ACTS KalmanFitter on GPU

Xiaocong Ai

Sept 25, 2020

* Using paged-locked (pinned) memory for source links, starting parameters

- Managed memory for surfaces and fitted states
* Using streams for asynchronous data transfer and kernel execution
* Currently testing the approach of using one block for one track

- Use shared memory for propagator options, propagation state, propagation
result, but this requires relevant objects to be default-constructible

> Geometry: 10 plane surfaces
perpendicular to x axis
» Constant B field: Bz=2T

=t
P
—
e

Timing profiling

The managed memory allocation and data transfer between CPU and GPU
seems to be the bottleneck

Project 1 X report3.qdrep X

| Z Timeline View = LPix =

0s = mMs +50ms +100ms +150ms +200ms +250ms +300ms +350ms +400ms +450ms +500ms +550ms +600ms +650ms +700m
L 1 L L L h L h L h L h L h L h L N L h L h L h L h L h

~ Threads (2)
= [1035180] KalmanFitterCud
CUDA APl cudaMallocManaged
Profiler overhead cw..) J] D
1 thread hidden... =

- ameercesc1ss0.00. - CudaMallocManaged for surfaces - e o

* =>99.9% Context 1

- (=180 ms)] o . e)

reams -
o] e [me.)

» 25.9% Stream 15

» 25.4% Stream 16
» 24.7% Stream 14 (W) @mes)
»
»

23.9% Stream 17 [|

<0.1% Default stream (7)

» <0.1% Unified memory - (~ 120 mS)

25.9% Stream 15 | Memcpy DtoH |
25.4% Stream 16 | Memcpy DtoH |

24.7% Stream 14 [Memcpy HeoD | ™ Memcpy DtoH |

23.9% Stream 17

* v ¥ v

ACTS KalmanFitter performance on GPUs

 Comparable execution time between GPU (excluding surfaces allocation

ACTS Kalman fitter timing test (10 PlaneSurfaces, B field = (0, 0, 2)T)

Fitting time (Sec)

5000

10000

nTracks

50000

100000

and transfer time) and CPU+openMP parallelization

= = Intel i7-8559U W/O OMP
Intel i7-8558U W/ OMP (8 thread in
total)

= == [Niel E5-2698v3 W/O OMP

m—— N12] ES-2698v3 W/ OMP (32 threads in
total)

= == |ntel 7250 W/O OMP

m— |ntel 7250 W/ OMP (272 threads in total)
NVIDIA V100 ("Volta') (Sept 25)

m— NVIDIA V100 ("Volta') (Aug 21)

2.7 GHz

2.3 GHz

1.4 GHz

1.2 GHz

e Reminder:

— Virtual functions couldn’t be called inside CUDA kernels (unless objects are
constructed inside kernels)

- All ACTS surface types have a polygonal representation allowing for
triangular mesh of all surfaces

 Polymorphism is necessary if we doesn’t want two sets of code for CPU
and GPU

- CRTP (Curiously Recurring Template Pattern) is used for the surface class,
l.e. either the whole base class or some of its "virtual functions are
templated on the derived class

e But not real polymorphism, i.e. the objects couldn’t be put in one
container any more and/or the derived class type must be statically
known when those ‘virtual functions are called

template <typename surface derived t=
inline const typename surface derived t::SurfaceBoundsType *Surface::bounds() const {
return static cast<const surface derived t *=(this)->bounds();

}

Senstive surfaces of TrackML detector are
meshed to 37456 triangles (PlaneSurface
with ConvexPolygonBounds):

- Surface bounds: ~1.8 MB
- Surfaces: ~6 MB
- Intersections: ~ 3.6 MB

O T
A DA%

AT IS AT S

B
=%
ST
L

s

Al
‘e}i‘;‘b
!
.-qiﬁgh
/o

N
|}
vl

o
1‘1!1'
o
e
%Fﬂﬁ

kdf‘“'rﬂﬁgh
H‘ iR i wve (e,

.._ﬁgq!lgr' _

e

rr
k]
i

A
IS NP
A A7
A2

s

=
S
E‘
v
i
AT
SRR
mﬁa
W
EE%?
o
10

o T T
Z 3

ey

7
VS
A

= e S

i&
NN
T 7

kil
77
4!
i :Z;.EIﬂl
G A

VAN
TN

Ly 'llfﬁ
Pl
0
T

L]
744

il
A
R

]
1%

EF . WA

L

i
I
P
L
4
A
L

st

7

‘j.
o

7

s

ZEE
54%
T

A7

7
=

o

vl

=

%

i,

el

7

7]

£

iy

=
e,

-’

i

7
g

AR
Hi

A

b

AT

AN »-

AN
i

T

g

P

Wit T
LN f,'l{\}}iﬂ\\\

i

£
i

o

\

D

T

e

P

[

=

i

o

R

rﬁ‘dli"&\\?ﬁ%‘\‘\‘lnﬁ\"ii'??’(‘-\‘k*}r‘q) }‘
IO U
R \;ﬂﬁ‘.‘\ Y

"\\»‘iﬁ%ﬂi bk

)

..

isl Short Stri

p

Pixel

S

\ o

Long Strip

Surfaces intersecting on GPU

* |ntersections of a seed with detectors are computed using CUDA
Kernels

template <typename surface derived t=

global volid
intersectkKernel(Vector3D position, Vector3D direction, BoundaryCheck bcheck,

const PlaneSurfaceType *surtacePtrs,
SurfaceIntersection *intersections, bool* status, int nSurfaces, int offset) {

int i = blockDim.x * blockIdx.x + threadIdx.x + offset;

it (1 = (nSurfaces+offset)) {
const Surfacelntersection intersection = surfacePtrs[i].intersec%ﬂsurface_derived_tb[
GeometryContext(), position, direction, bcheck);
ifT (intersection.intersection.status ==
Intersection::Status::reachable and

intersection.intersection.pathLength == 0) { The derived surface class type
status[1] = true; must be known at compile-time

intersections[i] = intersection;

* One intersection call @NVIDIA Volta 100: 0.2 ms (excluding the surface
allocation and transfer time)

e Latency might be hidden by running thousands of seeds simultaneously

— For one track propagation, do we need to run the intersection call multiples
times?

A seed with position (0,0,0) and direction (1, 0.1, 0)
has 14 intersections with TrackML detector

—
——
——
——
———
—
—
——
—
——
—

How to minimize D2H data transfer

Project 1 X report2.qdrep X

= Timeline View -

plx ;};,' ﬁ

+20ms +40ms +60ms +80ms +200ms
P it S i I S A SR S-S PRI i

+220ms
P

+240ms
PP R

+260ms +280ms
Pt SRt i A ST

+300ms +320ms +340ms
PP P TS i R SR L S

* Threads (2)
~ [1007748] IntersectCudaTe
CUDA APl
Profiler overhead
1 thread hidden... e
~ CUDA (GeForce GTX 1650, 00(
* B52.4% Context 1

v [All Streams]

» 47.8% Default stream (7)
b 14.0% Stream 14

» 12.9% Stream 15
v 12.8% Stream 17
v 12.4% Stream 16

b 47.8% Default stream (7)
b 14.0% Stream 14
b 12.9% Stream 15
b 12.8% Stream 17
b 12.4% Stream 16
» 37.6% Unified memory

Os = ms
PR

CudaMallocManaged for

surfaces (~180 ms) .

Test 1: D2H copy all intersections (valid or not)

(~0.2 ms)

Test 2: D2H copy only valid intersections

1) First D2H copy valid intersection indices

2) Alloc memory for valid intersections on device

3) Copy valid intersection from full intersections array to the

valid intersections array
4) D2H valid intersections

Cuda streams could allow overlapping data transfer and kernel
execution

Objects to be stored as pointers could use unified memory to avoid deep
copy (but expensive)

Polymorphism on GPU is difficult
Non-default-constructible class can’t be readily used on GPU

Kernel execution might be further optimized, but the real bottleneck
seems to be the (unified) memory allocation and data transfer

- Needs enough parallelism to hide the memory allocation and data
transfer latency

10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

