
Xiaocong Ai

ACTS KalmanFitter on GPU

Sept 25, 2020

Optimizations of ACTS KalmanFitter on GPUs

● Using paged-locked (pinned) memory for source links, starting parameters

– Managed memory for surfaces and fitted states
● Using streams for asynchronous data transfer and kernel execution
● Currently testing the approach of using one block for one track

– Use shared memory for propagator options, propagation state, propagation
result, but this requires relevant objects to be default-constructible

➔ Geometry: 10 plane surfaces
perpendicular to x axis

● Constant B field: Bz=2T

 3

Timing profiling

CudaMallocManaged for surfaces
(~180 ms)

The managed memory allocation and data transfer between CPU and GPU
seems to be the bottleneck

(~120 ms)

 4

ACTS KalmanFitter performance on GPUs

● Comparable execution time between GPU (excluding surfaces allocation
and transfer time) and CPU+openMP parallelization

2.7 GHz

2.3 GHz

1.4 GHz

1.2 GHz

 5

Navigator on GPU

● Reminder:

– Virtual functions couldn’t be called inside CUDA kernels (unless objects are
constructed inside kernels)

– All ACTS surface types have a polygonal representation allowing for
triangular mesh of all surfaces

● Polymorphism is necessary if we doesn’t want two sets of code for CPU
and GPU

– CRTP (Curiously Recurring Template Pattern) is used for the surface class,
i.e. either the whole base class or some of its `virtual` functions are
templated on the derived class

● But not real polymorphism, i.e. the objects couldn’t be put in one
container any more and/or the derived class type must be statically
known when those `virtual` functions are called

 6

Triangular-meshed detector

● Senstive surfaces of TrackML detector are
meshed to 37456 triangles (PlaneSurface
with ConvexPolygonBounds):
– Surface bounds: ~1.8 MB
– Surfaces: ~6 MB
– Intersections: ~ 3.6 MB

 7

Surfaces intersecting on GPU

● Intersections of a seed with detectors are computed using CUDA
Kernels

The derived surface class type
must be known at compile-time

 8

Navigation timing on GPU

A seed with position (0,0,0) and direction (1, 0.1, 0)
has 14 intersections with TrackML detector

● One intersection call @NVIDIA Volta 100: 0.2 ms (excluding the surface
allocation and transfer time)

● Latency might be hidden by running thousands of seeds simultaneously
– For one track propagation, do we need to run the intersection call multiples

times?

 9

How to minimize D2H data transfer

CudaMallocManaged for
surfaces (~180 ms)

Test 1: D2H copy all intersections (valid or not)

Test 2: D2H copy only valid intersections
1) First D2H copy valid intersection indices
2) Alloc memory for valid intersections on device
3) Copy valid intersection from full intersections array to the
valid intersections array
4) D2H valid intersections

(~0.2 ms)

 10

Summary

● Cuda streams could allow overlapping data transfer and kernel
execution

● Objects to be stored as pointers could use unified memory to avoid deep
copy (but expensive)

● Polymorphism on GPU is difficult
● Non-default-constructible class can’t be readily used on GPU
● Kernel execution might be further optimized, but the real bottleneck

seems to be the (unified) memory allocation and data transfer

– Needs enough parallelism to hide the memory allocation and data
transfer latency

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

