

# Long-lived particles at CLIC

Ulrike Schnoor (CERN)

Erica Brondolin, Cecilia Ferrari, Emilia Leogrande

CLICdp Meeting 2020



## Introduction to long-lived particles (LLP)



2 / 16

- Various new physics models predict particles with macroscopic lifetimes
- Example: Small mass splitting/compressed spectra
- "Standard" analyses lack sensitivity
- Variety of signatures in detectors depending on the model (mass, lifetime, boost)
- Long-lived particles at LHC:
  - ► LHC LLP overview report: 1903.04497
  - Many ongoing analyses
  - Proposed dedicated experiments (e.g. FASER)
- Physics beyond colliders: 1901.09966





### Long-lived particles at CLIC



- 1. Hidden valley searches in Higgs boson decay
  - displaced multi-track vertices
  - ► full simulation study with CLIC\_ILD CLICdp-Note-2018-001
- 2. Degenerate Higgsino Dark Matter
  - Theory-level study for the CLIC Potential for New Physics yellow report [1812.02093] by N. Craig and S. Alipour-Fard
  - Process: chargino pair production
  - ► Stub tracks from charged Higgsino with a lifetime of 6.9 mm
  - Decay to pion and neutralino
  - Using geometrical detector acceptance and minimum reconstructable length for the efficiency of reconstructing the stub tracks

- Analysis with 1 or 2 stubs and possibly additional photon at 3 TeV
- Resulting exclusion limits assuming no background:



(Fig. 74 from the YR)

▶ Reach thermal DM mass of ≈ 1 TeV



### Full simulation of LLP chargino pair production



- ▶ Process: chargino pair production where the  $\chi_1^\pm$  decay to a neutralino and a pion:  $e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^-$
- ► CLICdet at 3 TeV, with ISR and Beamspectrum included
- > Small mass difference between chargino and neutralino: Chargino mass  $m_{\tilde{\chi}_1^\pm}=1050\,{
  m GeV}$ , neutralino mass  $m_{\tilde{\chi}_1^0}=1049.645\,{
  m GeV}$



- Production chain:
  - Chargino pair production and decay in Whizard
  - Parton shower and hadronization in Pythia
  - ▶ Displacement of the decay vertex in Geant4

| chargino mixing | thermal limit mass | mass difference | lifetime | c	au   | Γ                                 |
|-----------------|--------------------|-----------------|----------|--------|-----------------------------------|
| pure higgsino   | 1050 GeV           | 355 MeV         | 0.023 ns | 6.9 mm | $2.86 \times 10^{-14} \text{ eV}$ |

➤ Sample produced for the studies shown here uses lifetime of 600 mm in order to increase the statistics of reconstructable charginos



#### Analysis strategy



#### Stub track analysis at 3 TeV with CLICdet

#### Signal selection

- Stub track candidate definition:
  - ▶ at least four hits in the tracking system
  - disappearing within the tracking system volume
  - no energy deposition in the calorimeter
  - prompt. isolated track
  - minimum transverse momentum
  - ▶ dE/dx requirement
- ► At least one stub candidate per event
- ► Additional: Requirements on soft displaced pion(s)
- ► Additional: Requirements on additional photons



#### Backgrounds:

- ▶ Beam-induced  $\gamma \gamma \rightarrow$  hadrons:
  - algorithmic
  - split tracks
  - conversion
- final states with low multiplicity of isolated leptons



### Track reconstruction for the analysis





CLICdet vertex & tracker

2 challenging types of objects for track reconstruction with conformal tracking:

- Stub track reconstruction
  - in many cases too short to be reconstructable
  - ▶ at CLIC 3 TeV:  $E_{max} = 1.5$  TeV, m = 1.05 TeV  $\Rightarrow p_{max} \approx 1.07 \, \text{TeV}$
  - $\Rightarrow$  chargino gives very straight and short track  $\Rightarrow$ difficult to reconstruct track parameters
- Displaced pions
  - verv soft

chargino lifetime distribution at  $\theta = 90^{\circ}$  for  $c\tau = 6.9$  mm:



vertex barrel double lavers



## **Tracking performance**



- Customized tracking validation code in place
- ► More details: see Erica's slides from 01-09-2020
- ► Chargino tracking efficiency for different lifetimes without overlay:



- ► Low statistics for the sample with short lifetime (6.9 mm)
- ► Consistent behaviour, higher tracking efficiencies for longer tracks



### Chargino reconstruction with overlay



Comparison with and without overlay shows very similar performance:







for the 600 mm sample



### Pion reconstruction and tracking performance



- Very soft pions could be used as an additional signature to the stub track
- ► Tracking efficiency highly depends on the lifetime of the chargino, i.e. the displacement of the vertex of origin of the pion









### Lifetime reweighting for the signal



- ▶ The samples were produced with a longer lifetime than in the model
  - ▶ to ensure efficient Monte Carlo generation
  - ▶ to allow lifetime-dependent limit setting
- Use the survival probability for the chargino to travel at least the distance d<sub>min</sub>:

$$P_s(d_{\mathsf{min}}) = rac{1}{k} e^{(-m_{ ilde{\chi}} d_{\mathsf{min}} \Gamma_{ ilde{\chi}})/p_{ ilde{\chi}}}$$

- ightharpoonup chargino mass  $m_{\tilde{\chi}}$
- ightharpoonup chargino momentum  $p_{ ilde{\chi}}$
- ightharpoonup decay width Γ<sub>χ̃</sub>
- ▶ normalization constant  $k = \frac{pc\tau}{m}$

Resulting weights for each chargino:

$$w(\ell) = \frac{P_{target}(\ell)}{P_{MC}(\ell)} = \frac{c\tau_{MC}}{c\tau_{target}} \exp\left(-m_{\tilde{\chi}} \frac{\ell}{\rho_{\tilde{\chi}}} \left[ \frac{1}{c\tau_{target}} - \frac{1}{c\tau_{MC}} \right] \right)$$

applied to each event for both charginos based on truth trajectory  $\ell$ 



### Validation of reweighting



Validate the lifetime distribution:



(both normalized to 1.0)

➤ statistical errors smaller for the reweighted sample for values above 30 mmm (relevant range for our detector)

Validate kinematic properties: (ℓ >30 mm to mimic detector acceptance)





▶ good agreement between nominal and reweighted

p [GeV

 validation of event-wise and pion variables good agreement as well



#### Chargino candidate preselection



Charginos are pre-selected from SiTracks\_Refitted tracks with the following criteria now:

- $ightharpoonup p_T > 1 \text{ GeV},$
- $ightharpoonup \sqrt{d_0^2 + z_0^2} < 0.5 \, \mathrm{mm}$
- if  $p_T > 1.5$  GeV, they should not be associated with a PFO
- ▶ isolation: the sum of the pTs of the tracks surrounding the chargino candidate track in a cone of R=0.1 must not be more than 10 % of the chargino candidate track pT, i.e.

$$rac{\sum_{tracks} p_T(R \leq 0.1)}{p_T(track)} < 0.1$$

The 2 preselected tracks with highest reconstructed pT are considered as chargino candidates in the event



### dE/dx as a discriminating variable



- Study whether dE/dx can be used as a discriminating variable, possibly compensating part of the loss of sensitivity due to the limited reconstruction of pT from tracking
- ightharpoonup dE/dx is related to  $\beta \gamma = p/m$  which is around 1 for the signal but larger for some of the backgrounds as they have smaller mass  $\rightarrow$  potential discrimination

#### Average dE/dx vs. $\beta\gamma$ (truth) for the highest pT chargino (after preselection):



- Cutoff at 1.02 due to the restriction of the energy to  $\sqrt{s}/2 = 1500 \, \text{GeV} \Rightarrow \text{momentum } p < 1071 \, \text{GeV}$  $\Rightarrow \beta \gamma = \frac{p}{m} < 1.02$
- Compare to: (PDG)



Agreement with prediction



### dE/dx vs reco momentum



Average dE/dx vs reco momentum for the signal and background chargino candidates (after preselection)

#### ch1 (highest pT) in signal



#### ch1 (highest pT) in background



- ▶ Difference between the distributions, note that the y axis ranges are quite different
- ► However the maximum is for both cases at low pT and low dE/dx



## dE/dx comparison and conclusions



Comparison between Signal and Background for average dE/dx:



- ► Fluctuations, but no clear shape difference that would allow using a cut
- ▶ The detector acceptance introduces a bias towards more boosted particles: if  $\ell^{LF} > 30 \text{ mm}$  cut is applied, this implies a cut on  $\gamma$ :  $\gamma > \frac{\ell^{RF}}{30 \text{ mm}}$  (especially for low  $c\tau$ )
- ⇒ low dE/dx
  - ► This would be different for larger p/m, i.e. smaller mass or higher  $\sqrt{s}$
- ⇒ dE/dx can still be useful for disappearing tracks in other models/parameter points



#### **Conclusions & Outlook**



- ▶ Reweighting the 600mm sample to 6.9mm works
- New isolation variable
- ► Investigated dE/dx as a discriminating variable

#### Outlook

- ightharpoonup Background estimate from  $\gamma\gamma\to$  hadrons-only samples
  - shapes of distributions
  - normalization/extrapolation of total number
- Estimate sensitivity, potentially in dependence of lifetime and chargino (Higgsino) mass



### **Additional Material**





### **Available samples**



#### production v2

- ▶ signal only: lifetime 600mm, neg. e beam pol, 50k events
- ightharpoonup signal  $+ \gamma \gamma \rightarrow$  hadrons background
- lacktriangle only  $\gamma\gamma o$  hadrons background

#### production v3

▶ signal only: lifetime 180mm, no e beam pol, 50k events

#### production v4

- ▶ signal only: lifetime 6.9mm, neg. e<sup>-</sup> polarisation, 50k events
- ightharpoonup signal  $+ \gamma \gamma \rightarrow$  hadrons background