack install key4hep-stack

http://spack.io

Valentin Volkl: Key4HEP & EDM4hep

Some Experiences

● Collaboration with Spack developers fairly smooth
○ Some HEP colleagues have merging rights on the spack repo
○ Some HEP packages actively maintain their package recipes (ACTS!)

● Rapid pace of changes in upstream repository
○ Stable builds will need to pin the spack version used.
○ But miss out on the latest features.

● Spack developers very responsive, but roadmap sometimes a bit
opaque:
○ The concretizer developments have been much delayed

● The recipes are very nice to persistify build system know-how

● Parallel builds not yet attempted

12

 conflicts("%gcc@8.3.1",
 msg="There are known issues with compilers from redhat's devtoolsets" \
 "which are therefore not supported." \
 "See https://root-forum.cern.ch/t/devtoolset-gcc-toolset-compatibility/38286")

Valentin Volkl: Key4HEP & EDM4hep

Spack: use for developers

● Use in developing software is pushing spack’s intended purpose, but
possible. Options:

○ Spack can build from branches.
○ Build can be done “as usual” after spack load / spack build-env
○ spack dev-build compiles local code according to the spack recipe

● Need to include build tools - would be nice to offload the build of
these packages on LCG-releases

Towards the full LCG releases

● Ivan (SFT) has added a tremendous amount of packages - maybe
70% of packages included in the lcg releases already available in
spack

● Key4HEP installation can be used as a test-bed

13

Valentin Volkl: Key4HEP & EDM4hep

CVMFS directory tree

/cvmfs/sw.hsf.org/key4hep/
|-- spackages / $platform / $compiler / $pkgname-$spackhash / (bin …)
|-- views / $K4_version / $platform / (bin include share … init.sh)
|-- setup.sh
|-- contrib

/cvmfs/sw-nightlies.hsf.org/key4hep/
|-- nightlies/ $timestamp / $platform / $pkgname-$spackhash / (bin …)
|-- views / $timestamp / $platform / (bin include share … init.sh)
|-- setup.sh
|-- contrib

14

Used to test some new cvmfs features

Already mounted in most places

Valentin Volkl: Key4HEP & EDM4hep

CVMFS directory tree
/cvmfs/sw.hsf.org/key4hep/
|-- spackages / $platform / $compiler / $pkgname-$spackhash / (bin …)
|-- views / $K4_version / $platform / (bin include share … init.sh)
|-- setup.sh
|-- contrib

/cvmfs/sw-nightlies.hsf.org/key4hep/
|-- nightlies/ $timestamp / $platform / $pkgname-$spackhash / (bin …)
|-- views / $timestamp / $platform / (bin include share … init.sh)
|-- setup.sh
|-- contrib

15

Contains some 300 packages
● 60 Experiment-specific
● 50 HEP-specific
● 200 System/General Purpose

14 GB install size, some 6h to build on single
4-core machine

Valentin Volkl: Key4HEP & EDM4hep

CLICSoft transition to
Key4hep -

GaudiMarlinProcessor Update
(Placido Fernandez, Andre Sailer)

16

Valentin Volkl: Key4HEP & EDM4hep

GMPWrapper

● The Gaudi-Marlin-Processors
Wrapper project brings Marlin
functionality to the Gaudi
framework, smoothly.

● It creates interfaces (wraps)
around Marlin Processors,
encapsulating them in Gaudi
Algorithms.

● Current Marlin source code is
kept intact, and it is just
called on demand from the
Gaudi Framework.

17

Marlin Gaudi

Language C++ C++

Working Unit Processor Algorithm

Config
Language

XML Python

Set-up function init initialize

Working
function

process execute

Wrap-up
function

end finalize

Transient Data
Format

LCIO Anything /
EDM4hep

Valentin Volkl: Key4HEP & EDM4hep

GMPWrapper now

● Bugs were fixed, a manual (`README.md`) was included with
instructions to compile, configure, run and test.

● Updated and modernization of the code base.
● Running examples are included as tests.
● A recipe to build it with Spack is also part of the *k4-spack* repo.
● It was included as part of Key4hep, moving there the repo:

○ https://github.com/key4hep/GMP
● CI is now included with GitHub Actions, checking syntax

(`clang-format`), and running two basic functionality tests.

18

Valentin Volkl: Key4HEP & EDM4hep

Dependencies

● GMP Wrapper can be built against an iLCSoft installation + Gaudi,
Main dependencies:
○ Gaudi: to wrap Marlin processors and run the algorithms.
○ Marlin: to run the underlying processors

■ It will eventually disappear when only Gaudi Algorithms are
used

○ LCIO: Event Data Model input/output
■ Can be changed, for EDM4hep i.e.

● Other dependencies:
○ ROOT, Boost

● Or simply:
○ spack install key4hep-stack

19

Valentin Volkl: Key4HEP & EDM4hep

GMP Wrapper configuration and running

● Configuring and running the wrapper is done as in Gaudi, through a
Python File
○ An algorighm is filled with wrapped Marlin Processors.
○ Processor parameters are defined for each instance, defining the

Marlin processor to load a list of parameters of values
■ Converter for Marlin XML configuration files exists

● On algorithm initialization of a Marlin Processor, MARLIN_DLL
environment variable is used to load the necessary libraries

20

Valentin Volkl: Key4HEP & EDM4hep

GMP configuration example

digiVxd = MarlinProcessorWrapper("VXDBarrelDigitiser")

digiVxd.OutputLevel = DEBUG

digiVxd.ProcessorType = "DDPlanarDigiProcessor"

digiVxd.Parameters = [

"SubDetectorName", "Vertex", END_TAG,

"IsStrip", "false", END_TAG,

"ResolutionU", "0.003", "0.003", "0.003", "0.003", "0.003", "0.003", END_TAG,

"ResolutionV", "0.003", "0.003", "0.003", "0.003", "0.003", "0.003", END_TAG,

"SimTrackHitCollectionName", "VertexBarrelCollection", END_TAG,

"SimTrkHitRelCollection", "VXDTrackerHitRelations", END_TAG,

"TrackerHitCollectionName", "VXDTrackerHits", END_TAG,

"Verbosity" , "DEBUG", END_TAG,]

algList.append(digiVxd)

21

Valentin Volkl: Key4HEP & EDM4hep

CLIC reconstruction

It successfully computes the full CLIC reconstruction:

● The CLIC reconstruction computes a sequence that includes different
Overlays, Digitisers, reconstruction, tracker and vertex finding
algorithms.

● Using the updated converter, clicReconstruction.xml can be
translated to clicReconstruction.py

● The converter add all algorithms to the list and leaves the configurable
ones commented.

A full example is described in Key4hep documentation:

● https://key4hep.github.io/key4hep-doc/examples/clic.html

22

https://key4hep.github.io/key4hep-doc/examples/clic.html

Valentin Volkl: Key4HEP & EDM4hep

Future directions

● Move from LCIO to EDM4HEP.
○ Converter available in K4LCIOReader

● Replace wrapped MarlinProcceors by actual Gaudi Algorithms
○ Benefit from the different functionalities Gaudi offers
○ Use multi-threaded/functional Gaudi, for the future
○ Seamlessly integrate for other users of Key4hep

● Start using it in real scenarios to test how resilient it is.
● How to approach the transition?
● Gradual conversion from Marlin Processors to Gaudi Algorithms
● Transition to EDM4hep, before Processors conversion?
● Conversions during runtime?

23

Valentin Volkl: Key4HEP & EDM4hep

Future directions

● Move from LCIo to EDM4HEP.
○ Converter availbable in K4LCIOReader

● Replace wrapped MarlinProcceors by actual Gaudi Algorithms
○ Benefit from the different functionalities Gaudi offers
○ Use multi-threaded/functional Gaudi, for the future
○ Seamlessly integrate for other users of Key4hep

● Start using it in real scenarieos to test how resilient it is.
● How to approach the transition?
● Gradual conversion from Marlin Processors to Gaudi Algorithms
● Transition to EDM4hep, before Processors conversion?
● Conversions during runtime?

24

Gaudi
EDM4hep

Marlin
LCIO

Valentin Volkl: Key4HEP & EDM4hep

Conclusion

● Key4hep: Joint software developments between
STC/SCT, FCC, ILC/CLIC, muon collider, CEPC

● Common detector geometry descriptions in DD4HEP

● Common event data model EDM4HEP

● Shared software installations done with Spack

● Transition to common framework (Gaudi) ongoing,
GaudiMarlinWrapper finished

25

Valentin Volkl: Key4HEP & EDM4hep

Testing

● Added testing with CTest:
○ Simple test that runs some Marlin Processors -> InitDD4hep ->

VXDBarrelDigitiser
○ Muon.slcio is used for input, without hits
○ Second test generates an input file with ddsim
○ It runs a similar list of algorithms with actual hits
○ Output checks for regex with INFO Application Manager

Terminated successfully

 ddsim \

 --steeringFile $ILCSOFT/ClicPerformance/HEAD/clicConfig/clic_steer.py \

 --inputFiles $ILCSOFT/ClicPerformance/HEAD/Tests/yyxyev_000.stdhep -N 4 \

 --compactFile $ILCSOFT/lcgeo/HEAD/CLIC/compact/CLIC_o3_v14/CLIC_o3_v14.xml \

 --outputFile $GMP_tests_DIR/inputFiles/testSimulation.slcio

26

Valentin Volkl: Key4HEP & EDM4hep

Technical: PODIO

● PODIO is an Event Data Model toolkit for HEP
○ developed in the Horizon2020 project AIDA2020
○ based on the use of PODs for the event data objects (Plain Old Data objects)

● PODIO originally developed in the context of the FCC study
○ addressing the problem of creating an EDM in a generic way
○ EDM described in yaml, C++ code auto-generated
○ Allowing potential re-use by other HEP groups

● PODIO is used since its first release by the FCC studies

Recent/Ongoing Developments:

● Addition of Metadata
● Template engine based on Jinja2
● Another backend (SIO)
● Improved RDataFrame Interface

27

